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Abstract

Over the past decade both the quantity and complexity of available
on-chip memory resources have increased dramatically. In order to
ensure accurate ASIC behavior, both logic functions and memory
resources must be successfully verified before fabrication. Often,
the functional verification of contemporary ASIC memory is com-
plicated by the presence of multiple design clocks that operate
asynchronously to each other. The presence of multiple clock
domains presents significant challenges for large parallel verifica-
tion systems such as parallel simulators and logic emulators that
model both design logic and memory. Specifically, multiple asyn-
chronous design clocks make it difficult to verify that design hold
times are met during memory model execution and causality along
memory data/control paths is preserved during signal communica-
tion. In this paper, we describe new scheduling heuristics for mem-
ory-based designs with multiple asynchronous clock domains that
are mapped to parallel verification systems. Our scheduling
approach scales to an unlimited number of clock domains and con-
verges quickly to a feasible solution if one exists. It is shown that
when our technique is applied to an FPGA-based emulator contain-
ing 48MB of SRAM, evaluation fidelity is maintained and
increased verification performance is achieved for large, memory-
intensive circuits with multiple asynchronous clock domains.

1. Introduction
As ASIC design sizes have expanded over the past decade, parallel
verification platforms, which have the capability to perform many
logic evaluations and memory operations concurrently, have
increased in popularity. These systems, which include logic
emulators [7, 10] and parallel cycle-based simulators [13], often
use special purpose logic processors or FPGAs for logic evaluation
and companion memory devices for memory emulation. Memory
accesses in these systems are usually synchronized to a high-speed
system clock to achieve maximum verification system performance.
In general, these memory accesses require multiple discrete
verification steps per user design cycle to accommodate address and
control signal setup and data sampling. As a result, a fixed
relationship must be created between the behavior of the
verification system clock and the design clocks that control access
to memory structures in the verified design. This relationship can
then be used to determine exactly when memory control signals
should be updated and when data may be safely sampled.

A significant problem arises when memory-intensive ASIC
designs with multiple asynchronous timing domains are mapped to
parallel verification systems [5]. The lack of a fixed phase
relationship between design clock domains complicates data

evaluation for both computation and communication. Specifical
it is necessary to determine when individual memory operatio
should be evaluated (the hold-time problem) and when inte
processor communication of memory access results should
performed (the multi-domain transport problem). Previously, th
translation of design memory to verification system data stora
has required manual steps to isolate asynchronous domains
achieve accurate memory modeling behavior [4, 5, 6]. This man
approach has often required significant effort and can lead
verification flaws.

In this paper, a heuristic approach to performing parall
verification of memory-intensive designs with multiple
asynchronous clock domains is described. The approach analy
memory port dependencies across multiple clock domains a
subsequently schedules memory evaluation. Our technique
applicable to a variety of parallel verification systems and
scalable to an unlimited number of asynchronous clock domai
To validate the developed approach, our algorithms were integra
with a commercial FPGA-based emulation system from Iko
Systems [7]. For two memory-intensive designs it is shown th
modeling accuracy for memory-based designs with asynchron
clock domains can be achieved without the need for tim
consuming manual mapping steps. For both designs,
improvement in overall verification system performance is shown

2. Background
The approach described in this paper can be applied to numer
logic emulation and parallel cycle-based simulators that statica
schedule memory accesses at compile time. Example verificat
architectures that fit this model include the Tharas Hammer [1
parallel simulator, Quickturn CoBalt emulator [10] and Ikos Virtua
Logic emulator [7]. For these systems, the derived relationsh
between the high-speed verification system clock and the emula
design memory is determined from detailed memory mapping.
support memory verification, these systems [7, 13] contain colle
tions of single-ported SRAM devices that can be used to emulat
range of design memory structures. During the design compilat
process, control logic, which is sequenced by the system clock
inserted into the emulated design to allow for the evaluation
complex design memory using simpler physical memory device
Memory accesses are scheduled relative to the system clock
avoid data, address, and control signal conflict. In a manner sim
to high-level synthesis [11], multiple small design memories can
packed into a single physical memory located in the parallel ver
cation hardware. Unlike memory scheduling in high-level synthes
[8], however, verification-based memory scheduling must be p
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formed at a fine-grained level and as a result can be adversely
affected by multiple asynchronous design clock domains.

The target system for this paper is an Ikos VirtuaLogic emulation
system that contains 384 Xilinx XC4062XL FPGAs for logic emu-
lation and 192 64Kx32 single-ported SRAM devices for memory
emulation. Inter-FPGA communication and memory accesses in
VirtuaLogic systems are based on Virtual Wires technology, an
inter-FPGA communication scheduling technique [12]. This
approach pipelines multiple logical signals called virtual wires
across single inter-FPGA wires to overcome FPGA pin limitations
[1, 2]. Logic designs are mapped to multi-FPGA systems through a
series of compilation steps which include partitioning of logic into
blocks small enough to fit within FPGAs, placement of logic blocks
onto specific FPGAs, assignment of design memory to available
emulation memory, and scheduling of logic evaluation, inter-FPGA
communication and memory accesses. All logic, memory and com-
munication activities are controlled by a high-speed clock, called a
Virtual Clock, which serves as a discrete timebase, providing a reli-
able mechanism for controlling the order of events at a fine granu-
larity. Since many combinational evaluations and memory access
steps may occur in a single design clock cycle, the Virtual Clock by
necessity runs at a much higher frequency than the design clock.
For logic emulation systems, emulation memory accesses are based
on the emulation clock.

The basic approach of scheduling asynchronous domain data
transfer for logic emulation systems has previously been applied to
latches and combinational logic in [9]. Due to the complexity of
memories, this previous approach targeted to latches cannot be eas-
ily extended to cover multi-ported memories. In this work we con-
sider scheduling for asynchronously controlled memory address,
data, and control signals.

3. Multi Domain Read and Write Ports

A multi-domain memory port is a port that is accessed using signals
that are sourced from more than one clock domain. In industrial
designs such as graphics processors and network switches, memory
ports are often accessed by several clock domains through the use
of multiplexers which steer signals from one domain or another to
the inputs of the memory port. At any particular instant in time, a
port is accessed by only a single clock domain path, but over the
course of time, it may be accessed by several different domains. As
a result, a port must be considered to be potentially active for all

domains at any point in time. More generally, any circuit in whic
signals are sourced by independently-clocked elements and fan
to memory structures results in multi-domain memory ports.

Consider the circuitry shown in Figure 1 where two asynchr
nous clocks CLK1 and CLK2 drive state elements (FF1,FF3) a
(FF2, FF4) respectively. The portion of the circuit that reacts
clock CLK1 is logically grouped as Domain1 and similarly the po
tion of the circuit that reacts to CLK2 is grouped as Domain2. Th
Read port receives signals from both Domain1 registers and fr
Domain2 registers. The Read Port output is sampled by bo
Domain1 and Domain2 registers. At any point during design eva
ation the value of the design signal Domain-Select determin
which domain path accesses the memory. A memory with a Re
port input that transitions (changes value) on multiple domains a
a Read port output that is sampled (looked at) in multiple doma
is called an MTSD (Multi Transition and multi Sample Domain
memory. Figure 2 shows a slightly more general example of mu
transition nets reaching both memory read and write ports. In t
figure a multi-transition WriteEnable signal applied to a Write Po
triggers memory to be written in one of two domains. As a result
this behavior the port can be classified as an MTSD Write port
memory module which has at least one MTSD Read or Write p

can be classified as an MTSD memory.

The memory access scheduling approach described in this pa
can be applied to both single and multi-ported user design mem
ries. To facilitate illustration of the algorithm, dual port memorie
are used as examples throughout the remainder of the paper. N
that simultaneous multi-domain read/write access to a single-p
memory can be arbitrated by external logic in user designs or
synthesized memory access control logic. In either case, the lo
sequences memory access to the single port to obtain correct log
memory behavior. Verification of simultaneous memory access o
single-ported memory is described in [7] and a detailed descript
is beyond the scope of this paper. By assuming a dual port mem
implementation for illustrative purposes it is possible to explain th
central ideas of the paper which are independent of the act
implementation.

4. Multi Domain Problems
There are a number of problems that make multi-domain memo
access interesting and challenging from a functional modeling po
of view.
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Modeling Logic In Multiple Domains
Functional Axiom 1: Timing Closure

Combinational logic plus transmission delay plus setup time
between two sequential elements in the same domain takes less than

one period of the clock attached to the sequential elements.
Consider the circuit in Figure 1 where design clocks CLK1 and
CLK2 are asynchronous, and the memory accesses in each domain
can overlap with each other. The correct functional model of this
circuit must simultaneously satisfy the timing closure axiom in
each constituent domain. This indicates that all of the Read Address
bits must travel from source registers to the Address terminals of
the Read port, a Read Access must be performed, and the resulting
Data output must reach the input of the output registers of the same
domain in exactly one clock cycle, irrespective of combinational or
routing delays. As an example, the contents of flip-flop FF1 must
reach the input of the Read port, the read access must be performed,
and the result of read access must reach the input of flip-flop FF3 in
exactly one cycle of user clock CLK1. The same requirement holds
on the corresponding Domain2 path.

Multi Domain Multi Port Access
Functional Axiom 2:Transparent Memory

Should there be both Read and Write accesses to the same memory
location in the same user design cycle, the Read output must reflect
the most recent write. As a result, the Write access should be pro-

cessed before the Read access.

In order for the Read port Data output to consistently reflect the
state of a memory location, transparency between Read and Write
accesses should be assured in the case that both accesses are made
to the same memory location in the same user design cycle. This
constraint requires that the Write access must occur before the Read
access so that the Read port output can always reflect the result of
the most recent Write access. This access sequence is easy to
achieve when both Read and Write ports are in the same domain.
However, the determination of the access sequence is more compli-
cated in the presence of MTSD Read and Write ports since accesses
in each domain are completely asynchronous to each other. Assum-
ing that Read and Write addresses are the same in a user design
cycle, a Transparent Write (e.g. write followed by read) in Domain1
of Figure 2 must be completed in exactly one cycle of CLK1 inde-
pendently of CLK2. This transaction includes Write Port access,
Read Port access, and address and data communication. The same
holds true for a Transparent Write in Domain2 with clock CLK2
independent of CLK1.

Transporting Multi Domain Values
Functional Axiom 3: Causality

The occurrence times of events in combinational logic form a
partial order based on causality. If part A feeds part B, events on A

must have occurred before events on B.
Another verification issue involves the transport of multi-domain
signals in a system where inter-FPGA communication needs to be
synchronous to a system clock (e.g. Virtual Clock). Previous work
suggests that we either avoid such a situation by limiting the size of
asynchronous-domain logic to one FPGA or dedicate special inter-
FPGA wires to transport the values (hard-wiring) [2]. Since hard-

wired signals cannot be multiplexed to carry non-MTSD nets, p
limitation problems [1] can result leading to reduced system perfo
mance. To avoid this problem, it is desirable to split multi-doma
values into constituent domain values and to route (schedule) th
in respective domains and recover the multi-domain value at
destination FPGA or processor. This solution poses another pr
lem because of unpredictable route timing that is inherent in sta
cally routed systems. Consider a situation where the circuit
Figure 2 is partitioned such that the multi-domain value WE (Wr
teEnable) needs to cross over an FPGA boundary to another FP
that may be located some routing distance away. Due to unpred
able routing delays such as routing congestion, it is possible for
Domain1 (D1) value of WE to start from the source FPGA soon
than the Domain2 (D2) value but still arrive after the D2 valu
reaches its destination. This can break the causality principle a
cause the clobbering of the D2 value. Figure 3 illustrates such
case. One key requirement in transporting multi-domain signals
to ensure that causality of events is guaranteed within each of
constituent domains irrespective of routing delays.

Hold Time Problem in Multiple Domains
The correct functioning of state elements and memories requi
that data signals arrive at an element a certain period of time (se
time) before the triggering (enable/clock) signal and are held stea
for a certain period of time (hold time) after the triggering signa
arrives. If the triggering signal arrives at a time when the data sign
is invalid, a violation occurs and causes incorrect operation of t
circuit. This is a very common problem in delay sensitive circuit
Consider a simpleActiveHighMTSD memory Write Port shown in
Figure 2 where a combinational logic is sourcing its WriteEnabl

TIME
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N4 N4
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WE WE

WE

 D1 Delay=5

D2 Delay=2

(k-1)

(j)
 (j, k-1)

 (k)

(j,k)(j,k)
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WE

Figure 3: Transporting Multi Domain Values.
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Address and Data inputs. The waveforms for the same circuit are
shown in Figure 4, where D, WE and MEM represent Data, Wri-
teEnable and resulting memory contents for some Address. Figure
4(a) shows the ideal functional model execution where an edge on
the user clock CLK at t=t1 causes WE and D to transition in 0-
delay. The old value "A" is stored in the memory as a result. Figure
4(b) shows more realistic waveforms where routing and combina-
tional delays cause the WE and D to arrive at the memory inputs at
different points in time in response to CLK. A problem arises if the
new D value (“B”) reaches the memory sooner than the new WE.
This causes memory to be evaluated with new D against old WE
resulting the destruction of the old value "A". This can happen if
the routing delay on the Clock/WE path is greater than the routing
delay on the D due to combinational logic in those paths. In a case
where both Address/WE and Data paths are in the same domain, it
is easy for a scheduler to compute regions of time when WE is
invalid and mask those regions so that the affected memory port is
not evaluated. This solution fails if D and WE nets are multi-
domain nets because regions of validity for memory port evaluation
in one domain may conflict with regions of invalidity in other
domains. The key challenge here is to satisfy hold time for every
(D, WE) pair in each of the constituent domains.

5. Definitions

In Figure 1, net A[n] is a Multi Transition and Sample Domain
(MTSD) net since there is a combinational path from A[n] to D[m]
of the read port.

MTSD Gate: Any combinational gate whose output is connected to
an MTSD net. In Figure 1, mux G1 is an MTSD gate.

MTSD Read Port: A memory Read port whose address lines are
driven by MTSD nets and whose data outputs are sampled in multi-
ple domains. In Figure 1 MTSD address net A[n] for address bit n
and MTSD data output net D[m] for data bit m classify the read
port as an MTSD Read Port.

The circuit in Figure 1 contains two same-domain paths, FF1.Q-
N3-A[n]-D[m]-FF3.D in the domain of CLK1 and FF2.Q-N4-A[n]-
D[m]-FF4.D in the domain of CLK2 and two multi (or cross)
domain paths FF1.Q-N3-A[n]-D[m]-FF4.D and FF2.Q-N4-A[n]-
D[m]-FF3.D.

MTSD Write Port : A memory Write port whose Write Enable or
Address is driven by an MTSD net.

MTSD Domain: A collection of connected gates, states, memori
and nets that are MTSD.

MTSD Block: A partition of MTSD Domain that is small enough
to fit into an FPGA. It is at this block boundary that all inter-FPGA
scheduling takes place.

6. Approach
Observation 1:

For any constraint Ri(A, B) in a multi-domain circuit containing
domains A and B, it is sufficient to satisfy Ri(A) and Ri(B) for co

rect functional verification.

For example, in the circuit shown in Figure 1, it is only necessary
satisfy the timing closure property for same-domain paths, such
FF1 to FF3, but not for cross domain paths, such as FF1 to F
Similarly, hold times must be satisfied for each same-doma
(D,WE) pairs and transparent writes must be guaranteed betw
same-domain read-write ports. Essentially, the multi-domain pro
lem reduces to simultaneously satisfying functional requireme
within each of the constituent domains.

Multi-Domain Data Transport

Inter-FPGA data transport of an MTSD net can be decomposed i
the independent transport of a set of signal components from e
domain which are causally merged at the destination. We repres
these flows by adding FORK/MERGE operator pairs at FPG
boundaries, resulting in a set of non-MTSD signals on FPG
boundaries as shown in Figure 5. From Observation 1, notice t
flow and dependence relationships on intra-FPGA paths only ne
to consider combinationally connected signals from the sam
domain. Causal merging can be accomplished by dynamica
selecting an appropriate single domain signal at a MERGE poi
Our scheduler ensures that the transport delays of paths from in
pendent domains are equal so that the value derived at the me
point is guaranteed to be causally correct.

Hold Time Constraints on MTSD Memories
Observation 2:

For a multi-domain memory, instantaneous Setup time violation
are correctable whereas instantaneous Hold time violations are

not.

Td n( ) Sd n( )∩ 1>
where Td(n) is the set of domains in which net n transitions and
           Sd(n) is the set of domains in which net n is sampled.

MTSD Net: A net  which  transitions  and is sampled in  more than
one domain. In other words, a net is an MTSD net n if:

Td i[ ]( )
i AddrBus∈

∪
 
 
 

Sd j[ ]( )
j DataBus∈

∪
 
 
 ∩ 1>

where Td[i] is the set of transition domains of Address bit i
         and Sd[j] is the set of sample domains of Data bit j

A Read Port is an MTSD Read Port if:

Td i[ ]( )
i AddrBus∈

∪
 
 
 

1>
 
 
 

or Td WE( ) 1>( )

A Write Port is an MTSD write port if:

Where Td(WE) is the set of transition domains of WriteEnable
and Td[i] is the set of transition domains of Write Address bit i

MTSD
MERGE

Figure 5: Multi-Domain Data Transport.
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Observation 2 stems from the fact that when a level sensitive Write
Port is evaluated with OLD Data against a NEW Address/WE, (a
Setup time violation), new Data arrival results in re-evaluation of
the memory port if the WE is open. If the port WE is closed, OLD
Data does not corrupt the memory. Alternatively, if a memory port
is evaluated with NEW Data against an OLD WE that is open (a
Hold time violation) the correct memory value may be irretrievably
lost since the OLD Data is no longer available. Notice that a similar
observation can be made about the relationship between Data and
Address buses i.e., evaluating an OLD address against a NEW Data
will result in irrecoverable loss of contents at the OLD address.

We will use notation V(Ai,Bk) to indicate the value of signal V
which occurs in response to the ith clock edge of domain A and kth
clock edge of domain B.

For any memory with Data D(Ai, Bk) and Address/WriteEnable
AW(Aj, Bk) on some clock edge k in Domain B, there are three
possible conditions:

• (i < j)   => instantaneous Setup time violation.
• (i == j) => both Setup and Hold Time satisfied
• (i > j)   => instantaneous Hold time violation

Observation 1implies that every edge k in domain B requires an
evaluation of the memory write port with D(Ai, Bk) against AW(Aj,
Bk) which satisfies both setup and hold time with respect to B.
Observation 2implies that when performing such an evaluation, it
is legitimate to have i < j or i == j but not legitimate to have i > j.
The symmetrical relationship holds with respect to evaluations
against domain A. This relationship can be extended to an arbitrary
number of domains. The implication of this is that every domain
edge results in an evaluation which satisfies both setup and hold
time with respect to that domain and each evaluation not satisfying
setup against a domain is subsequently followed by a correcting
evaluation against that domain.

Our new static scheduling algorithm also ensures that the Write
Data never arrives before Address/WriteEnable for any edge in any
domain. Additionally, the algorithm ensures that both Data and
Address/WriteEnable arrive prior to subsequent domain edges so
that all instantaneous setup violations are corrected before any sam-
pling occurs.

Splitting of MTSD Memory Ports

The goal of providing transparent memory can be addressed by
conceptually splitting Read/Write MTSD ports into constituent
domain ports. This approach replaces MTSD ports with a set of
constituent single-domain ports as shown in Figure 6. By splitting
the ports into multiple single domain ports, it is possible to track
same-domain dependencies between Write and Read ports and

schedule port usage for transparent memory accesses in e
domain. As shown in Figure 7, the individual ports are placed alo
with an MTSD block inside an FPGA. This FPGA interacts wit
surrounding single-domain FPGAs which drive and sample da
As a result of port splitting, it is possible to ensure that all sam
domain requirements are met and all multi-domain hold time viol
tions are avoided. A common receive buffer is used to ensure a c
sistent image of Read data that can be sampled in both domain
is important to note that port-splitting only increases the number
accesses to memory and does not increase either the capa
requirements or the total number of ports of the underlying physic
implementation in the emulation system. As a result, cost is on
measured in terms of performance and not in terms of capac
Since emulation system memory chips which model user des
memories are typically much faster than the FPGAs which mod
design logic, additional memory accesses generally do not ne
tively impact the performance of the verification system.

Transforming MTSD Edge Sensitive Memories
MTSD Edge sensitive write ports are not covered by Observation
and are more difficult to address than MTSD level sensitive por
Our approach to handle edge sensitive memories is to transfo
them into master-slave level sensitive memories, just as an ed
triggered flip-flop can be converted into a master-slave latch pa
The derived level-sensitive memories are then subject to the sa
processing as other MTSD level sensitive memories.

7. Static Scheduling
We have used a modified TIERS scheduling algorithm to rou
communication paths between blocks and memory ports [12]. T
is a reverse scheduling algorithm in that it routes paths starting fr
primary outputs to primary inputs. Note that the technique
explained are also applicable to forward routing. In this section t
basic steps involved in static routing are described.

A route-link (Pi, Pj) represents a logical connection from bloc
output terminal Pi to block input terminal Pj located on a differen
FPGA. A route-link often has to cross multiple FPGAs befor
reaching its destination. We calculate link depths that represent
longest time required to propagate through the network from t
source FPGA to the destination FPGA. We create a partial order
sorting route-links by depth to ensure that all the route-links up
which a given route-link depends are scheduled before the rou
link itself. The core scheduling algorithm involves the following
steps:

For each route-link(Pi,Pj),

1. Find the latest time, calledReadyTimeat which a value must
arrive at its destination for further evaluation. For Pj termina
ing at design primary output k, ReadyTime is Delay(Pj to k)

  MTSD
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  PORT
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Addr/
Data
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Figure 6: Splitting of MTSD Ports in Single Domain Ports
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2. Find the shortest path ‘sp’ from Pi to Pj such that data
arrives by ReadyTime(Pj). We use a modified Dijkstra’s algo-
rithm [3].
3. Reserve wiring resources along the path sp.
4. ComputeDepartureTime(Pi) at the source Pi:

DepartureTime(Pi) = ReadyTime(Pj) - PathLength(sp)
5. Update input ReadyTimes at the block,

for each terminal Pk in Parent(Pi)
         ReadyTime(Pk) = DepartureTime(Pi) - Delay(Pk to Pi)

8. MTSD Memory Scheduling
In this section MTSD path scheduling is described. Scheduling is
performed so that hold time requirements are satisfied on every
MTSD memory in each of the constituent domains.

Dependency and Depth of MTSD Logic
A key issue in static scheduling is to create a causally correct order-
ing of route links. When scheduled, this order satisfies the depen-
dency betweenroute-links in a given combinational path. The
MTSD paths between fork and merge are split into a group of route
links that belong to different domains which collectively transport
an MTSD value across FPGAs. If the scheduler can ensure that
these route-links are scheduled such that they all take an equal
number of Virtual Clocks to propagate the value, the causally cor-
rect value can be easily regenerated at the destination.

Figure 8 shows how the dependencies flow across memory ports
and combinational blocks. The MTSD paths are split at the block
terminals so that only single domain route-links are needed for
inter-FPGA communication. To aid scheduling, two types of depen-
dency classes are computed,Same-Domain Dependencywhich
tracks link dependencies within a single domain andMtsdDepen-
dencywhich tracks link dependencies within all domains including
cross domain paths. Using this dependency information two types
of depths are computed for each route-link: normalDepth which
takes into account only same-domain dependencies andMtsdDepth
which is normalized Depth across all domain dependencies.

MtsdDepth is used to sort all route links in all domains, including
those links targeted to memory ports, and to produce a partial order
that is consistent in each of the domains. In addition,MinDelay(i,
p) andMaxDelay(i, p)are computed for each block input terminal i
to memory port p as there can be multiple combinational paths from
a block input to a port.

Dependency Computation of Memory Ports
As noted earlier, to satisfy the hold time of an MTSD Write por
memory access must be scheduled such that the WriteEnable
Address signals arrive at the memory at or before the time the D
arrives. This imposes an additional ordering requirement on rou
links. The following describes an approach to compute the evalu
tion order of route-links and MTSD memory ports. To aid in mem
ory ordering, each MTSD partition is analyzed and block termin
sets are created for each MTSD write Port. These sets are show
Figure 9 are:

• D-INPUT Set: Group of all MTSD Block terminals that com-
binationally reach the Data terminals of the MTSD write por
This also includes any input that reaches both Data a
Address/WriteEnable.

• AW-INPUT Set: Group of all inputs which reach Address o
WriteEnable of the Write port from all domains.

• RD-OUTPUT Set: Group of all block terminals which are
output Data terminals of dependent Read Ports.

These dependencies are used to order memory route-links w
other route-links. Note that input nets can fan out to more than o
domain port. The diagram shows that terminals are split at t
Block boundary for the purpose of scheduling. As a result, MtsdD
pendency can be determined for both same domain and cr
domain terminals.

Depth Computation of MTSD Ports
The (D, AW) constraint implies that: D-INPUT terminals must b
evaluated after all of the dependent AW-INPUT terminals are eva
ated but before the memory itself is evaluated. This constraint m
hold valid in each of the same-domain (Di, AWj) pairs for Di in the
D-INPUT Set and AWj in the AW-INPUT set. This introduces two
types of dependencies into the system:

• Dependency introduced between terminals in the D-INPU
set and terminals in the AW-INPUT set.

• Dependency introduced between Write Ports and Read Po
(including cross domain Read Ports).

As described in Section 6, each MTSD port can be logically sp
into single domain ports. To allow for transparent write, depe
dency must be created between Read and Write ports. MtsdDep
are used to sort all the route links to arrive at a partial order that s
isfies same domain dependencies while maintaining cross dom
port relationships.

Write Port Evaluation Algorithm

 Rd1 (Read)

   Wd1 (Write)

    Rd2 (Read)

      Wd2(Write)

Rd1(Addr)

Wd1(Addr)
Wd1(Data)
Wd1(WE)

Rd2(Addr)

Wd2(Addr)
Wd2(Data)
Wd2(WE)

 Rd1(Data)

 Rd2 (Data)

Figure 8: MTSD Memory Dependency Computation

Pd(T)  is used to indicate a set of route-links combinationally

      P is the type of port: “R” for read “W” for write
      d  is the domain of the port
      T is the functional terminal (address/data/WE) of the port

reaching from Block terminals to the port terminals, where

Combinational Logic

FPGA Block
Boundary

SETS INITIAL READY TIMES

(2)FIXES Port
 RDY TIMES

(3) SETS FINAL Di
RDY TIMES
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(1)  RD-OUTPU
D-INPUT
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AW-INPUT
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Figure 9: MTSD Write Port Evaluation.
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Figure 9 illustrates the basic steps involved in MTSD Write port
scheduling. Due to the port order described earlier, by the time
Write port is evaluated, theDepartureTimesof all the terminals in
its R-OUTPUTset are known. As a result Read Ports Rd1 and Rd2
are ready to be scheduled in their respective domains.

Note that in Figure 9 arrows indicate the flow ofReadyTime, the
time at which the value must be ready for consumption by depen-
dent logic. The ready-time evaluation sequence is indicated by the
numbers in the parenthesis.

The following algorithm computes the final ready time onD-
INPUT terminals and the lower bound for the ready times on AW-
INPUT terminals.

For each Write Port W,

1. Compute the initial ReadyTimes for each Data input based on
the ReadyTimes of their dependent Read ports. Note that these
are not final ReadyTimes because they do not take into
account the Write port’s ReadyTime.

2. Evaluate the difference between each ReadyTime(Di) with the
ReadyTime(W) and if the difference is less than the minimum
delay from Di to the port W, then update the ReadyTime(W),

3. For each Di in D-INPUT(W),

3.1. Compute theRequiredReadyTime. The value is called
requiredReadyTime because, if data arrives sooner than this
time, there is a risk of violating the (D,AW) constraint.

RequiredReadyTime(Di) =

MAX(ReadyTime(Di),(ReadyTime(W)- MinDelay(Di to W)))
3.2. Compute the final ReadyTime. This is determined by the
Routing algorithm described in [12] based on the available
routing resources. This algorithm uses a modified Dijkstra’s
algorithm [3] to find the shortest path from the FPGA sourcing
the route-link to the FPGA where this memory is located. The
algorithm then reserves resources along this shortest path such
that the communication is completed and value is ready at Di
by theRequiredReadyTime.

3.3. If the finalReadyTime(Di)is greater thanRequiredReady-
Time, add delay compensation in the Di to W path to ensure
that Data does not arrive at the Write Port sooner than
required.

       DelayCompensation(Di, W) =

                 ReadyTime(Di) - RequiredReadyTime(Di)

A delay equal toDelayCompensation(Di,W)is injected into
the path from Di to Write Port W by adding a chain of Virtual
Clock triggered flip-flops.

4. PropagateReadyTime(W)to each of the terminals in AW-
INPUT(W) as initial ReadyTime(AWi). This is initial Ready-
Time because there could be other dependent children on A
which can further alter the ReadyTime.

 For each AWi in AW-INPUT(W),

     ReadyTime(AWi) =

MAX(ReadyTime(AWi),(ReadyTime(W) - MaxDelay(AWi to W)))
The above algorithm guarantees that the ReadyTime(AWi)
always less than or equal to ReadyTime(Dj) for any (AWi, Dj) pai
This ensures that the Address/WriteEnable value always arri
before the Data value on any MTSD Write port. Notice that in th
above equations, MinDelay has been used for Data terminal to p
delay calculations but MaxDelay has been used for Address/W
teEnable terminal to port delay calculations. This is to ensure th
the delay from any AWi to a port does not exceed the delay from
to the port after compensation (performed in step 3.3). Without th
compensation it is still possible to violate hold time requirements
the MTSD port even if (D,AW) constraints at the block boundar
are met.

9. Experimental Results

We have implemented the algorithms described in this paper a
integrated them into the Ikos VirtuaLogic compiler [7] for the
VStation-5M Emulator. Two industrial designs (a telecom desig
and a graphics processor) containing asynchronous domains h
been compiled. Table 1 compares the results of scheduled MT
Virtual routing to dedicated hard-wire routing in which MTSD
memory control signals are transported between FPGAs using d
icated rather than time-scheduled wires. Design1 has a smaller
centage of MTSD logic when compared to Design2 and also ha
smaller percentage of memory modules as shown in Table 2.
determine the results for hard routing experiments we ran a p
routing step which reserved physical pins between source and de
nation FPGAs for each MTSD wire and removed those pins fro

consideration during virtual routing of non-MTSD wires. Maxi

ReadyTime Ri( )
MAX DepartureTime j[ ]( )

j Data Ri( )∈ 
  R– eadAccess=

For each Read Port Ri,

ReadyTime Di( )
MAX ReadyTime j( )( )

j dependReadPort W( )∈
WriteAccess+=

For each Di in D-INPUT(W)

For each Di in D-INPUT(W),
 ReadyTime(W) =
      MAX(ReadyTime(Di) + MinDelay(Di to W))

Testcase Design1 Design2

1. Num. Total Modules  543000  57000

2. Num. MTSD Modules  3100  7400

3. Num. Clock Domains  3  2

4. Num. MTSD Paths  173  213

5. Num. MTSD FPGAs  23  24

6. Clock Domains  d1    d2     d3   d1     d2

7. Num. Non MTSD FPGAs  11    43   180   4       7

8. Critical Path (Virtual-
Clocks) MTSD Hard Routed

 42    47    49   85     131

9. Critical Path (Virtual-
Clocks)MTSD VirtualRouted

 37    38    46   68     108

10. Estimated Max Speed
MTSD HardRouted

 346 KHz  129 KHz

11. Estimated Max Speed
MTSD VirtualRouted

 369 KHz  157 KHz

Table 1: MTSD Virtual Routing vs. Hard Routing
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mum emulation clock speeds in rows 10 and 11 are estimated based

on a 34 MHz Virtual Clock on a VStation-5M Emulator.

10. Analysis of Results

Notice that in Table 1, row 9, the number of Virtual Clocks in the
critical path for Design2 is much higher than the number for
Design1. This is because experiments for Design2 were dominated
by memory transactions. It can be seen from rows 8 and 9 that the
MTSD routing results in a slightly smaller number of Virtual
Clocks (hence faster execution) as compared to the hard wired
approach. This is because if some physical wires are removed, the
remaining wires have to carry a greater load of non-MTSD commu-
nication.

The number of scheduled memory accesses for any MTSD mem-
ory is given by:

One may observe that we are making a conservative estimate of
the memory accesses: one access per port per every edge of the user
design clock. This is necessary for multi-domain designs since one
cannot predict how accesses across domains interleave. If special
knowledge about the user design is known at compile-time the
scheduling algorithm could be tuned to improve scheduling results.
For example, if it is known that one domain always performs mem-
ory writes and another domain always performs memory reads the
algorithm could be tuned to only schedule accesses in distinct
domains and to ignore cross domain dependencies.

There is one known limitation in the algorithm used to compute
port routing order: it cannot handle cyclic dependencies between
Read and Write Port nets that cross FPGA partition boundaries. An
example is a Read port output net feeding back to serve as a Write
port data net. Currently, we avoid this scenario by using a pre-parti-
tioning step which identifies and bundles combinational paths from
a Read port to a Write port together in the same MTSD block. This
ensures that the ports are placed in the same partition that includes
the physical interface to memory.

11. Conclusions

In this paper we have described a new parallel verification approach
for dealing with memory accesses in designs that contain multiple

asynchronous clock domains. This scalable approach allows for
correct evaluation of an unlimited number of access paths for a s
gle memory, even if they occur in disjoint clock domains. Th
developed scheduling algorithm statically determines multi-doma
memory port accesses for parallel verification equipment so t
setup and hold time violations are avoided. The approach has b
integrated into a commercial verification software package a
demonstrated on a VirtuaLogic emulation system for two larg
commercial benchmark designs. Experiment results show that
approach is scalable and provides good modeling fidelity. As
result of this scalability, an improvement in overall system perfo
mance has also been obtained.

We plan to extend this approach to deal with visibility and debu
aspects of the design under test and hard-wired cores. The het
geneous nature of the MTSD signals presents special challenge
scheduling and interfacing with the signal capture tools.
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Testcase Design1 Design2

1. Num. Memories 100 37

2. Mtsd Memories 23 24

3. Num. Read Ports 139 37

4. Num. Write Ports 119 37

5. Memory addresses 6364 5952

6. Total Data bytes 28292 7808

Table 2: Memory Statistics

TotalMemoryAccesses
nE nD× nR nW+( )×

nP
------------------------------------------------------=

where
nE = number of phases of the user design clock
nD = number of asynchronous domains
nR  = number of  Read Ports
nW = number of  Write Ports
nP  = number of  ports in the physical SRAM modeling Memory
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