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ABSTRACT

In 
oorplanning of VLSI design, it is useful if users are
allowed to specify some placement constraints in the pack-
ing. One particular kind of placement constraints is to
pack some modules on one of the four sides: on the left, on
the right, at the bottom or at the top of the �nal 
oorplan.
These are called boundary constraints. In this paper, we
enhanced a well-known slicing 
oorplanner [10] to handle
these boundary constraints. Our main contribution is a
necessary and su�cient characterization of the Polish ex-
pression, a representation of the intermediate solution in
a simulated annealing process, so that we can check these
constraints e�ciently and can �x the expression in case the
constraints are violated. We tested our algorithm on some
benchmark data and the performance is good.

1. INTRODUCTION

Floorplan design is an important step in physical design of
VLSI circuits. It is the problem of placing a set of circuit
modules on a chip to minimize total area and interconnec-
tion cost. In this early stage of physical design, most of the
modules are not yet designed and thus are 
exible in shape
( soft modules ) and are free to move ( free modules ).
Many existing 
oorplanners are based on slicing 
oor-

plans [1, 10, 3, 5, 9] and it is shown theoretically that slic-
ing 
oorplans can pack modules tightly [11]. There are
several advantages in using slicing 
oorplans. Firstly, fo-
cusing only on slicing 
oorplans signi�cantly reduces the
search space and this leads to fast runtime. Secondly, the
shape 
exibility of the modules can be fully exploited to
pack modules tightly using an e�cient shape curve compu-
tation technique [8, 6]. As a result, existing 
oorplanners
that use slicing 
oorplans are very e�cient in runtime and
yet can pack modules tightly.
Recently, there are some interesting research activities

in the direction of non-slicing 
oorplans. Two methods,
bound-sliceline-grid ( BSG ) [7] and sequence-pair ( SP )
[2], are proposed. These methods are originally designed
for placement of modules which have no 
exibility in shape
( hard modules ). The sequence-pair method is recently ex-
tended to handle soft modules [4]. In order to handle soft
modules, it needs to solve an expensive convex program-
ming problem to determine the exact shape of each module
numerous times, and thus results in long runtime. Note
that for the same set of benchmark data ( apte, xerox, hp,
ami33, ami49 ) in [4], we run the slicing 
oorplanner in [10]
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and can obtain comparable results using only a fraction of
the runtime. In fact, we have less than 1% dead space
using no more than 7 seconds for all the test problems.
In 
oorplanning, it is useful if users are allowed to spec-

ify some placement constraints in the �nal packing. We did
some previous work on 
oorplanning with pre-placed mod-
ules [12]. A pre-placed module is �xed in position, height
and width. We solved this problem by a novel shape curve
computation procedure which takes the positions of the
pre-placed modules into consideration.
The placement constraint we consider here is called

boundary constraint: some modules are constrainted to be
packed on one of the four sides: on the left, on the right,
at the bottom or at the top of the �nal 
oorplan. This
is needed because users may want to place some modules
along the boundary for I/O connections. In particular, if

oorplanning is done independently for di�erent units of a
chip, it helps if some modules are constrained to be packed
along the boundary so that they can abut with some other
modules in the neighboring units. We extend a well-known
slicing 
oorplanner by Wong and Liu [10]. Our main con-
tribution is a necessary and su�cient characterization of
the Polish expression, a representation of the intermedi-
ate solution in the simulated annealing process, so that we
can check these boundary constraints e�ciently and can
�x the expression in case the constraints are violated. We
tested our algorithm with some benchmark data and the
performance is good.
The rest of the paper is organized as follows. We �rst

de�ne the problem formally in Section 2. Section 3 provides
a brief review of the Wong-Liu 
oorplanner. The new work
is presented in Section 4 and the experimental results are
shown in Section 5.

2. PROBLEM DEFINITION

A module A is a rectangle of height h(A), width w(A)
and area area(A). The aspect ratio of A is de�ned as
h(A)=w(A). A soft module is a module whose shape can
be changed as long as the aspect ratio is within a given
range and the area is as given. A 
oorplan for n mod-
ules consists of an enveloping rectangle R subdivided by
horizontal lines and vertical lines into n non-overlapping
rectangles such that each rectangle must be large enough
to accommodate the module assigned to it. There are two
kinds of 
oorplans: slicing and non-slicing. A slicing 
oor-
plan is a 
oorplan which can be obtained by recursively
cutting a rectangle into two parts by either a vertical line
or a horizontal line. A non-slicing 
oorplan is a 
oorplan
which is not slicing.
In our problem, we are given two kinds of soft modules

M = F [ B. The modules in F are free to move while
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Suppose module A is constrainted to be
packed along the right boundary. Then
the packing in (a) is infeasible but the
packing in (b) is feasible.
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Figure 1. An example of a feasible 
oorplan
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Figure 2. Slicing tree representation and Polish
expression representation of a slicing 
oorplan

the modules in B are constrainted to be packed on one of
the four sides of the �nal 
oorplan. A feasible packing is
a packing in the �rst quadrant such that the width and
the height of all the modules are consistent with their as-
pect ratio constraints and their area constraints, and all
the modules in B are placed on the boundaries as required
( Figure 1 ). Our objective is to construct a feasible 
oor-
plan R to minimize A+�W where A is the total area of the

oorplan R , W is an estimation of the interconnect cost
and � is a constant that controls the relative importance
of A and W . We require that the aspect ratio of the �nal
packing is between two given numbers rmin and rmax.

3. WONG-LIU FLOORPLANNER

A slicing 
oorplan can be represented by an oriented rooted
binary tree, called a slicing tree ( Figure 2 ). Each internal
node of the tree is labeled by a * or a +, corresponding
to a vertical or a horizontal cut respectively. Each leaf
corresponds to a basic module and is labeled by a number
from 1 to n. No dimensional information on the position
of each cut is speci�ed in the slicing tree. If we traverse a
slicing tree in postorder, we obtain a Polish expression and
a Polish expression is said to be normalized if there is no
consecutive *'s nor consecutive +'s in the sequence. It is
proved in [10] that there is a 1-1 correspondence between
the set of normalized Polish expressions of length 2n � 1
and the set of slicing 
oorplans with n modules.
In [10], Wong and Liu used the set of all normalized

Polish expressions as the solution space for a simulated
annealing method. In order to search the solution space
e�ciently, they de�ned three types of moves ( M1, M2
and M3 ) to transform a Polish expression into another.
They can make use of the 
exibility of the soft modules to
select the "best" 
oorplan among all the equivalent ones
represented by the same Polish expression. This is done
by carrying out an e�cient shape curve computation [6,
10] whenever a Polish expression is examined. The cost
function is A+ �W where A is the total packing area and
W is the interconnect cost. This algorithm is very e�cient

+

A B

B

A

A B

*

BA

Figure 3. Relative positions of modules denoted by
slicing trees

and the performance is very well.
However their method does not consider any placement

constraint and there is actually a simple and natural way
to handle boundary constraint in the Polish expression rep-
resentation. We will describe it in the following section.

4. OUR METHOD

In the simulated annealing process, we check the normal-
ized Polish expression in each iteration to see whether the
boundary constraints are satis�ed. This can be done ef-
�ciently in linear time by scanning the expression once.
Then we �x the violated constraints as much as possible,
and include in the cost a boundary constraint term to pe-
nalize the remaining violations.

4.1. Checking the Boundary Constraint

The slicing trees and Polish expressions have orientation.
In Figure 3, the slicing tree on the left corresponds to a
Polish expression AB+, which means that module A is
below module B. The slicing tree on the right corresponds
to the expression AB�, which means that module A is on
the left of moduleB. Therefore if we want to pack a module
A on the right ( left ) boundary of the �nal 
oorplan, the
slicing tree T should be such that A is always in the right
( left ) subtree of any internal node of T labeled �. Similarly
if we want to put a module A at the top ( bottom ) of the

oorplan, the slicing tree T should be such that A is always
in the right ( left ) subtree of any internal node of T labeled
+. An example is shown in Figure 4. Lemma 1 summarizes
the above observations:

Lemma 1 Given a slicing tree T , a module in T is on the
right boundary of the 
oorplan R corresponding to T if and
only if it is in the right subtree of any internal node in T
labeled �. A module is on the left boundary of R if and only
if it is in the left subtree of any internal node in T labeled
�. A module is on the upper boundary of R if and only if
it is in the right subtree of any internal node in T labeled
+. A module is on the lower boundary of R if and only if
it is in the left subtree of any internal node in T labeled +.

In the annealing process, we use Polish expressions to
represent the slicing trees. It will be ine�cient if we build
a slicing tree in each iteration to check the conditions in
Lemma 1. Actually we can check the necessary and su�-
cient conditions in Lemma 1 e�ciently by scanning the Pol-
ish expression once. This is done by keeping a stack when
scanning the expression from right to left. Each stack ele-
ment x has four bits: x:left, x:right, x:top and x:bottom.
We push an element onto the stack whenever we see an op-
erator � in the expression. This stack element represents
the sub-
oorplan X denoted by the subtree rooted at � in
the slicing tree T . The four bits indicate whether there are
modules above X, below X, on the right of X and on the
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Module E is on the left boundary of R, so it must be in the left
subtree of any internal node in T labeled "*"

Module H is on the right boundary of R, so it must be in the right
subtree of any internal node in T labeled "*"

Module C is on the upper boundary of R, so it must be in the right
subtree of any internal node in T labeled "+"

Module G is on the lower boundary of R, so it must be in the left
subtree of any internal node in T labeled "+"

Figure 4. Characterization of slicing trees for dif-
ferent boundary constraints

left of X, e.g. x:left = 1 if and only if there is at least one
module on the left of X in the 
oorplan.

We scan the Polish expression from right to left. When
we scan a +, we push a new element x onto the stack.
The four bits of x are copied from the previous stack top
element, except that x:bottom is assigned to 1. Similarly
we push a new element onto the stack whenever we scan a
� but now we assign x:left to 1 and copy the other three
bits from the previous stack top element. The complete
algorithm is given below. The invariant is that whenever
we scan a module A in the expression, the four bits at the
top of the stack will indicate whether there are modules
above A, below A, on the right of A and on the left of A,
and we can copy these information to A:above, A:below,
A:right and A:left. These four bits, when attached to a
module name, indicate whether there are modules lying
above, below, on the right and on the left of that module
in the �nal 
oorplan. Finally we can check the boundary
constraints with these information, e.g. a module A at the
top of the 
oorplan should have A:top = 0.

4.2. Fixing a Polish Expression

If a Polish expression does not satisfy the boundary con-
straints, we can �x it as much as possible by shu�ing some
modules. An example is shown in Figure 5. In Figure 5,
the boundary constraint is violated in (a) since module E
is not packed at the bottom, as required. To �x this, we
exchange E with F where F is the module closest to E in
the Polish expression and that F is packed on the lower
boundary. In general, if a module A is not packed along
the boundary as required, we will shu�e it with another
module B which is closest to A in the Polish expression
and that B's position satis�es the boundary constraint of
A.

It is possible that some constraints are still violated af-
ter all the possible shu�ings, since a Polish expression may
correspond to a 
oorplan which does not have enough po-
sitions along the boundaries to satisfy all the required con-
straints. We include a boundary constraint term in the cost
function to penalize the remaining violated constraints. All
violations will be eliminated as the annealing process pro-
ceeds because of this boundary constraint penalty term.
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Suppose module E is constrainted to be packed at the
bottom. In (a), E is closest to F (comparing with G
and H) in the Polish expression, so we shuffle E with
F to get (b) in which E is packed at the bottom.

Figure 5. An example of �xing a Polish expression

4.3. Cost Function

The cost function is de�ned as A + �W + 
D where A is
the total area of the packing obtained from the shape curve
at the root of the slicing tree, W is the half-perimeter es-
timation of the interconnect cost, and D is a penalty term
for the boundary constraint. The penalty term D is the
distance of the module from the boundary of the 
oorplan
along which it should be packed. For instance, if module
A is constrainted to be packed on the right, the penalty
term for A will be the distance between the right side of A
and the right boundary of the �nal 
oorplan. The penalty
terms are similarly de�ned for modules constrainted to be
packed on the left, at the top and at the bottom. � and 

are constants which control the relative importance of the
three terms. � is usually set such that the area term and
the interconnect term are approximately balanced. The
boundary constraint terms D will drop to zero as the pro-
cess proceeds.

Algorithm Check-Boundary-Constraints

Input: A Polish expression
Output: For each module A, decide whether there are modules

lying above A, below A, on the right of A and on the
left of A in the �nal 
oorplan.

1. Assign 0 to all four bits of stack[top]
2. For i = 2n� 1 downto 1:

3. Let � be the ith character in the Polish expression
4. If � is a � operator:
5. Push a new element x onto the stack
6. x:left = 1
7. Copy x:right, x:above and x:below from stack[top� 1]
8. x:flag = 0; x:op = �

9. If � is a + operator:
10. Push a new element x onto the stack
11. x:below = 1
12. Copy x:left, x:right and x:above from stack[top� 1]
13. x:flag = 0; x:op = +
14. If � is a module name:
15. Copy the four bits from stack[top] to �

16. While stack[top]:flag == 1 and top > 0
17. Pop stack
18. If top > 0:
19. stack[top]:flag = 1
20. If stack[top]:op == �

21. stack[top]:right = 1
22. stack[top]:left = stack[top� 1]:left
23. If stack[top]:op == +
24. stack[top]:above = 1
25. stack[top]:below = stack[top� 1]:below

5. EXPERIMENTAL RESULTS

We tested the above method on two MCNC building blocks
examples: ami33 and ami49. ami33 has 33 modules and
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Figure 6. Result packing of ami49-rc1. Module 1,
5, 9 and 48 are constrainted to the upper boundary,
3, 10, 11 and 31 to the lower, 7, 19, 21 and 24 to
the left, and 18, 37, 46 and 49 to the right.

123 nets. ami49 has 49 modules and 408 nets. We pick
twelve modules from ami33 and sixteen modules from
ami49, and require them to be packed along the bound-
aries evenly. We tested the 
oorplanner with ten data sets
which are derived from the MCNC examples by imposing
di�erent boundary constraints on the selected module. The
starting temperature is decided such that an accepting ra-
tio is 100% at the beginning. The temperature is lowered
at a constant rate ( 0.9 ), and the number of iterations at
one temperature step is twenty times the number of mod-
ules. All the experiments were carried out on a 300 MHz
Pentium II Intel processor.
Table 1 shows the experimental results. All the bound-

ary constraints are satis�ed in each data set. Both the
packing quality and the e�ciency are satisfactory. Fig-
ure 6 is the result packing of ami49-bc1 in which modules
7, 19, 21, 24 are constrainted to the left, module 18, 37, 46,
49 to the right, module 1, 5, 9, 48 to the top and module
3, 10, 11 and 31 to the bottom. Figure 7 is another result
packing of ami49 in which we require modules 1, 3, 5, 7,
10, 24, 46, 49 to be packed at the top and modules 9, 11,
18, 19, 21, 31, 37, 48 at the bottom. Both packings are
very tight and all the boundary constraints are satis�ed.

Data Dead space Time
(%) (sec)

ami33-bc1 1.81 4.58

ami33-bc2 1.33 4.53

ami33-bc3 1.62 4.41

ami33-bc4 1.86 4.28

ami33-bc5 1.51 4.01

ami49-bc1 1.51 37.77

ami49-bc2 3.17 36.98

ami49-bc3 4.65 39.76

ami49-bc4 3.48 36.03

ami49-bc5 4.25 37.60

Table 1. Results of testings with MCNC examples
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