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ABSTRACT

Comprehensive study of incremental algorithms and solu-
tions in the context of CAD tool development is an open
area of research with a great deal of potential. Incremental
algorithms for synthesis and layout are needed when design
undergoes local or incremental change. Often these local
changes are made to react to local change in the design,
correct local errors or to make local improvements in one or
more of the design quality metrics. In this paper we outline
fundamental problems in incremental logic synthesis and
physical design. Preliminary solutions to a subset of these
problems will be outlined.

1. INTRODUCTION

In present and next generation VLSI chips, geometries get
smaller, clock frequencies increase, and on-chip intercon-
nect gains increased importance. Fundamental issues such
as wire-congestion and routability, crosstalk and coupling
noise, transmission-line behavior, power consumption, reli-
ability and yield, and their interaction are crucial factors in
designing next generation (VLSI) CAD tools.

Traditionally, CAD tools have been used more or less in-
dependently at the system-level, high-level, logic-level, and
layout-level, each with its own set of synthesis, verification,
and analysis tool-set. Each tool unaware of the big picture
and the mechanism linking them together. Complexity of
present and next generation VLSI system, demand elimina-
tion of the iterative process forced by the tool independence
and made it necessary to perform these tasks concurrently.
To cope with the complexity of this merger, incremental
algorithms are a must.

There is a scattered literature in the area of incremen-
tal and dynamic data structures and algorithms (e.g., see
[10] for an ovreview). In the following section, we intend
to briefly survey them with great emphasis in the area of
physical design. We will then formulate various problems
that are fundamental in incremental physical design. We
also outline a set of open areas of research that have great
potential for research and development.

2. FORMULATION AND SURVEY

To eliminate the potentially divergent design iterations
EDA tools need to perform incremental design modifica-
tion as well as incremental analysis and estimation of the
results. Issues like back-tracking without having to recal-
culate (from scratch) where we have come from and some
check-point management gain increased importance in such
a scenario [49].

Incremental algorithms for synthesis and layout are
needed when design undergoes local or incremental change.
Often these local changes are made to react to local change
in the design, correct local errors or to make local improve-
ments in one or more of the design quality metrics. Mecha-
nisms are needed to control the portions of the design that
are exposed for optimization [2]. And algorithms are needed
to obtain good incremental solutions in a short amount of
time.

Many iterative algorithms such as simulated annealing,
force directed algorithms, and maze routing can be easily
modified to handle incremental floorplanning, placement,
and routing. The main challenge is to decide which in-
stances we need to apply these algorithms to and what are
the quality/speed tradeoff. A small number of research re-
sults in the area of incremental layout have been reported
in the recent past, focusing on floorplanning [12], place-
ment [4], and FPGA routing [14, 43]. Incremental logic
optimization has been studied in [2, 50], and incremental
FPGA technology mapping in [8] .

A major difficulty in physical design is the cycling depen-
dency and strong interaction between placement, synthesis,
and routing. To estimate the timing, one needs to know
the interconnect, which requires a placement, which itself
should be timing aware. Simple logic optimizations (e.g.,
sizing and buffering) can improve the timing, but that may
be done to the expense of area, which can create local con-
gestion, which placement can take care of by spreading out
the cells, which consequently may hurt the timing. Incre-
mental capabilities are obviously not sufficient: one also
need a consistent strategy so that placement, synthesis, and
routing cooperate to meet the timing and congestion con-
straints.

As smaller geometry features are being used, the struggle
for the interconnect to meet both the timing and conges-
tion constraints is getting ever more difficult. Congestion is
usually managed by placement, but new researchs are be-
ing done to use synthesis for congestion relief. The simplest
form consists of using logic optimizations to produce some
extra slack that can then be used by the router to reroute
nets and relieve some overcongested area. The most aggres-
sive forms consist of driving the resynthesis by a constrained
interconnect topology.

In the next three sections, we focus on incremental logic
synthesis, incremental placement, and incremental routing.

3. POST PHYSICAL DESIGN LOGIC
SYNTHESIS

In this section we examine logic synthesis techniques that
can be used after some physical design has been completed.
Thus, this synthesis is actually a resynthesis that attempts



to use the physical informations to change the logic netlist
so that it better meets the timing constraints imposed on it.
A secondary goal may be to improve the congestion to help
with routing. The amount of physical design completed
may vary —at the least some rough placement information
for the cells is needed. Typically the global route for the
signals is also provided to help better estimate intercon-
nect delay. The expectation is that the logic modifications
will be small enough to not disturb this global route sig-
nificantly. Detailed routing is generally not done yet —any
logic change is likely to change the routing so much that
it becomes useless. Given that the placement and possi-
bly the global route is already done, the logic changes are
expected to be fairly local, thus largely retaining the place-
ment and global route. This limits the scope and nature
of the resynthesis algorithms that can be used in this con-
text. The actual amount of change permitted is a function
of the specific flow in which they are used. However it is
important to note that the amount of acceptable changes
is much larger than what is expected in ECO (engineering
change order synthesis), where only elementary changes are
allowed to meet some changes in the specification [3]. Thus,
while the body of work done in in-place optimization and
ECO is related to the current context, it is also largely too
limited.

We now examine specific techniques that have seen in-
dustrial success in this context.

3.1. Gate Sizing

The goal of gate sizing is to determine optimal sizes for
the gates so that the circuit meets the delay constraints
with the least area/power cost. A larger gate will have a
higher drive strength (lower resistance) and hence will be
able to charge/discharge output capacitances faster. How-
ever, it also has a higher input capacitance. This results
in the preceeding gate seeing a larger capacitive load and
thus suffering an increasing delay. Thus, sizing requires a
careful balancing of these two conflicting effects, and the op-
timal solution will thus require the coordination of the cor-
rect sizes of all the gates along and off critical paths. This
points to a global solution, where the sizes for all the gates
in some critical section are determined simultaneously [36].
However, global techniques may be difficult to use directly
in the post physical design context, since the changes in
sizes as a result of resizing may result in a placement that
cannot be made valid with small changes.

Analytical techniques exist for sizing in the continuous
domain (e.g., linear programming [31], posynomial [15],
convex programming [44]), and various attempts have been
made to use these results with discrete sizes in a cell li-
brary based design style [18]. The theory of constant ef-
fort [48] and its more usable approximation, constant de-
lay [16], provide a direct way to select cell sizes directly for
each stage. For example, the optimal delay on a path is
obtained by distributing the effort evenly among the logical
stages. This means that if the delay of the whole path is
fixed, then the delay of every stage must be kept constant.
Thus, cell sizes can be selected to match this constraint by
visiting all the gates in a topological order, starting from
the outputs. However, intersecting or reconvergent paths
often produce incompatible stage delays. Also, sizing at
the physical level should use a realistic interconnect delay,
and must consider the input slope effect, as well as the dif-
ference between falling and rising delays.

Alternatively, discrete sizing may be done using global
search techniques [11]. These techniques attempt to reach

a global optimal through a sequence of local moves, i.e.,
single-gate changes. While these are computationally ex-
pensive, they can take advantage of very accurate delay
models, they can enforce complex constraints by rejecting
moves that violate them (e.g., validity of the placement),
and they can simultaneously combine sizing with other lo-
cal logic optimizations (e.g., gate placement, buffering, pin
swapping). They have been shown to provide good results
for discrete libraries. They are particularly promising in the
context of post-physical design synthesis, since they can fo-
cus on small critical sections and find a small sequence of
moves that meets timing constraints while maintaining the
validity of the placement.

Analytical sizing methods based on simple convex de-
lay models are global and fast. Discrete sizing methods
are slower, but very accurate and focused. Both methods
should be used in the context of incremental synthesis, de-
pending on the extend of the modification of the netlist,
and on the level of accuracy of the physical informations.

3.2. Buffering

Buffering, like sizing, is really an electrical optimization
and not a logical optimization in the sense that it does not
change the logical structure of the netlist. Buffering serves
multiple functions:

e Long wires result in signal attenuation. Buffers (also
known as repeaters in this context) are used to restore
signal levels.

e Like sizing, buffering can be used to increase the drive
strength for a node that is driving a large load. A chain
of one or more buffers can be used to drive a large load.

e Buffers can be used to isolate or shield signals on a
critical path from high-load off-critical-path signals. In
this case the buffer is used to drive the off-critical path
load and the driver on the critical path sees a much
reduced load of just the single buffer in addition to the
critical signal

It is possible to come up with some ad-hoc solutions for
each of the above cases. For example, repeaters can be
added at fixed wirelength intervals determined by the tech-
nology. However, critical nets often need to be buffered
to satisfy more than one of the above listed requirements.
Thus, algorithmic solutions are very much desirable that
balance the attenuation, drive strength and shielding re-
quirements. This problem is hopelessly NP-hard. Even the
problem of determining the best buffer tree for a given net
ignoring the placement of the driver and the sink pins has
been shown to be NP-hard [51]. An interesting solution
exists for the case when the topology of the buffer tree is
fixed and the potential buffer sites are fixed. This is the case
when the global route for the net is already determined and
the buffer tree must follow this route. In this case it been
has shown that a polynomial time solution exists under the
use of an Elmore delay model for interconnect [52] using
a dynamic programming algorithm. Various attempts have
been made to overcome the two limitations of this algorithm
—the fact that the topology is already fixed, and that the
Elmore delay model does not accurately capture the resis-
tive effects of deep sub-micron technologies. The former is
considered to be more of a problem, since fixing the topol-
ogy can severely limit the shielding possibilities and lead to
overall sub-optimal solutions. What is needed is the ability
to determine the topology as part of the buffering solution.
Some attempts have been made to develop heuristic solu-
tions here (e.g., [38, 45]), including even adding additional



degrees of freedom like wire and driver sizing. While these
techniques provide better solutions than the fixed topology
approach, it is hard to say how close to the optimal these
efforts are. This is a hard problem and continues to be a
subject of active research. Various post-placement consid-
erations have been included by researchers such as account-
ing for blockages in the routing topologies, and restricting
the locations of buffers due to placement constraints (e.g.,
[67, 21]).

Determining the optimal buffer tree for a given net is
only one part of the complete buffering problem. Given
that buffering a given net can change the constraints (re-
quired time/slack, load) on the pins of another net, the final
solution is sensitive to the order in which the nets are vis-
ited. In addition, once a net is buffered, the gates may no
longer be optimally sized. Resizing gates before the next net
is buffered can modify the buffering problem. Researchers
have considered combining sizing and buffering into a single
step [23], but again this problem is very complex and far
from being considered as solved.

3.3. Technology Remapping

Technology mapping attempts to find the best selection of
cells from a given cell library to meet a given delay con-
straint with the least area/power. Post-physical design
mapping is a remapping step that attempts to find a better
mapping by using the existing physical information for de-
termining interconnect delay. The challenge here is to work
on small sections so that the given placement is not signif-
icantly disturbed, yet at the same time be effective enough
to improve the design. Mapping has been well studied [17],
so the mapping algorithms are well known, knowing where
to apply them is the key. One new aspect of the problem is
determining where to place the new cells created during the
remapping phase. Typically some simple solutions based on
the fixed boundary locations are used during the mapping
itself, with a clean up step to make the placement legal [42].

3.4. Logic Restructuring

Logic restructuring is the strongest technique in the suite
of logic optimization techniques in the sense that it can
significantly change the structure of the netlist. This also
makes it the most difficult to apply in a post-physical de-
sign context where the changes are expected to be small to
maintain the validity of the placement. However, the ba-
sic ideas in restructuring can still be used to improve the
timing and congestion properties of the netlist as long as
the changes are focused on key sections and the modifica-
tions are within the space of acceptable changes, e.g., the
changes do not violate capacity/congestion constraints for
various physical regions of the design. The restructuring
techniques themselves range from well known applications
of commutative, associative and distributive properties of
logic functions [17], to sophisticated Boolean resynthesis
(e.g., BDD-based). The challenge is in knowing where to
apply them, and maintain the constraints imposed by the
existing physical design. Several researchers have worked on
this problem (e.g., [41]), however, with no dominant tech-
nique emerging.

4. PLACEMENT

The placement problem can be defined as follows. Given a
circuit consisting of modules with predefined input and out-
put terminals and interconnected in a predefined way, con-
struct a layout indicating the positions of the modules so the
estimated wire length and layout area are minimized. The

inputs to the problem are the module description, consisting
of the shapes, sizes, and terminal locations, and the netlist,
describing the interconnections between the terminals of the
modules. The output is a list of x- and y-coordinates for
all modules. The main objectives of a placement algorithm
are to minimize the total chip area and the total estimated
wire length for all the nets. We need to optimize chip area
usage in order to fit more functionality into a given chip
area. We need to minimize wire length in order to reduce
the capacitive delays associated with longer nets and speed
up the operation of the chip.

Placement algorithms are typically divided into two ma-
jor classes: constructive placement and iterative improve-
ment. In constructive placement, a method is used to build
up a placement from scratch; in iterative improvement, al-
gorithms start with an initial placement and repeatedly
modify it in search of a cost reduction. If a modification
results in a reduction in cost, the modification is accepted;
otherwise it is rejected. Constructive placement algorithms
are generally very fast, but typically result in poor layouts.
Since they take a negligible amount of computation time
compared to iterative improvement algorithms, they are
usually used to generate an initial placement for iterative
improvement algorithms. One of the biggest challenge for
placement tools are the fast growing circuit size. A good
placement algorithm has to be more effective than ever to
find a good layout as quickly as possible.

There are two classes of placement algorithms that has
been studied in the area of concurrent placement and syn-
thesis: pro-active placement makes the subsequent rout-
ing step easier. Cost function used in pro-active place-
ment are, for example, wirelength, (congestion measures,
global-routing measure. Re-active placement modifies a
given placement based on the a given global or detailed
routing or based on the moves made during in-place syn-
thesis. In re-active placement, the goal is to create a good
placement without modifying it too much. This is what
we informally call incremental placement. Next, we give a
formal definition of incremental placement !

Incremental Placement: Given an existing placement
optimized with respect to a given metric (e.g., wirelength),
modify the placement to improve it with respect to other
metrics (e.g., congestion, timing, or detailed routability).
Or, given an optimized placement and a set of changes to
the netlist (e.g., due to technology remapping) modify the
placement to improve it.

The notion of a mismatch between the incremental opti-
mizer and the magnitude of the changes between successive
instances is introduced in [24]. An explanation of why in-
cremental optimizers sometimes work well and sometimes
produce poor solutions is provided. However, better under-
standing of the problem change and algorithm capability
are needed. For example, that fact that some incremental
algorithms produce solutions that are better than the full-
forced algorithms can be attributed to the strength of the
algorithm, the nature of the problem itself, or can be due
to the fact that a wider solution space being searched.

4.1. Incremental Placement in a Changed Netlist

Technology remapping, post technology retiming, gate
adding/deleting are several possible reasons to change ex-
isting netlist. Suppose we already have a placement of an

ITraditional placement algorithms trying to optimize e.g.,
wirelength, congestion, timing at the coarse level can be clas-
sified as pro-active algorithms.



existing netlist. There are two methods to achieve a new
solution on the changed netlist. The obvious approach is
to simply run the placement tool again, while the alterna-
tive approach is to run an incremental placement algorithm
which takes the previous solution as a starting point.

The following experiment is designed to study the behav-
ior of the incremental placement in a changed netlist. Given
a placement problem Py = (C, No), and a solution Sy pro-
duced by a wirelength driven placement tool, we modify the
original placement problem P to Py = (C, N1) by chang-
ing the netlist No to N1. Then a fresh placement run is
performed on the new placement problem P;. On the other
side, an incremental placement algorithm is also applied on
problem Pi, starting from the solution Sp. The results of
these two placement runs are compared using the bounding
box wirelength metric. For placement tool we use one of
the best university tools, Dragon2000 [33]. For incremen-
tal placement we use greedy move-based local improvement
approach [33].

To change the netlist, we randomly choose n pairs of
neighbornets (two nets are neighbornets if and only if they
are connected to a common cell). For each pair of nets we
randomly select one cell from each net, exchange these two
cells, and renew the connectivities of the cell pair. After
changing the netlist, the total number of cells and the num-
ber of nets remain unchanged. We set n equal to 1%, 5%
and 10% of the number of nets. Table 1 shows the exper-
imental results on five MCNC benchmarks. Total bound-
ing box wirelengths produced by two approaches are re-
ported. As can be seen incremental approach works better
for smaller changes on netlist while a full placement run is
better if the netlist is changed significantly. However, note
that the the incremental placement algorithm used here is
a simple one and results might be different with more pow-
erful incremental placers (yet to be developed).

#nets changed

Ckt 1% 5% 10%
full inc | full inc | full inc
prim2 | 3.54 | 3.68 | 3.55 | 3.63 | 3.55 | 3.69
ind2 14.3 | 145 | 14.1 | 13.4 | 13.7 | 12.9
ind3 41.3 | 44.1 | 40.0 | 39.5 | 39.8 | 38.8
avgs 539 | 5.33 | 5.96 | 5.89 | 6.54 | 6.01
avql 5.78 | 5.79 | 6.25 | 6.14 | 6.77 | 6.18

Table 1. Total bounding box wirelength of place-
ments produced by a full placement run (full) and
an incremental run (inc). The better results are
in boldface. Running time of the incremental ap-
proach is a small fraction of the full placement run.

4.2. Incremental Placement to Improve Timing

Table 2 shows a simple timing related experiment on MCNC
benchmark circuits. A post processing algorithm takes a
good placement produced by a wirelength optimization en-
gine as the input, finds a subset of length nets (in terms
of bounding box), reduces it to a given threshold value,
e.g., to 90% of its original length. If there exist other nets
with bouding box length larger than this threshold value,
they will be also reduced. The algorithm we have imple-
mented is greedy because it only accepts cell moves which
do not increase the length of long nets. The changes of total
wirelength are reported by the percentage increment on the
original wirelength. Running time of the algorithm is neg-
ligible compared with a fresh placement run. The results

show that it is not difficult to reduce the longest net by up
to 20% without considerably increasing total wirelength.
However, it gets very difficult to increase the wirelength
beyond that. It should be noted that the implemented al-
gorithm is greedy and very simple in nature. More effective
algorithms are needed to tackle this problem.

bouding box length reduced
circuit F£cells 5% 10%
F#nets | AWL | #nets | AWL
Primary2 2907 11 0.06% 31037%
industry2 12142 2 | 0.06% 6 | 0.48%
industry3 15059 11 0.01% 1| 0.04%
avqgs 21854 1| 0.03% 3| 0.16%
avql 25114 1| 0.06% 2 | 0.14%
bouding box length reduced
circuit F£cells 20% 30%
#nets | AWL | #nets | AWL
Primary2 2907 71 2.48% 13 N/A
industry2 12142 17 N/A 39 N/A
industry3 15059 1| 0.06% 5 N/A
avqs 21854 5| 0.78% 6 | 1.67%
avql 25114 10 | 1.85% 13 N/A

Table 2. Number of long nets and total wirelength
increase in reducing bouding boxes length of long
nets in a good placement, N/A means this can not
be done by this greedy approach. Initial placement
are produced by TimberWolf(without timing con-
straints)

4.3. Incremental Placement to Improve Conges-
tion

Comparing with traditional placement objectives (net-cut,
wirelength, etc.) congestion is least understood. However,
it models routability more accurately than other objectives.
Wang et. al. [53] proposed a consistent routing model de-
fined by demand/supply relationship. Experiments show
that the congestion objective is very ill behaved cost func-
tion such that directly using it will not produce low conges-
tion placement. Since congestion and wirelength are glob-
ally consistent, a good way to reduce congestion is obtained
by using a post processing stage after the traditional wire-
length minimization stage. The post processing approach
works more efficiently when the quality of input placement
obtained in the previous stage is good. Minimizing conges-
tion while maintaining the previous wirelength quality is
very difficult. To minimize the wirelength changes caused
by congestion reduction, a multi-center congestion mini-
mization method is proposed [32]. By limiting the range of
the congestion reduction, the original solution is changed lo-
cally so that the old objective is maintained. These conges-
tion reduction techniques are incremental in nature. Again,
optimizing one cost function while maintaining (or slightly
degrading) other cost functions is a key point that needs
further research.

5. ROUTING

Given the floorplanning and placement results, the routing
problem is find out an exact implementation of all nets us-
ing conductive wires so that all the pins in each net are
electrically connected. The connection wires have certain
width and wire-to-wire clearance constraints, called design
rules, determined by both processing technologies and per-
formance optimization methods such as wire sizing and wire



spacing [9, 7]. In general, the routing problem are handled
in a two-level hierarchy: global routing and detailed routing.
In global routing, the entire routing region is partitioned
into tiles or channels and a rough route for each net is de-
termined in terms of the tiles or channels that the route
passes through. The objective of global routing is typically
to minimize the routing congestion and the total wirelength.
The global routing results are used to guide detailed rout-
ing, which computes the final routing implementation of
each tile or channel by determining the exact layer assign-
ment, location, and dimension of every wire segment in that
tile or channel for making all the connections.

Given an existing routing solution and a set of nets to be
added or rerouted, the incremental routing problem is to
find a new layout to accommodate these incremental rout-
ing changes with the minimal modification of the original
routing solution. Naturally, the incremental routing prob-
lem can be divided into the incremental global routing prob-
lem and the incremental detailed routing problem. Incre-
mental global routing is often used together with incremen-
tal logic synthesis, incremental floorplanning, or incremen-
tal placement to make sure that these incremental changes
will not cause serious routability problems. Incremental
detailed routing, also called ECO (engineer order change),
may occur in several scenarios. For example, the netlist
might be incrementally updated by the designer or synthe-
sis tools after detailed routing. Or, some nets in a detailed
routing solution might be determined to have timing/noise
violation after detailed parasitic extraction and timing anal-
ysis, and need to be re-designed using different width, spac-
ing, and/or buffering. In both cases, obviously, re-routing
of all the nets is too time-consuming. Moreover, an entirely
different layout may completely invalidate the existing ex-
traction and detailed timing analysis results. Thus, the key
problem in incremental routing is to preserve as much pre-
vious routing results as possible, while accommodating the
new routing requests.

Both the incremental global routing problem and the in-
cremental detailed routing problem can be partitioned into
three related sub-problems.

e Single Net Routing. The first goal of incremental
routing is to route the new nets without removing any
of existing routed nets. This requires us to determine
quickly for a given net, if it can be routed in the existing
layout.

e Rip-up and Reroute. If the net can not be routed
with existing nets, a rip-up and reroute operation will
be carried out to free out more routing space so that
all nets can be routed. The challenge of the rip-up
and reroute problem is how to complete all the nets
with minimal changes of the exiting routes (without
changing the floorplan and placement results).

¢ Incremental Floorplan and Placement Update.
If rip-up and reroute fails to complete all nets, the floor-
plan and placement of the design need to be updated to
add more routing resources. The problem of incremen-
tal floorplanning and placement update is to minimize
and localize the floorplan/placement changes while al-
lowing all nets to be routed.

The solutions to these three sub-problems form a natu-
ral three-stage bottom-up flow for the incremental routing
problem. The flexibility in each stage increases while the
problem complexity also increases. In the following subsec-
tions, we shall first briefly review related results and then

highlight one or two most promising solutions to each of
the three problems. Open problems are also presented to
motivate future research on this topic. Since the detailed
design rules do not need to be enforced during incremental
global routing, it can be considered as an ”easier” prob-
lem than incremental detailed routing. So, the emphasis in
the following subsections is on incremental detailed routing.
Most techniques for incremental detailed routing, however,
can be applied to incremental global routing, with proper
simplification in many cases.

5.1. Single Net Routing

The single net routing problem (SNRP) is the easiest yet
most fundamental one among the three problems. There are
many methods to check whether a net is routable or not in
a given layout. This is usually accomplished by actually
finding a connection using a path searching algorithm in
an abstract routing graph. This task is the kernel problem
for all routing problems. The incremental routing prob-
lem is difficult in two aspects: First, the routing region is
usually heavily congested with the existing routes; Second,
the new route may not localize in a small routing region,
which makes most path searching algorithms used by typi-
cal detailing routing system (work well for a tile or channel)
inefficient or incapable to handle such a problem.

For single net routing, the routing region is normally re-
duced to a connection graph and the routing problem is
mapped to a path searching problem in the graph. There
are two ways to map the routing region to a graph: a
tile-based approach and a point-based approach. In the
tile-based approach, the routing area is partitioned into re-
gions, called tiles, where the center-line of a path can pass
through [46, 34, 30]. These tiles are defined by the bound-
ary of the obstacles and stored using a corner-stitching data
structure [39]. In the point-based approach, the routing
area is populated with points where the center-line of a
path can pass through [55, 37, 56]. A maze searching algo-
rithm [28, 19, 47] is used to search a path on these graphs.
In general, tiles are more complex to manage: tile-to-tile
path needs post-processing to obtain a final design-rule cor-
rect route and there are some difficulties in using the tile-
based algorithm for multi-layer routing with more complex
design rules (see discussions in [6]). Thus, we turn our at-
tention to point-based connection graphs for routing.

In early point-based routing algorithms, a uniform grid
graph is used as the underlying routing graph. (This is
usually also the case for global routing.) An explicit rep-
resentation of the graph is used, that is, the graph is pre-
computed and stored. This approach is inefficient in cur-
rent high-performance designs because the variable width
and variable spacing design rules impose very fine grids on
a uniform grid graph approach. Moreover, it is very inef-
ficient to compute the routing graph for the entire layout
while maybe only a small portion of it will be affected by
incremental routing. Two approaches are proposed to im-
prove the explicit graph: One is to find a minimal graph
that guarantees to contain at least one shortest path if
any such path exists [55, 54]. The drawback of the min-
imal graph approach is that it requires very expensive pre-
construction. The other approach is to use compressed or
implicit representation of the graph. A compressed repre-
sentation of uniform grid-graph using segments is presented
in [20]. Zheng, etc. al., presented an implicit representa-
tion of the routing graph, that is, their graph nodes are
computed on-the-fly [56]. The underlying graph in their
approach is an extension to the track graph introduced in



Ex. Uniform | Non-Uniform Grid Troute [1, 40]
Expl. Runtime | Impl. Runtime | Mem
(MB) (sec.) (MB) (sec.) (MB)
eco-1 160.2 19.1 10.9 42.15 32.7
eco-2 160.2 6.3 10.9 26.58 32.7
eco-3 160.2 34.5 7.2 68.70 32.6
eco-4 161.7 24.0 10.9 57.39 32.6
eco-5 191.0 12.3 12.7 43.14 35.2
eco-6 359.4 24.7 15.9 74.29 52.6
eco-7 641.1 38.2 43.6 79.79 84.7

Table 3. ECO test results: experimental results
comparing implicit representation of non-uniform
graph with explicit uniform grid graph and Iroute
using seven ECO examples.

[65]. Their implicit approach, although very efficient in rep-
resentation, is costly in computing the graph nodes.

A promising approach to the single net routing problem is
reported recently uses a non-uniform grid graph (NUGG)
with its implicit representation [5]. The graph is an or-
thogonal grid graph constructed based on the expansion
of rectangular obstacles in the routing region according to
wire/via width and spacing rules. The non-uniform grid
graph, comparing to the one used in the uniform grid ap-
proach, is much smaller. What is more, the grid nature of
such a graph makes it very easy to come up with an im-
plicit representations — instead of pre-compute and store
the graph, the graph is represented by two sorted array of
its X and Y grid positions. To efficiently answer maze re-
lated queries, a two-level data structure using a first level
“slit-tree” [25, 27] plus a second level interval tree [13] is
applied. The query data structure is further enhanced with
a cache structure that exploits the locality of the maze ex-
pansion.

The effective of this approach is validated in [5] where
this graph and the auxiliary data structures is applied to
the ECO problem. The paper compares the implicit graph
and the query data structure with explicit uniform grid ap-
proach and Iroute, a well-known tile-based router for grid-
less routing used in the Magic layout system [1, 40], as
shown in Table 3. The results show that not only this
graph representation is very efficient in memory usage —
14 x smaller than explicit representation and 2 —3x smaller
than Iroute. The queries into the data structure is also very
fast. The run time of our maze routing algorithm is 2 — 4 x
faster than Iroute.

5.2. Rip-up and Reroute Problem

When some nets can not be routed, a rip-up and re-route
procedure is required to free out more routing resources and
re-do the routing for the newly added nets and the nets that
have been ripped up. Many algorithms have been proposed
for rip-up and reroute [29, 26, 35]. However, most of them
assume that there exists a underlying uniform routing grid
and all net segments can be simplified as a zero width lines
centered on the grid. This assumption makes it easy to
model the resources in the routing region and simplifies the
operation to exchange the resources between nets. It works
well for global routing or grided detailed routing. However,
it does not hold anymore in variable width and variable
spacing routing. An accurate model of available routing
resource in each local region and the flexibility to pick the
re-routes globally are both needed to re-route in a gridless
environment.

Example Routed Nets Run Time

n.b.n  w.p. total [ n.b.n. w.p. X
Block 489 496 496 | 4500.6 270.0 16.7
Meccl 3939 3998 4004 | 9499.6 1365.1 7.0
Mecclce 3931 3978 4004 | 5621.0 1508.5 3.7
Ray 409 418 430 518.8 172.0 3.0

Table 4. Routing results with wire planning: four
examples are used to compare the completion ra-
tio and run time for two approaches — net-by-net
(shown as “n.b.n”) and wire planning (shown as
“W.p.”).

Existing rip-up and re-route algorithms can be broadly
categorized into the following two types:

o Those always maintain design rule correctness, such as
the Pathfinder [35] and Silk [29];

o Those allows temporary design-rule violation, such as
the “cross-and-touch” router [26]

There are some limitations if we strictly enforce design
rule correctness in every step during routing. First, the
result will rely heavily on the ordering of nets, as previously
routed nets become obstacles for later ones. The rip-up
and reroute algorithm has to be smart, or at least fair in
selecting proper net orders. However, there is no obvious
solutions other than simple heuristics and trial-and-error
methods. Second, selecting nets to be ripped up is difficult,
especially in incremental routing when the original routing
algorithm used to generate the layout may not be available.
The second type of rip-up and reroute algorithm is more
flexible since by allowing design-rule incorrect routes, one
can at least attempt to route all the nets and obtain a global
picture of where the congested areas and free spaces are.
Thus, many practical routing systems use this approach.

The key problem in rip-up and reroute for incremental
routing is to find the solution with minimal changes in the
previous nets. In a gridless routing environment, this prob-
lem is difficult in that the routing resources and previous
routed wire can not be simplified as grids or tracks. We
feel that the best solution to this problem is to develop
a global control structure for the overall routing system
that enables both the high-level planning prior to detailed
routing and the rip-up and reroute after detailed routing.
The congestion-driven wire planning algorithm presented
in [22] provides the capabilities to take exact gridless de-
sign rules into consideration, model the available routing
resources accurately, plan for the incremental routes prior
to single net routing, and also re-plan in rip-up and reroute.
Such a framework gives the rip-up and re-route algorithms
global flexibility to evaluate the alternatives yet with de-
tailed knowledge about the available routing resources in
each region. The results, as shown in Table 4, show that
the detailed routing system, compared to a net-by-net ap-
proach using the gridless detailed router developed in [5],
is 3 — 17 times faster while the completion rate is also im-
proved. These improvements are critical for applying the
gridless detailed routing system in current and future VLSI
designs where a true variable width and variable spacing
router is needed.

5.3. Incremental Floorplan and Placement Update

When rip-up and reroute fail to route all the nets, we need
to consider modifying the given placement and/or floor-
plan configurations. This results incremental floorplanning



and/or placement. The rip-up and re-route engine may sug-
gest several possible regions for increasing routing resources
in order to complete routing. The incremental floorplan
and placement algorithms need to choose the right com-
bination of routing regions for increasing the routing re-
sources yet minimize the modification of the current floor-
plan/placement solution. Incremental floorplanning and
placement update is a vital part of a incremental routing
system because it provides the link between routing and
floorplanning/placement. However, little progress has been
reported for this problem, and we rank it as a high priority
problem that needs more studies.

6. CONCLUSION

In this paper we discussed the need for incremental CAD
algorithms (and effective software) when design undergoes
local or incremental change. Often these local changes are
made to react to local change in the design, correct local
errors or to make local improvements in one or more of
the design quality metrics. We outlined a set of problems
in synthesis, placement, and routing and suggested possi-
ble solutions. Focused participation in research and devel-
opment in the area of incremental and dynamic CAD is
greatly needed and would help us cope with the complexity
of present day VLSI systems and would faciliate concurrent
optimization.
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