Static Scheduling of Multi-Domain Memories For
Functional Verification

Murali Kudlugi Charles Selvidge Russell Tessier
Emulation Systems Group Dept. of Electrical and Computer Engg.
IKOS Systems Inc. University of Massachusetts
Waltham, MA Amherst, MA
{murali,selvidge}@ma.ikos.com tessier@ecs.umass.edu
Abstract evaluation for both computation and communication. Specifically,

it is necessary to determine when individual memory operations
Over the past decade both the quantity and complexity of availablehould be evaluated (the hold-time problem) and when inter-
on-chip memory resources have increased dramatically. In order tprocessor communication of memory access results should be
ensure accurate ASIC behavior, both logic functions and memoryerformed (the multi-domain transport problem). Previously, the
resources must be successfully verified before fabrication. Oftertranslation of design memory to verification system data storage
the functional verification of contemporary ASIC memory is com- has required manual steps to isolate asynchronous domains and
plicated by the presence of multiple design clocks that operat@chieve accurate memory modeling behavior [4, 5, 6]. This manual
asynchronously to each other. The presence of multiple cloclkpproach has often required significant effort and can lead to
domains presents significant challenges for large parallel verificaverification flaws.
tion systems such as parallel simulators and logic emulators that In this paper, a heuristic approach to performing parallel
model both design logic and memory. Specifically, multiple asyn-verification of memory-intensive designs with multiple
chronous design clocks make it difficult to verify that design hold asynchronous clock domains is described. The approach analyzes
times are met during memory model execution and causality alongnemory port dependencies across multiple clock domains and
memory data/control paths is preserved during signal communicasubsequently schedules memory evaluation. Our technique is
tion. In this paper, we describe new scheduling heuristics for memapplicable to a variety of parallel verification systems and is
ory-based designs with multiple asynchronous clock domains thagcalable to an unlimited number of asynchronous clock domains.
are mapped to parallel verification systems. Our schedulingro validate the developed approach, our algorithms were integrated
approach scales to an unlimited number of clock domains and corwith a commercial FPGA-based emulation system from Ikos
verges quickly to a feasible solution if one exists. It is shown thatSystems [7]. For two memory-intensive designs it is shown that
when our technique is applied to an FPGA-based emulator contairmodeling accuracy for memory-based designs with asynchronous
ing 48MB of SRAM, evaluation fidelity is maintained and clock domains can be achieved without the need for time-
increased verification performance is achieved for large, memoryeonsuming manual mapping steps. For both designs, an
intensive circuits with multiple asynchronous clock domains. improvement in overall verification system performance is shown.

1. Introduction 2. Background

As ASIC design sizes have expanded over the past decade, paraltehe approach described in this paper can be applied to numerous
verification platforms, which have the capability to perform many logic emulation and parallel cycle-based simulators that statically
logic evaluations and memory operations concurrently, haveschedule memory accesses at compile time. Example verification
increased in popularity. These systems, which include logicarchitectures that fit this model include the Tharas Hammer [13]
emulators [7, 10] and parallel cycle-based simulators [13], ofterparallel simulator, Quickturn CoBalt emulator [10] and Ikos Virtua-
use special purpose logic processors or FPGAs for logic evaluatiopnogic emulator [7]. For these systems, the derived relationship
and companion memory devices for memory emulation. Memorybetween the high-speed verification system clock and the emulated
accesses in these systems are usually synchronized to a high-speRssign memory is determined from detailed memory mapping. To
system clock to achieve maximum verification system performancesupport memory verification, these systems [7, 13] contain collec-
In general, these memory accesses require multiple discretéons of single-ported SRAM devices that can be used to emulate a
verification steps per user design cycle to accommodate address arghge of design memory structures. During the design compilation
control signal setup and data sampling. As a result, a fixethrocess, control logic, which is sequenced by the system clock, is
relationship must be created between the behavior of thénserted into the emulated design to allow for the evaluation of
verification system clock and the design clocks that control accessomplex design memory using simpler physical memory devices.
to memory structures in the verified design. This relationship carMemory accesses are scheduled relative to the system clock to
then be used to determine exactly when memory control signalavoid data, address, and control signal conflict. In a manner similar
should be updated and when data may be safely sampled. to high-level synthesis [11], multiple small design memories can be

A significant problem arises when memory-intensive ASIC packed into a single physical memory located in the parallel verifi-
designs with multiple asynchronous timing domains are mapped teation hardware. Unlike memory scheduling in high-level synthesis
parallel verification systems [5]. The lack of a fixed phase[8], however, verification-based memory scheduling must be per-
relationship between design clock domains complicates data

formed at a fine-grained level and as a result can be adverselgomains at any point in time. More generally, any circuit in which

affected by multiple asynchronous design clock domains. signals are sourced by independently-clocked elements and fan out
The target system for this paper is an lkos VirtuaLogic emulationto memory structures results in multi-domain memory ports.

system that contains 384 Xilinx XC4062XL FPGAs for logic emu-

. . . Consider the circuitry shown in Figure 1 where two asynchro-
lation and 192 64Kx32 single-ported SRAM devices for memorynous clocks CLK1 and)é:LKZ drive stgate elements (FF1 F)Il:3) and

emulation. Inter-FPGA communication and memory accesses i . . T
VirtuaLogic systems are based on Virtual Wires technology, an?FFZ, FF4) respectively. The portion of the circuit that reacts to

inter-FPGA communication scheduling technique [12]. This flOCkathKl 1S Io_tglt(r:]altly grotjp:edngDzo_maml ang S|mI|DIarIy t_hz p_lc_)rr{
approach pipelines multiple logical signals called virtual wires F'g;g oret fggg' esas'ren(’:issfr(c))m bothISD%rrz:Pnel r"f 'st?eTsag]nd froem
across single inter-FPGA wires to overcome FPGA pin limitations P v '9 : g

[1, 2]. Logic designs are mapped to multi-FPGA systems through %Omami rr?gﬁD,terr: igzhf Fieeta(;l Fl’Aotrt nOUtpLijrtn IdS ;ﬁmgleoil rkl)y vbcl)th
series of compilation steps which include partitioning of logic into omaint a oma egisters. At any po uring design evaiu-

blocks small enough to fit within FPGAs, placement of logic blocksat'(.m the ve}lue of the design signal Domain-Select d_etermlnes
o . . . which domain path accesses the memory. A memory with a Read

onto specific FPGAs, assignment of design memory to available "~ . . .
ort input that transitions (changes value) on multiple domains and

emulation memory, and scheduling of logic evaluation, inter-FPGAP
communication and memory accesses. All logic, memory and com? Read port output that is sampled (looked at) in multiple domains

munication activities are controlled by a high-speed clock, called as called an MTSD (Multi Transition and multi Sample Domain)

Virtual Clock, which serves as a discrete timebase, providing a reIi-:Tr1 aer?s]ict)irgﬁ ?gijsrerezaiz?r\nlvsbaofrl\l%:g?n?ror?eg?jnsrrnzl Sv);;;npfrg T:]u:::e
able mechanism for controlling the order of events at a fine granu.. . ning bo Y . ports.
. . I . figure a multi-transition WriteEnable signal applied to a Write Port
larity. Since many combinational evaluations and memory accesi;‘,riggers memory to be written in one of two domains. As a result of
steps may occur in a single design clock cycle, the Virtual Clock by, ; e . .
P Y g g Y ythls behavior the port can be classified as an MTSD Write port.A

necessity runs at a much higher frequency than the design clock. . .
For logic emulation systems, emulation memory accesses are bas&if Moy module which has at least one MTSD Read or Write port

on the emulation clock. can be classified as an MTSD memory.
The basic approach of scheduling asynchronous domain data D°maint input
. . . . Registers Domainl Output
transfer for logic emulation systems has previously been applied to ADDR+ Registers
latches and combinational logic in [9]. Due to the complexity of Combina.
memories, this previous approach targeted to latches cannot be eas- tional Logic D
ily extended to cover multi-ported memories. In this work we con- PORT
sider scheduling for asynchronously controlled memory address,
data, and control signals. WRITE
PORT
3. Multi Domain Read and Write Ports T oo
Domainl Path (FF1.Q-N3-A[n]-D[m]-FF3.D) Input MTSD Memory 4
Registers Select Domain2
Output
AL P MTSD PORT L R Q_Ne Figure 2: Multi Domain Memory Write Port ~ Redisters
CLK1 I_ The memory access scheduling approach described in this paper
READ D[m] can be applied to both single and multi-ported user design memo-
FF1 PORT FF3 ries. To facilitate illustration of the algorithm, dual port memories
ey d '\Gﬂfx \,QVSF'QTTE Y are us_ed as examples _throughout the re_mainder of the paper. Note
I that simultaneous multi-domain read/write access to a single-port
CLK2 MTSD MEM memory can be arbitrated by external logic in user designs or by
Domain synthesized memory access control logic. In either case, the logic
Fr2 g sequences memory access to the single port to obtain correct logical
memory behavior. Verification of simultaneous memory access on a
omainzZ Path (FF2.Q-N4-A[n]-D[m]-FF4.D) single-ported memory is described in [7] and a detailed description
Figure 1: Multi Domain Read Port is beyond the scope of this paper. By assuming a dual port memory

implementation for illustrative purposes it is possible to explain the
A multi-domain memory port is a port that is accessed using signalgentral ideas of the paper which are independent of the actual
that are sourced from more than one clock domain. In industrialmplementation.
designs such as graphics processors and network switches, memory
ports are often accessed by several clock domains through the USe Multi Domain Problems
of multiplexers which steer signals from one domain or another to
the inputs of the memory port. At any particular instant in time, aThere are a humber of problems that make multi-domain memory
port is accessed by only a single clock domain path, but over th@ccess interesting and challenging from a functional modeling point
course of time, it may be accessed by several different domains. Asf view.
a result, a port must be considered to be potentially active for all

Modeling Logic In Multiple Domains

N4(D1) WE (D1)
Functional Axiom 1Timing Closure -‘ P\ WE | wm
Combinational logic plus transmission delay plus setup time G’E(MTSD’ WE (02) >‘>
between two sequential elements in the same domain takes less than 3-@ -

one period of the clock attached to the sequential elements.

Consider the circuit in Figure 1 where design clocks CLK1 and p 4 \ PARTITION / \

CLK2 are asynchronous, and the memory accesses in each domain \ / \

can overlap with each other. The correct functional model of this \

circuit must simultaneously satisfy the timing closure axiom in 7 \Z> Tk \

each constituent domain. This indicates that all of the Read Address % .

bits must travel from source registers to the Address terminals of e ; (is k-1)

the Read port, a Read Access must be performed, and the resulting .Y

Data output must reach the input of the output registers of the same — (k2 ® \ P TIME
t=1 t=2 t=3 t=4 t=6 =7 = t=8

domain in exactly one clock cycle, irrespective of combinational or
routing delays. As an example, the contents of flip-flop FF1 must Figure 3: Transporting Multi Domain Values.

reach the input of the Read port, the read access must be performed,

and the result of read access must reach the input of flip-flop FF3 imired signals cannot be multiplexed to carry non-MTSD nets, pin
exactly one cycle of user clock CLK1. The same requirement holddimitation problems [1] can result leading to reduced system perfor-

on the corresponding Domain2 path. mance. To avoid this problem, it is desirable to split multi-domain
values into constituent domain values and to route (schedule) them
Multi Domain Multi Port Access in respective domains and recover the multi-domain value at the

destination FPGA or processor. This solution poses another prob-
lem because of unpredictable route timing that is inherent in stati-
Should there be both Read and Write accesses to the same mematglly routed systems. Consider a situation where the circuit in
location in the same user design cycle, the Read output must refledtigure 2 is partitioned such that the multi-domain value WE (Wri-
the most recent write. As a result, the Write access should be proteEnable) needs to cross over an FPGA boundary to another FPGA
cessed before the Read access. that may be located some routing distance away. Due to unpredict-

. able routing delays such as routing congestion, it is possible for the
In order for the Read port Data output to consistently reflect theDomainl (D1) value of WE to start from the source FPGA sooner

state of a memory location, ransparency between Read and Wmt?nan the Domain2 (D2) value but still arrive after the D2 value

accesses should be assurgd n the case that both accesses are Malhes its destination. This can break the causality principle and
to the same memory location in the same user design cycle. Thi

. . . Cause the clobbering of the D2 value. Figure 3 illustrates such a
constraint requires that the Write access must occur before the Re g

that the Read port output | flect th It% se. One key requirement in transporting multi-domain signals is
access so that the Read port output can always refiect tn€ resu ensure that causality of events is guaranteed within each of the
the most recent Write access. This access sequence is easy {

. . ; ' CBnstituent domains irrespective of routing delays.
achieve when both Read and Write ports are in the same domain. P g ¥

However, the determination of the access sequence is more compli;

cated in the presence of MTSD Read and Write ports since access‘e_|50|d Time Problem in Multiple Domains

in each domain are completely asynchronous to each other. Assunthe correct functioning of state elements and memories requires
ing that Read and Write addresses are the same in a user desitfiat data signals arrive at an element a certain period of time (setup
cycle, a Transparent Write (e.g. write followed by read) in Domain1time) before the triggering (enable/clock) signal and are held steady
of Figure 2 must be completed in exactly one cycle of CLK1 inde-for a certain period of time (hold time) after the triggering signal
pendently of CLK2. This transaction includes Write Port accessarrives. If the triggering signal arrives at a time when the data signal
Read Port access, and address and data communication. The sa¥énvalid, a violation occurs and causes incorrect operation of the

holds true for a Transparent Write in Domain2 with clock CLK2 circuit. This is a very common problem in delay sensitive circuits.
independent of CLK1. Consider a simpléctiveHighMTSD memory Write Port shown in

Figure 2 where a combinational logic is sourcing its WriteEnable,

Transporting Multi Domain Values .

)
I I S B I S
CLK ! CLK

Functional Axiom 2Transparent Memory

Functional Axiom 3Causality
The occurrence times of events in combinational logic form a .
partial order based on causality. If part A feeds part B, events on A e _l_..l_
must have occurred before events on B. b ED
Another verification issue involves the transport of multi-domain . ;
signals in a system where inter-FPGA communication needs to be
synchronous to a system clock (e.g. Virtual Clock). Previous work :
suggests that we either avoid such a situation by limiting the size of uo o 'l Ng_INVALID REGION
asynchronous-domain logic to one FPGA or dedicate special inter- (@) 'dea! condition: No violation (b) Hold time violation: Value "A" is lost
FPGA wires to transport the values (hard-wiring) [2]. Since hard- Figure 4: Hold Time Violation in MTSD Memories

C MEM

Address and Data inputs. The waveforms for the same circuit are A write Port is an MTSD write port if:
shown in Figure 4, where D, WE and MEM represent Data, Wri- 0 _ O
teEnable and resulting memory contents for some Address. Figure Ei DA%rBUS(Td[I]) > 1BDT(\TO|(WE)\ >1)

4(a) shows the ideal functional model execution where an edge on

the user clock CLK at t=t1 causes WE and D to transition in 0- Where Td(WE) is the set of transition domains of WriteEnable
delay. The old value "A" is stored in the memory as a result. Figure and Td[i] is the set of transition domains of Write Address$ bit

A.'(b) shows more realistic waveforms where routing and C_Omb'naMTSD Domain: A collection of connected gates, states, memories
tional delays cause the WE and D to arrive at the memory inputs

. ST . X 8nd nets that are MTSD.
different points in time in response to CLK. A problem arises if the

new D value (“B”) reaches the memory sooner than the new WEMTSD Block: A partition of MTSD Domain that is small enough

This causes memory to be evaluated with new D against old Wk fit into an FPGA. It is at this block boundary that all inter-FPGA
resulting the destruction of the old value "A". This can happen ifscheduling takes place

the routing delay on the Clock/WE path is greater than the routing
delay on the D due to combinational logic in those paths. In a cas
where both Address/WE and Data paths are in the same domain,%' Approach

is easy for a scheduler to compute regions of time when WE is Observation 1:
invalid and mask those regions so that the affected memory port is

not evaluated. This solution fails if D and WE nets are multi-
domain nets because regions of validity for memory port evaluation
in one domain may conflict with regions of invalidity in other

domains. The key challenge here is to satisfy hold time for everyror example, in the circuit shown in Figure 1, it is only necessary to

For any constraint Ri(A, B) in a multi-domain circuit containing
domains A and B, it is sufficient to satisfy Ri(A) and Ri(B) for cor-
rect functional verification.

(D, WE)pair in each of the constituent domains. satisfy the timing closure property for same-domain paths, such as
FF1 to FF3, but not for cross domain paths, such as FF1 to FF4.
5. Definitions Similarly, hold times must be satisfied for each same-domain

(D,WE) pairs and transparent writes must be guaranteed between
Nsame-domain read-write ports. Essentially, the multi-domain prob-
lem reduces to simultaneously satisfying functional requirements
ITd(n) n Sd(n >1 within each of the constituent domains.
where Td(n) is the set of domains in which net n transitions and
Sd(n) is the set of domains in which net nis sampled. ~ Multi-Domain Data Transport

MTSD Net A net which transitions and is sampled in more tha
one domain. In other words, a net is an MTSD net n if:

In Figure 1, net A[n] is a Multi Transition and Sample Domain N WE (B

(MTSD) net since there is a combinational path from A[n] to D[m] @ {

of the read port. NG| /\

MTSD Gate: Any combinational gate whose output is connected to / oalPOA rrp
an MTSD net. In Figure 1, mux G1 is an MTSD gate. FoRk MERGE

. Fi 5: Multi-D in Data T t.
MTSD Read Port: A memory Read port whose address lines are gure uiti-bomain Data franspor

driven by MTSD nets and whose data outputs are sampled in multinter-FPGA data transport of an MTSD net can be decomposed into
ple domains. In Figure 1 MTSD address net A[n] for address bit nthe independent transport of a set of signal components from each
and MTSD data output net D[m] for data bit m classify the readdomain which are causally merged at the destination. We represent
port as an MTSD Read Port. these flows by adding FORK/MERGE operator pairs at FPGA
boundaries, resulting in a set of non-MTSD signals on FPGA

A Read Portis an MTSD Read Port if a boundaries as shown in Figure 5. From Observation 1, notice that
>1

: D (Taing N g |:| (SdLi

0 O AddrBus O Uy oDbataBus

flow and dependence relationships on intra-FPGA paths only need
to consider combinationally connected signals from the same
domain. Causal merging can be accomplished by dynamically
selecting an appropriate single domain signal at a MERGE point.
Our scheduler ensures that the transport delays of paths from inde-

o . . endent domains are equal so that the value derived at the merge
The circuit in Figure 1 contains two same-domain paths, FFl.Q-p d 9

int teed to b I t
N3-A[n]-D[m]-FF3.D in the domain of CLK1 and FF2.Q-N4-A[n]- o 'S guaranieed to be causally correc
D[m]-FF4.D in the domain of CLK2 and two multi (or cross) - - .
domain paths FF1.Q-N3-A[n]-D[m]-FF4.D and FF2.Q-Na-a[n]- Hold Time Constraints on MTSD Memories
D[m]-FF3.D. Observation 2:

where Td[i] is the set of transition domains of Address bit i
and Sd[j] is the set of sample domains of Data bit j

MTSD Write Port : A memory Write port whose Write Enable or ~ For a multi-domain memory, instantaneous Setup time violations
Address is driven by an MTSD net. are correctable whereas instantaneous Hold time violations are
not.

Observation 2 stems from the fact that when a level sensitive Writeschedule port usage for transparent memory accesses in each
Port is evaluated with OLD Data against a NEW Address/WE, (adomain. As shown in Figure 7, the individual ports are placed along
Setup time violation), new Data arrival results in re-evaluation ofwith an MTSD block inside an FPGA. This FPGA interacts with
the memory port if the WE is open. If the port WE is closed, OLD surrounding single-domain FPGAs which drive and sample data.
Data does not corrupt the memory. Alternatively, if a memory portAs a result of port splitting, it is possible to ensure that all same-
is evaluated with NEW Data against an OLD WE that is open (adomain requirements are met and all multi-domain hold time viola-
Hold time violation) the correct memory value may be irretrievably tions are avoided. A common receive buffer is used to ensure a con-
lost since the OLD Data is no longer available. Notice that a similarsistent image of Read data that can be sampled in both domains. It
observation can be made about the relationship between Data am&limportant to note that port-splitting only increases the number of
Address buses i.e., evaluating an OLD address against a NEW Dat&cesses to memory and does not increase either the capacity
will result in irrecoverable loss of contents at the OLD address. requirements or the total number of ports of the underlying physical

. . . _— . implementation in the emulation system. As a result, cost is only
We will use notation V(AI,BK) to indicate the value of signal V measured in terms of performance and not in terms of capacity.

which occurs in response to the ith clock edge of domain A and kﬂbince emulation s . - :

- ystem memory chips which model user design
clock edge of domain B. memories are typically much faster than the FPGAs which model
For any memory with Data D(Ai, Bk) and Address/WriteEnable design logic, additional memory accesses generally do not nega-
AW(A], Bk) on some clock edge k in Domain B, there are three tively impact the performance of the verification system.
possible conditions:

Domainl| :
« (i<j) =>instantaneous Setup time violation. FPGA [~ D1 /DE’S"G""L{”
o P== i) = i iofi > port
(i ==) => both Setup and Hold Time satisfied MTSD <
e (i>]) =>instantaneous Hold time violation — | Port \
Observation Implies that every edge k in domain B requires an P90 Pomain
evaluation of the memory write port with D(Ai, Bk) against AW(A], MTSDFPGA

Bk) which satisfies both setup and hold time with respect to B.

Observation dmplies that when performing such an evaluation, it Figure 7: Dependency flow through the split ports
is legitimate to have i < j or i == j but not legitimate to have i > j.
The. symmetrllcal rele.ltlonsh.lp hqlds with respect to evaluatllons-l-ransforming MTSD Edge Sensitive Memories
against domain A. This relationship can be extended to an arbitrary - _ _
number of domains. The implication of this is that every domainMTSD Edge sensitive write ports are not covered by Observation 2
edge results in an evaluation which satisfies both setup and hotand are more difficult to address than MTSD level sensitive ports.
time with respect to that domain and each evaluation not satisfyin@ur approach to handle edge sensitive memories is to transform

setup against a domain is subsequently followed by a correctin§1€m into master-slave level sensitive memories, just as an edge-
evaluation against that domain. triggered flip-flop can be converted into a master-slave latch pair.

. . . _ The derived level-sensitive memories are then subject to the same
Our new static scheduling algorithm also ensures that the W”t%rocessing as other MTSD level sensitive memories.

Data never arrives before Address/WriteEnable for any edge in any
domain. Additionally, the algorithm ensures that both Data an : .
Address/WriteEnable arrive prior to subsequent domain edges 23' Static SChedu“ng

that all instantaneous setup violations are corrected before any sarwe have used a modified TIERS scheduling algorithm to route

pling occurs. communication paths between blocks and memory ports [12]. This
is a reverse scheduling algorithm in that it routes paths starting from
Splitting of MTSD Memory Ports primary outputs to primary inputs. Note that the techniques
explained are also applicable to forward routing. In this section the
Multi-Transition Domaind] basic steps involved in static routing are described.
Multi-Transition] MTSD Multi Sample Address, . ggé? Domainl
Address Bus | READ Databus | ample A route-link (Pi, Pj) represents a logical connection from block
raa < — > Data B Doment) U conmotB® output terminal Pi to block input terminal Pj located on a different
b Wik WiiteEna P> PORT " | FPGA. A route-link often has to cross multiple FPGAs before
WriteEna—jges{ PORT > Domain2)
READ J pomainz reaching its destination. We calculate link depths that represent the
PORT Sample . .
—— Domain longest time required to propagate through the network from the
et omain elec . . .
alki source FPGA to the destination FPGA. We create a partial order by
L | PORT . . .
sorting route-links by depth to ensure that all the route-links upon

Figure 6: Splitting of MTSD Ports in Single Domain Ports ~ Which a given route-link depends are scheduled before the route-

link itself. The core scheduling algorithm involves the following
The goal of providing transparent memory can be addressed byteps:

conceptually splitting Read/Write MTSD ports into constituent) o
domain ports. This approach replaces MTSD ports with a set of OF €ach route-link(Pi,Pj),

constituent single-domain ports as shown in Figure 6. By splitting 1 Fing the latest time, calleRleady Timat which a value must

the ports into multiple single domain ports, it is possible to track ayrive at its destination for further evaluation. For Pj terminat-
same-domain dependencies between Write and Read ports and ing at design primary output k, ReadyTime is Delay(Pj to k).

2. Find the shortest path ‘sp’ from Pi to Pj such that data Dependency Computation of Memory Ports
arrives by ReadyTime(Pj). We use a modified Dijkstra’s algo-
rithm [3].
3. Reserve wiring resources along the path sp.
4. ComputeDepartureTiméPi) at the source Pi:

DepartureTime(Pi) = ReadyTime(Pj) - PathLength(sp)
5. Update input ReadyTimes at the block,

for each terminal Pk in Parent(Pi)

ReadyTime(Pk) = DepartureTime(Pi) - Delay(Pk to Pi)

As noted earlier, to satisfy the hold time of an MTSD Write port,
memory access must be scheduled such that the WriteEnable and
Address signals arrive at the memory at or before the time the Data
arrives. This imposes an additional ordering requirement on route-
links. The following describes an approach to compute the evalua-
tion order of route-links and MTSD memory ports. To aid in mem-
ory ordering, each MTSD partition is analyzed and block terminal
sets are created for each MTSD write Port. These sets are shown in
Figure 9 are:

8. MTSD Memory Scheduling .

_ _ o) ~» D-INPUT Set: Group of all MTSD Block terminals that com-
In this section MTSD path scheduling is described. Scheduling is pinationally reach the Data terminals of the MTSD write port.
performed so that hold time requirements are satisfied on every This also includes any input that reaches both Data and

MTSD memory in each of the constituent domains. Address/WriteEnable.
] e AW-INPUT Set: Group of all inputs which reach Address or
Dependency and Depth of MTSD Logic WriteEnable of the Write port from all domains.

A key issue in static scheduling is to create a causally correct ordet- RD-OUTPUT Set: Group of all block terminals which are
ing of route links. When scheduled, this order satisfies the depen- ~ OUtput Data terminals of dependent Read Ports. _ _
dency betweeroute-links in a given combinational path. The These depe_ndenmes are l_Jsed to order memory route-links with
MTSD paths between fork and merge are split into a group of rout@ther _route-llnks. No_te that input nets can fan_out to more t_han one
links that belong to different domains which collectively transport domain port. The diagram shows that terminals are split at the
an MTSD value across FPGAs. If the scheduler can ensure thdt!ock boundary for the purpose of scheduling. As a result, MtsdDe-
these route-links are scheduled such that they all take an equRfndency can be determined for both same domain and cross
number of Virtual Clocks to propagate the value, the causally cordomain terminals.

rect value can be easily regenerated at the destination. .
Depth Computation of MTSD Ports

Figure 8 shows how the dependencies flow across memory portghe (D, AW) constraint implies that: D-INPUT terminals must be
and combinational blocks. The MTSD paths are split at the blockayajuated after all of the dependent AW-INPUT terminals are evalu-
terminals so that only single domain route-links are needed fogieq put before the memory itself is evaluated. This constraint must
inter-FPGA communication. To aid scheduling, two types of depent,g|q valid in each of the same-domain (Di, AWj) pairs for Di in the
dency classes are compute8ame-Domain Dependenayhich p_|NPUT Set and AWj in the AW-INPUT set. This introduces two
tracks link dependencies within a single domain aftsdDepen- types of dependencies into the system:
dencywhich tracks link dependencies within all domains including
cross domain paths. Using this dependency information two types ~ Dependency introduced between terminals in the D-INPUT

of depths are computed for each route-link: normalpth which set and terminals in the AW-INPUT set.
takes into account only same-domain dependenciedsdDepth ¢ Dependency introduced between Write Ports and Read Ports
which is normalized Depth across all domain dependencies. (including cross domain Read Ports).

As described in Section 6, each MTSD port can be logically split
MtsdDepth is used to sort all route links in all domains, including jntq single domain ports. To allow for transparent write, depen-
those links targeted to memory ports, and to produce a partial ordfency must be created between Read and Write ports. MtsdDepths
that is consistent in each of the domains. In additiimDelay(i, are used to sort all the route links to arrive at a partial order that sat-
p) andMaxDelay(i, p)are computed for each block input terminal i jsfies same domain dependencies while maintaining cross domain
to memory port p as there can be multiple combinational paths fro”bort relationships.

a block input to a port.
Write Port Evaluation Algorithm

Ra1(Ad0) | Rl (Read) | _ P R1(021) D-INPUT (1) SETS INITIAL READY TIMES %EE?UTPUT
i === R e
i T~ w® g
Ra2(Addh)] - Rd2Read) = - Rd2 (Daw) FIXES Port
- RDY

e wazie) paa
Wd2(WE) FPGA Block (3) SETS FINAL Di wd1i

‘) | Boundary RDY TIMES Addr

Combinational Logic
gic | 4— WE

Pd(T) is used to indicate a set of route-links combinationally
reaching from Block terminals to the port terminals, where

4) SETS

P is the type of port: “R” for read “W" for write INITIAL AWj
d is the domain of the port RDY TIMES
T is the functional terminal (address/data/WE) of the port ~ AW-INPUT Block Boundary

SET

Figure 8: MTSD Memory Dependency Computation Figure 9: MTSD Write Port Evaluation.

Figure 9 illustrates the basic steps involved in MTSD Write port4. PropagateReadyTime(W}o each of the terminals in AW-
scheduling. Due to the port order described earlier, by the time INPUT(W) as initial ReadyTime(AWI)This is initial Ready-

Write port is evaluated, thBepartureTime®f all the terminals in Time because there could be other dependent children on AWi
its R-OUTPUTset are known. As a result Read Ports Rd1 and Rd2 which can further alter the ReadyTime.
are ready to be scheduled in their respective domains. For each AWi in AW-INPUT(W),
For each Read Port Ri i
. ReadyTime(AWi) =
ReadyTimé Ri= rMAX(DepartureTime Jjry ReadAccess
y ~ 0 j O Data(Ri) u MAX(ReadyTime(AV\ﬁ)(ReadyTime(W) - MaxDelay(AWi to)/)!)

Note that in Figure 9 arrows indicate the flow REadyTimethe 1a-lhv5a Zblz\éi tﬁfnogthemuglutiraRr:atngTitr:Zt(Dtg?ofaer?dg\ll\r;? eé'%w';irls
time at which the value must be ready for consumption by depen:I'his yensures that th(Z Address/V\)//riteEnalJ)Ie valu)é alwé sJ aF)rrivés
dent logic. The ready-time evaluation sequence is indicated by thB f he D | MTSD Wri Noti hy in th
numbers in the parenthesis. efore the 'ata value on any rite port. Notice t_ at in the
above equations, MinDelay has been used for Data terminal to port
The following algorithm computes the final ready time Bn delay calculations but MaxDelay has been used for Address/Wri-
INPUT terminals and the lower bound for the ready times ad-A teEnable terminal to port delay calculations. This is to ensure that
INPUT terminals. the delay from any AWi to a port does not exceed the delay from Di
to the port after compensation (performed in step 3.3). Without this
compensation it is still possible to violate hold time requirements at
1. Compute the initial ReadyTimes for each Data input based oithe MTSD port even if (D,AW) constraints at the block boundary

the ReadyTimes of their dependent Read ports. Note that thesge met.

are not final ReadyTimes because they do not take into9 E . tal R It

account the Write port's ReadyTime. - EXperimental Results

For each Write Port W,

For each Di in D-INPUT(W) _ We have implemented the algorithms described in this paper and
ReadyTimé Dj = MAX(ReadyTime)) +WriteAccess integrated them into the Ikos VirtuaLogic compiler [7] for the
j OdependReadPo(t W VStation-5M Emulator. Two industrial designs (a telecom design

and a graphics processor) containing asynchronous domains have
een compiled. Table 1 compares the results of scheduled MTSD
irtual routing to dedicated hard-wire routing in which MTSD

memory control signals are transported between FPGASs using ded-

icated rather than time-scheduled wires. Designl has a smaller per-

2. Evaluate the difference between each ReadyTime(Di) with th
ReadyTime(W) and if the difference is less than the minimum
delay from Di to the port W, then update the ReadyTime(W),

FSLaegﬁ%rE'e'{\}V?;'NPUT(W)’ centage of MTSD logic when compared to Design2 and also has a
MAX(ReadyTime(Di) + MinDelay(Di to W)) smaller percentage of memory modules as shown in Table 2. To
determine the results for hard routing experiments we ran a pre-

3. For each Diin D-INPUT(W), routing step which reserved physical pins between source and desti-

nation FPGAs for each MTSD wire and removed those pins from

3.1. Compute theRequiredReadyTimeThe value is called Sconsideration during virtual routing of non-MTSD wires. Maxi-

required ReadyTime because, if data arrives sooner than thi
time, there is a risk of violating the (D,AW) constraint.
RequiredReadyTime(Di) = Testcase Designl Design2

. Num. Total Modules 543000 57000
. Num. MTSD Modules 3100 7400

MAX(ReadyTime(Di)(ReadyTime(W)- MinDelay(Di to \)))

1
3.2. Compute the final ReadyTime. This is determined by the 2 :
Routing algorithm described in [12] based on the available [3- Num. Clock Domains 3 2
routing resources. This algorithm uses a modified Dijkstra’s |4. Num. MTSD Paths 173 213
5
6
7

algorithm [3] to find the shortest path from the FPGA sourcing

the route-link to the FPGA where this memory is located. The [~ Num. MTSD FPGAs 23 24

algorithm then reserves resources along this shortest path such6. Clock Domains dl d2 dp di d2

that the communication is completed and value is ready at Di |7 Num. Non MTSD FPG2E 11 43 1do 4 7
8. Critical Path (Virtual- 42 47 49] 85 131

by theRequiredReadyTime

3.3. If the finalReadyTime(Di)s greater thaiRequiredReady- Clocks) MTSD Hard Routed
Time add delay compensation in the Di to W path to ensure |9. Critical Path (Virtual- 37 38 46| 68 108
that Data does not arrive at the Write Port sooner than |Clocks)MTSD VirtualRoutgd

Y

required. o 10. Estimated Max Speed | 346 KHz 129 KHz
DelayCompensation(Di, W) = MTSD HardRouted
ReadyTime(Di) - RequiredReadyTime(Di) 11. Estimated Max Speed | 369 KHz 157 KHz

MTSD VirtualRouted

A delay equal toDelayCompensation(Di,W}¥ injected into
the path from Di to Write Port W by adding a chain of Virtual Table 1: MTSD Virtual Routing vs. Hard Routing
Clock triggered flip-flops.

Testcase Desianl Desian2 asynchronous clock domains. This scalable approach allows for the

'9 '9 correct evaluation of an unlimited number of access paths for a sin-
1. Num. Memories 100 37 gle memory, even if they occur in disjoint clock domains. The
> Mtsd Memories 23 24 developed scheduling algorithm staﬂcal!y_ de_termlne_s multi-domain
memory port accesses for parallel verification equipment so that

3. Num. Read Ports| 139 37 setup and hold time violations are avoided. The approach has been
4. Num. Write Ports| 119 37 integrated into a commercial verification software package and
demonstrated on a VirtuaLogic emulation system for two large

5 Memory addressgs 6364 5952 commercial benchmark designs. Experiment results show that the
6. Total Data bytes 28292 7808 approach is scalable and provides good modeling fidelity. As a

result of this scalability, an improvement in overall system perfor-

Table 2: Memory Statistics mance has also been obtained.

mum emulation clock speeds in rows 10 and 11 are estimated basedWwe plan to extend this approach to deal with visibility and debug
on a 34 MHz Virtual Clock on a VStation-5M Emulator. aspects of the design under test and hard-wired cores. The hetero-
geneous nature of the MTSD signals presents special challenges for
scheduling and interfacing with the signal capture tools.

Notice that in Table 1, row 9, the number of Virtual Clocks in the 12. References

critical path for Design2 is much higher than the number for[1] J. Babb, R. Tessier, and A. Agarwal, Virtual Wires: Overcom-
Designl. This is because experiments for Design2 were dominated ing Pin Limitations in FPGA-based Logic Emulators, in the
by memory transactions. It can be seen from rows 8 and 9 that the proceedings of the IEEE Workshop on FPGAs for Custom
MTSD routing results in a slightly smaller number of Virtual Computing Machines, Napa, California, April 1993.

Clocks (hence faster execution) as compared to the hard Wiregz] J. Babb, R. Tessier, M. Dahl, S. Hanano, D. Hoki, and A.
approach. This is because if some physical wires are removed, the Agarwal, Logic Emulation with Virtual Wires, in IEEE Trans-
remaining wires have to carry a greater load of non-MTSD commu- actions on Computer-Aided Design of Integrated Circuits and
nication. Systems, June 1997.

Corman et al. Introduction to Algorithms, MIT Press, 1992.
M. Dahl, J. Babb, R. Tessier, S. Hanono, D. Hoki, and A.
Agarwal, "Emulation of a Sparc Microprocessor with the MIT
Virtual Wires Emulation System", in the Proceedings of the
IEEE Workshop on FPGAs for Custom Computing Machines,
Napa, California, April 1994.

J. Gallagher, "Prototypes Ensure Pre-Verification", EE Times,
June 13, 2000

G. Ganapathy, et al., "Hardware Emulation for Functional Ver-
ification of K5", Proceedings, 33rd Design Automation Con-
ference, June 1996.

Ikos Systems, Inc., VirtuaLogic Datasheet,
http://www.ikos.com/products/vsli/index.html, 2001.

10. Analysis of Results

The number of scheduled memory accesses for any MTSD mem3)
ory is given by: (4]
nE x nDx (nR+ nW)

nP

TotalMemoryAccesses

where

nE = number of phases of the user design clock

nD = number of asynchronous domains

nR = number of Read Ports

nW = number of Write Ports

nP = number of ports in the physical SRAM modeling Memory

(5]
(6]

One may observe that we are making a conservative estimate (1;;]
the memory accesses: one access per port per every edge of the user

design clock. This is necessary for multi-domain designs since onfg
cannot predict how accesses across domains interleave. If speC|aI]
knowledge about the user design is known at compile-time the
scheduling algorithm could be tuned to improve scheduling results.
For example, if it is known that one domain always performs mem-[g]
ory writes and another domain always performs memory reads the
algorithm could be tuned to only schedule accesses in distinct
domains and to ignore cross domain dependencies.

There is one known limitation in the algorithm used to compute[10] Quickturn Design Systems, Cobalt Datasheet,
www.quickturn.com/products/cobalt.htm, 2001

port routing order: it cannot handle cyclic dependencies between

D. Kolson, A. Nicolau, N. Dutt, "Elimination of redundant
memory traffic in high-level synthesis", IEEE Trans. on
Comp.-aided Design, Vol.15, No.11, pp.1354-1363, Nov.
1996.

M. Kudlugi, C. Selvidge, R. Tessier, “Static Scheduling of
Multiple Asynchronous Domains For Functional Verification”,
In the Proceedings of 38th DAC, pp 647-652, Las Vegas, June
18-22, 2001.

http://

Read and Write Port nets that cross FPGA partition boundaries. AflL1] H. Schmit and D. Thomas, "Address Generation for Memories

example is a Read port output net feeding back to serve as a Write
port data net. Currently, we avoid this scenario by using a pre-parti-

Containing Multiple Arrays," IEEE Transactions on CAD,

vol.17, no.5, p. 377-385, May, 1998.

tioning step which identifies and bundles combinational paths froni12] C. Selvidge, A. Agarwal, M. Dahl, J. Babb,. “TIERS: Topol-

a Read port to a Write port together in the same MTSD block. This
ensures that the ports are placed in the same partition that includes
the physical interface to memory.

11. Conclusions

In this paper we have described a new parallel verification approach
for dealing with memory accesses in designs that contain multiple

ogy Independent Pipelined Routing and Scheduling for Virtu-
alWire Compilation”. In Proceedings of FPGA'95, pages 25-
31, Berkeley, CA, Feb 1995.

[13] Tharas Systems, Hammer Datasheet

http://www.tharas.com/images/Datasheet.pdf, 2001

	Main
	ICCAD01
	Front Matter
	Table of Contents
	Author Index

