SLICING FLOORPLANS WITH BOUNDARY CONSTRAINT*

F.Y. Young and D.F. Wong
Department of Computer Sciences
The University of Texas at Austin
fyyoung@cs.utexas.edu wong@cs.utezxas.edu

ABSTRACT

In floorplanning of VLSI design, it is useful if users are
allowed to specify some placement constraints in the pack-
ing. One particular kind of placement constraints is to
pack some modules on one of the four sides: on the left, on
the right, at the bottom or at the top of the final floorplan.
These are called boundary constraints. In this paper, we
enhanced a well-known slicing floorplanner [10] to handle
these boundary constraints. Our main contribution is a
necessary and sufficient characterization of the Polish ex-
pression, a representation of the intermediate solution in
a simulated annealing process, so that we can check these
constraints efficiently and can fix the expression in case the
constraints are violated. We tested our algorithm on some
benchmark data and the performance is good.

1. INTRODUCTION

Floorplan design is an important step in physical design of
VLSI circuits. It is the problem of placing a set of circuit
modules on a chip to minimize total area and interconnec-
tion cost. In this early stage of physical design, most of the
modules are not yet designed and thus are flexible in shape
(soft modules) and are free to move (free modules).

Many existing floorplanners are based on slicing floor-
plans [1, 10, 3, 5, 9] and it is shown theoretically that slic-
ing floorplans can pack modules tightly [11]. There are
several advantages in using slicing floorplans. Firstly, fo-
cusing only on slicing floorplans significantly reduces the
search space and this leads to fast runtime. Secondly, the
shape flexibility of the modules can be fully exploited to
pack modules tightly using an efficient shape curve compu-
tation technique [8, 6]. As a result, existing floorplanners
that use slicing floorplans are very efficient in runtime and
yet can pack modules tightly.

Recently, there are some interesting research activities
in the direction of non-slicing floorplans. Two methods,
bound-sliceline-grid (BSG) [7] and sequence-pair (SP)
[2], are proposed. These methods are originally designed
for placement of modules which have no flexibility in shape
(hard modules). The sequence-pair method is recently ex-
tended to handle soft modules [4]. In order to handle soft
modules, it needs to solve an expensive convex program-
ming problem to determine the exact shape of each module
numerous times, and thus results in long runtime. Note
that for the same set of benchmark data (apte, xerox, hp,
ami33, ami49) in [4], we run the slicing floorplanner in [10]

*This work was partially supported by the Texas Advanced
Research Program under Grant No. 003658288 and by a grant
from the Intel Corporation.

and can obtain comparable results using only a fraction of
the runtime. In fact, we have less than 1% dead space
using no more than 7 seconds for all the test problems.

In floorplanning, it is useful if users are allowed to spec-
ify some placement constraints in the final packing. We did
some previous work on floorplanning with pre-placed mod-
ules [12]. A pre-placed module is fixed in position, height
and width. We solved this problem by a novel shape curve
computation procedure which takes the positions of the
pre-placed modules into consideration.

The placement constraint we consider here is called
boundary constraint: some modules are constrainted to be
packed on one of the four sides: on the left, on the right,
at the bottom or at the top of the final floorplan. This
is needed because users may want to place some modules
along the boundary for I/O connections. In particular, if
floorplanning is done independently for different units of a
chip, it helps if some modules are constrained to be packed
along the boundary so that they can abut with some other
modules in the neighboring units. We extend a well-known
slicing floorplanner by Wong and Liu [10]. Our main con-
tribution is a necessary and sufficient characterization of
the Polish expression, a representation of the intermedi-
ate solution in the simulated annealing process, so that we
can check these boundary constraints efficiently and can
fix the expression in case the constraints are violated. We
tested our algorithm with some benchmark data and the
performance is good.

The rest of the paper is organized as follows. We first
define the problem formally in Section 2. Section 3 provides
a brief review of the Wong-Liu floorplanner. The new work
is presented in Section 4 and the experimental results are
shown in Section 5.

2. PROBLEM DEFINITION

A module A is a rectangle of height h(A), width w(A)
and area area(A). The aspect ratio of A is defined as
h(A)/w(A). A soft module is a module whose shape can
be changed as long as the aspect ratio is within a given
range and the area is as given. A floorplan for n mod-
ules consists of an enveloping rectangle R subdivided by
horizontal lines and vertical lines into n non-overlapping
rectangles such that each rectangle must be large enough
to accommodate the module assigned to it. There are two
kinds of floorplans: slicing and non-slicing. A slicing floor-
plan is a floorplan which can be obtained by recursively
cutting a rectangle into two parts by either a vertical line
or a horizontal line. A non-slicing floorplan is a floorplan
which is not slicing.

In our problem, we are given two kinds of soft modules
M = F U B. The modules in F are free to move while

@ (b)

D C

D

Suppose module A is constrainted to be
packed along the right boundary. Then
the packing in (a) isinfeasible but the
packing in (b) isfeasible.

Figure 1. An example of a feasible floorplan

6 +
+ 7
3|57 / \ / \
1
1 6/ *\ 2
Polish expression: 16+35* 2+* 74+* 3 5

Figure 2. Slicing tree representation and Polish
expression representation of a slicing floorplan

the modules in B are constrainted to be packed on one of
the four sides of the final floorplan. A feasible packing is
a packing in the first quadrant such that the width and
the height of all the modules are consistent with their as-
pect ratio constraints and their area constraints, and all
the modules in B are placed on the boundaries as required
(Figure 1). Our objective is to construct a feasible floor-
plan R to minimize A+ AW where A is the total area of the
floorplan R , W is an estimation of the interconnect cost
and X is a constant that controls the relative importance
of A and W. We require that the aspect ratio of the final
packing is between two given numbers rpin and rmqz-

3. WONG-LIU FLOORPLANNER

A slicing floorplan can be represented by an oriented rooted
binary tree, called a slicing tree (Figure 2). Each internal
node of the tree is labeled by a * or a +, corresponding
to a vertical or a horizontal cut respectively. Each leaf
corresponds to a basic module and is labeled by a number
from 1 to n. No dimensional information on the position
of each cut is specified in the slicing tree. If we traverse a
slicing tree in postorder, we obtain a Polish expression and
a Polish expression is said to be normalized if there is no
consecutive *’s nor consecutive +’s in the sequence. It is
proved in [10] that there is a 1-1 correspondence between
the set of normalized Polish expressions of length 2n — 1
and the set of slicing floorplans with n modules.

In [10], Wong and Liu used the set of all normalized
Polish expressions as the solution space for a simulated
annealing method. In order to search the solution space
efficiently, they defined three types of moves (M1, M2
and M3) to transform a Polish expression into another.
They can make use of the flexibility of the soft modules to
select the ”best” floorplan among all the equivalent ones
represented by the same Polish expression. This is done
by carrying out an efficient shape curve computation [6,
10] whenever a Polish expression is examined. The cost
function is A + AW where A is the total packing area and
W is the interconnect cost. This algorithm is very efficient

™ (o)

AN

® ® ® ®

Figure 3. Relative positions of modules denoted by
slicing trees

and the performance is very well.

However their method does not consider any placement
constraint and there is actually a simple and natural way
to handle boundary constraint in the Polish expression rep-
resentation. We will describe it in the following section.

4. OUR METHOD

In the simulated annealing process, we check the normal-
ized Polish expression in each iteration to see whether the
boundary constraints are satisfied. This can be done ef-
ficiently in linear time by scanning the expression once.
Then we fix the violated constraints as much as possible,
and include in the cost a boundary constraint term to pe-
nalize the remaining violations.

4.1. Checking the Boundary Constraint

The slicing trees and Polish expressions have orientation.
In Figure 3, the slicing tree on the left corresponds to a
Polish expression AB+, which means that module A is
below module B. The slicing tree on the right corresponds
to the expression ABx*, which means that module A is on
the left of module B. Therefore if we want to pack a module
A on the right (left) boundary of the final floorplan, the
slicing tree T should be such that A is always in the right
(left) subtree of any internal node of T" labeled *. Similarly
if we want to put a module A at the top (bottom) of the
floorplan, the slicing tree T should be such that A is always
in the right (left) subtree of any internal node of T' labeled
+. An example is shown in Figure 4. Lemma 1 summarizes
the above observations:

Lemma 1 Given a slicing tree T, a module in T is on the
right boundary of the floorplan R corresponding to T if and
only if it is in the right subtree of any internal node in T
labeled *. A module is on the left boundary of R if and only
if it is in the left subtree of any internal node in T labeled
x. A module is on the upper boundary of R if and only if
it is in the right subtree of any internal node in T labeled
+. A module is on the lower boundary of R if and only if
it is in the left subtree of any internal node in T labeled +.

In the annealing process, we use Polish expressions to
represent the slicing trees. It will be inefficient if we build
a slicing tree in each iteration to check the conditions in
Lemma 1. Actually we can check the necessary and suffi-
cient conditions in Lemma 1 efficiently by scanning the Pol-
ish expression once. This is done by keeping a stack when
scanning the expression from right to left. Each stack ele-
ment z has four bits: z.left, z.right, z.top and z.bottom.
We push an element onto the stack whenever we see an op-
erator « in the expression. This stack element represents
the sub-floorplan X denoted by the subtree rooted at « in
the slicing tree T'. The four bits indicate whether there are
modules above X, below X, on the right of X and on the

~
ole © A \®\
B @ (5 ®
sl tede o
®®
Floorplan R Slicingtree T

Module E is on the left boundary of R, so it must bein the |eft
subtree of any internal nodein T labeled "*"

Module H is on the right boundary of R, so it must bein theright

R,
subtree of any internal nodein T labeled
R,

*
Module C is on the upper boundary of R, so it must bein theright

subtree of any internal nodein T labeled *

"4
Module G is on the lower boundary of R, so it must bein the left
subtree of any internal nodein T labeled "+"

Figure 4. Characterization of slicing trees for dif-
ferent boundary constraints

left of X, e.g. z.left =1 if and only if there is at least one
module on the left of X in the floorplan.

We scan the Polish expression from right to left. When
we scan a +, we push a new element z onto the stack.
The four bits of x are copied from the previous stack top
element, except that z.bottom is assigned to 1. Similarly
we push a new element onto the stack whenever we scan a
* but now we assign z.left to 1 and copy the other three
bits from the previous stack top element. The complete
algorithm is given below. The invariant is that whenever
we scan a module A in the expression, the four bits at the
top of the stack will indicate whether there are modules
above A, below A, on the right of A and on the left of A,
and we can copy these information to A.above, A.below,
A.right and A.left. These four bits, when attached to a
module name, indicate whether there are modules lying
above, below, on the right and on the left of that module
in the final floorplan. Finally we can check the boundary
constraints with these information, e.g. a module A at the
top of the floorplan should have A.top = 0.

4.2. Fixing a Polish Expression

If a Polish expression does not satisfy the boundary con-
straints, we can fix it as much as possible by shuffling some
modules. An example is shown in Figure 5. In Figure 5,
the boundary constraint is violated in (a) since module E
is not packed at the bottom, as required. To fix this, we
exchange E with F' where F' is the module closest to F in
the Polish expression and that F' is packed on the lower
boundary. In general, if a module A is not packed along
the boundary as required, we will shuffle it with another
module B which is closest to A in the Polish expression
and that B’s position satisfies the boundary constraint of
A.

It is possible that some constraints are still violated af-
ter all the possible shufflings, since a Polish expression may
correspond to a floorplan which does not have enough po-
sitions along the boundaries to satisfy all the required con-
straints. We include a boundary constraint term in the cost
function to penalize the remaining violated constraints. All
violations will be eliminated as the annealing process pro-
ceeds because of this boundary constraint penalty term.

@ (b)
A A
B B
E |G H F | GlH
F E
FE+BA+C*+GH* D+* EF+BA+C-+GH* D+*

Suppose module E is constrainted to be packed at the
bottom. In (a), E is closest to F (comparing with G
and H) in the Polish expression, so we shuffle E with
Fto get (b) in which E is packed at the bottom.

Figure 5. An example of fixing a Polish expression

4.3. Cost Function

The cost function is defined as A + AW + vD where A is
the total area of the packing obtained from the shape curve
at the root of the slicing tree, W is the half-perimeter es-
timation of the interconnect cost, and D is a penalty term
for the boundary constraint. The penalty term D is the
distance of the module from the boundary of the floorplan
along which it should be packed. For instance, if module
A is constrainted to be packed on the right, the penalty
term for A will be the distance between the right side of A
and the right boundary of the final floorplan. The penalty
terms are similarly defined for modules constrainted to be
packed on the left, at the top and at the bottom. A and ~y
are constants which control the relative importance of the
three terms. A is usually set such that the area term and
the interconnect term are approximately balanced. The
boundary constraint terms D will drop to zero as the pro-
cess proceeds.

Algorithm Check-Boundary-Constraints

Input: A Polish expression

Output: For each module A, decide whether there are modules
lying above A, below A, on the right of A and on the
left of A in the final floorplan.

1. Assign 0 to all four bits of stack[top]

2. For i =2n — 1 downto 1:

3 Let a be the it" character in the Polish expression

4 If o is a x operator:

5. Push a new element x onto the stack

6. z.left=1

7 Copy z.right, ©.above and z.below from stack[top — 1]

8 z.flag = 0; z.op = *

9. If a is a + operator:

10. Push a new element x onto the stack
11. z.below = 1
12. Copy x.left, xz.right and z.above from stack[top — 1]

13. z.flag = 0; z.op = +
14. If a is a module name:

15. Copy the four bits from stack[top] to o
16. While stack[top].flag == 1 and top > 0
17. Pop stack

18. If top > 0:

19. stack[top].flag =1

20. If stack[top].op == *

21. stack[top].right =1

22. stack[top].left = stack[top — 1].left
23. If stack[top].op == +

24. stack|top].above = 1

25. stack[top].below = stack[top — 1].below

5. EXPERIMENTAL RESULTS

We tested the above method on two MCNC building blocks
examples: ami33 and ami49. ami33 has 33 modules and

15 | 4
° 2
22‘ e 3 45
2 2 —
3
a
19 a| © 17 "
2 |
16 o
2
B | 2 30‘ | =
2 35
2 3

a1 1

Figure 6. Result packing of ami49-rcl. Module 1,
5, 9 and 48 are constrainted to the upper boundary,
3, 10, 11 and 31 to the lower, 7, 19, 21 and 24 to
the left, and 18, 37, 46 and 49 to the right.

123 nets. ami49 has 49 modules and 408 nets. We pick
twelve modules from ami33 and sixteen modules from
amid9, and require them to be packed along the bound-
aries evenly. We tested the floorplanner with ten data sets
which are derived from the MCNC examples by imposing
different boundary constraints on the selected module. The
starting temperature is decided such that an accepting ra-
tio is 100% at the beginning. The temperature is lowered
at a constant rate (0.9), and the number of iterations at
one temperature step is twenty times the number of mod-
ules. All the experiments were carried out on a 300 MHz
Pentium II Intel processor.

Table 1 shows the experimental results. All the bound-
ary constraints are satisfied in each data set. Both the
packing quality and the efficiency are satisfactory. Fig-
ure 6 is the result packing of ami49-bcl in which modules
7,19, 21, 24 are constrainted to the left, module 18, 37, 46,
49 to the right, module 1, 5, 9, 48 to the top and module
3, 10, 11 and 31 to the bottom. Figure 7 is another result
packing of ami49 in which we require modules 1, 3, 5, 7,
10, 24, 46, 49 to be packed at the top and modules 9, 11,
18, 19, 21, 31, 37, 48 at the bottom. Both packings are
very tight and all the boundary constraints are satisfied.

Data Dead space | Time
(%) (sec)

ami33-bcl 1.81 4.58
ami33-bc2 1.33 4.53
ami33-bc3 1.62 4.41
ami33-bc4 1.86 4.28
ami33-bch 1.51 4.01
ami49-bcl 1.51 37.77
ami49-bc2 3.17 36.98
amid9-bc3 1.65 39.76
ami49-bc4 3.48 36.03
amid9-bch 1.25 37.60

Table 1. Results of testings with MCNC examples

REFERENCES

[1] K.Bazargan, S. Kim, and M. Sarrafzadeh. Nostradamus: A
floorplanner of uncertain design. International Symposium
on Physical Design, pages 18-23, 1998.

[2] S. Nakatake H. Murata, K. Fujiyoushi and Y. Kajitani.
Rectangle-packing-based module placement. Proceedings

15
12 6
u |,
% | 4«
) 3
36
4
2 = |
3
2 3
— “ 2
2
2 47 16 39| 8 |—o
2 0 ®
= 17
2 19 1n 45 9 a
0 £ £

Figure 7. Another result packing of ami49. Module
1, 3,5, 7,10, 24, 46 and 49 are constrainted to the
upper boundary. Module 9, 11, 18, 19, 21, 31, 37
and 48 are constrainted to the lower boundary.

IEEE International Conference on Computer-Aided De-
sitgn, pages 472-479, 1995.

[3] D.P. Lapotin and S.W. Director. Mason: A global floor-
planning tool. Proceedings IEEE International Conference
on Computer-Aided Design, pages 143-145, 1985.

[4] H. Murata and Ernest S. Kuh. Sequence-pair based place-
ment method for hard/soft/pre-placed modules. Inter-
national Symposium on Physical Design, pages 167-172,
1998.

[5] R.H.J.M. Otten. Automatic floorplan design. Proceedings
of the 19th ACM/IEEE Design Automation Conference,
pages 261-267, 1982.

[6] R.H.J.M. Otten. Efficient floorplan optimization. IEEE
International Conference on Computer Design, pages 499—
502, 1983.

[7] H. Murata S. Nakatake, K. Fujiyoushi and Y. Kajitani.
Module placement on BSG-structure and IC layout appli-
cations. Proceedings IEEFE International Conference on
Computer-Aided Design, pages 484-491, 1996.

[8] L. Stockmeyer. Optimal orientations of cells in slicing floor-
plan designs. Information and Control, 59:91-101, 1983.

[9] T. Tamanouchi, K. Tamakashi, and T. Kambe. Hybrid
floorplanning based on partial clustering and module re-
structuring. Proceedings IEEE International Conference
on Computer-Aided Design, pages 478-483, 1996.

[10] D.F. Wong and C.L. Liu. A new algorithm for floorplan
design. Proceedings of the 23rd ACM/IEEFE Design Au-
tomation Conference, pages 101-107, 1986.

[11] F.Y. Young and D.F. Wong. How good are slicing floor-
plans. Integration, the VLSI journal, 23:61-73, 1997. Also
appeared in ISPD97.

[12] F.Y. Young and D.F. Wong. Slicing floorplans with pre-
place modules. Proceedings IEEE International Conference
on Computer-Aided Design, 1998.

	Main Page
	ASPDAC99
	Front Matter
	Table of Contents
	Session Index
	Author Index

