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Abstract

Finding disjunctive decompositions is an important tech-
nique to realize compact logic networks. Simple dis-
junctive decomposition is a basic and useful concept,
that extracts a single-output subblock function whose
input variable set is disjunctive from the other part.
This paper presents a method for �nding simple disjunc-
tive decompositions by generating irredundant sum-of-
products forms and applying factorization. We prove
that all simple disjunctive decompositions can be ex-
tracted in our method, namely, all possible decomposi-
tions are included in the factored logic networks. Ex-
perimental results show that our method can e�ciently
extract all the simple disjunctive decompositions of the
large-scale functions. Our result clari�es the relation-
ship between the functional decomposition method and
the two-level logic factorization method.

1 Introduction
Functional decomposition is a fundamental theory of
logic circuit design and has been studied for long time.
Simple disjunctive decomposition is a basic and useful
concept in this theory. This decomposition extracts a
single-output subblock function whose input variable set
is disjunctive from the other part. It is a special case of
decomposition and not always possible for all Boolean
functions. If we �nd a such decomposition for a given
function, it must be a good choice for optimal design
and we may proceed to the local optimization of each
subblock. Thus, it is a good way to check simple dis-
junctive decompositions before applying other heuristic
optimization methods. In addition, a simple disjunc-
tive decomposition gives the minimum interconnection
between the two subblocks, so it is also important for
technology mapping and partitioning problems.

There are many studies on the method of �nding
simple disjunctive decompositions. At �rst, a classical
method with a decomposition chart is presented[1, 10].
In last �ve years, more e�cient way using a BDD-based
implicit decomposition chart is discussed[6, 11, 12]. Re-
cently, a further powerful algorithm[5] based on BDD

traversal without a decomposition chart is proposed.
Currently, functional decomposition technique is at-
tracting a lot of interests from LSI CAD researchers
in connection with FPGA architecture. However, there
have not been any research of this topic with relation
to the two-level logic minimization and factorization
method, which is another popular design method widely
used in commercial tools. In this paper, we propose a
new functional decomposition algorithm that relates the
two di�erent logic design methods. Our result gives a
theoretical backbone to the previous works on the func-
tional decomposition technique.

In our decomposition algorithm, we �rst generate an
irredundant sum-of-products form for given function,
and then apply factorization. As a result of this synthe-
sis process, we obtain a multi-level logic network that
includes all simple disjunctive decompositions. We can
easily �nd out all decompositions by traversing the logic
network.

One of the key technique in our method is using
Minato-Morreale algorithm[7] for generating irredun-
dant sum-of-products forms. We show that this algo-
rithm is not only fast but also having an important func-
tional property, which is essential to perform disjunctive
decomposition.

Our discussion and experimental results show that the
two-level logic minimization and factorization method is
strong enough to perform simple disjunctive decomposi-
tions. If the given function is dominated by simple dis-
junctive decompositions, our method produces a nearly
optimal network and only local improvements remains
in it. It shows a guideline to the choice of logic opti-
mization strategies.

This paper is organized as follows. In Section 2, we
describe the basic concepts. In Section 3 we show out-
line of our decomposition method and describe detailed
algorithms. Experimental results are shown in Section
4, then we discuss the results. Section 5 concludes this
paper.

2 De�nitions and Basic Concepts

A sum-of-products form (SOP for short) is irredundant1

if neither a literal nor a cube can be removed without
changing the function. For example, xyz + xy is not ir-
redundant, whereas xz+xy is irredundant. Irredundant
SOPs are very compact in general, but not always min-
imum. They do not provide unique forms of Boolean
functions.

If the function f can be represented as f (X;Y ) =
g(h(X); Y ), then f can be realized by the network shown
in Fig. 1. We call it simple disjunctive decomposition. It

1Some people call this \prime and irredundant."
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Figure 1: Simple disjunctive decomposition.

is called \simple" because h is a single-output function
and \disjunctive" because X and Y have no common
variables. We do not consider the trivial cases such that
X consists of only one variable or all the support of f .

A simple disjunctive decomposition does not always
exist in a given function, but if exists, it is considerably
e�ective for logic optimization.

A function may have more than one simple disjunctive
decompositions. They can be nesting. For example, the
function (a + b)(c+ d) + ef has four decompositions as
X = fa; bg, fc; dg, fe; fg, and fa; b; c; dg.

Multiple input logic operations (AND, OR, EXOR)
may produce a number of symmetric decompositions.
For example, (a+b+c) can be decomposed as (a+b)+c,
(b+c)+a and (a+c)+b. n-input logic operation involves
(2n�n�2) sub-decompositions. In this paper, we handle
such decompositions as one group, and extract the full-
merged form to represent such a group. (a+ b+ c) is the
full-merged form of the above example.

Except sub-decompositions of the symmetric groups,
two simple disjunctive decompositions never overlap
each other. For example, X = fa; b; cg and fb; c; dg
cannot coexist in the same function. Only nesting is
possible. Therefore, an n-input function can have at
most (n � 2) decompositions, excluding the symmetric
sub-decompositions.

3 Decomposition Algorithms
Figure 2 shows the outline of our decomposition method.
A function is given as a multi-level logic network. We
�rst construct a BDD for the function, and generate a
single irredundant SOP from the BDD. We then apply
factorization to make a multi-level SOP network. Our
method guarantees that the result of SOP network in-
cludes all simple disjunctive decompositions. We can
easily �nd out all decompositions by traversing the net-
work. Notice that the result of the networks are not
unique for a given function if the di�erent variable order-
ings are given, however, anyway the same set of simple
disjunctive decompositions are found. Namely, the dif-
ferences of the networks are only inside of the subblocks
of the simple disjunctive decompositions.

Here we show why our method can extract all simple
disjunctive decompositions.

3.1 Required Property in Generating Ir-

redundant SOPs

Consider the function f (X;Y ) which has a simple
disjunctive decomposition as f(X;Y ) = g(s; Y ) and
s = h(X), as shown in Fig. 1. X and Y consist of
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Figure 2: Outline of our method.

fx1; : : : ; xjXjg and fy1; : : : ; yjY jg, respectively. We call s
the substitution variable.

Now we consider the relation between simple disjunc-
tive decomposition and irredundant SOPs. Here isopf

denotes the irredundant SOP for the function f . The
isopg(s; Y ) for the function g(s; Y ) can be factored into
the three parts, as follows.

isopg(s; Y ) =

s � isop
g
P (Y ) + s � isop

g
N(Y ) + isop

g
D(Y ); (1)

where isop
g
P (Y ), isop

g
N(Y ), and isop

g
D(Y ) are also irre-

dundant SOPs, not including variable s.

We then replace s; s with isoph(X); isoph(X), respec-
tively.

isopg(isoph(X); Y ) =

isoph(X) � isop
g
P (Y ) + isop

h(X) � isop
g
N (Y )

+ isop
g
D(Y ); (2)

Theorem 3.1 An SOP obtained by expanding

isopg(isoph(X); Y ) is an irredundant SOP for f(X;Y ).
(Example)

isoph(X) = x1x2 + x1x3 + x2 x3;

isopg(s; Y ) = s y1 + s y2;

isopg(isoph(X); Y ) =
x1x2y1 + x1x3y1 + x2 x3y1 + x1x2y2
+ x1x3y2 + x2 x3y2 (! irredundant SOP) (3)

Theorem 3.1 indicates that an irredundant SOP
isopf(X;Y ) can be obtained from isopg(s; Y ), isoph(X),

and isoph(X). We then consider the reverse pro-

cess to extract isoph(X), isoph(X), and g(s; Y ) from

isopf(X;Y ).
For example, the literals y1 and y2 appear more than

once in the last SOP, so they can be factored as:

isopf (X;Y ) = (x1x2 + x1x3 + x2 x3) y1



+ (x1x2 + x1x3 + x2x3) y2:

Here, the expression (x1x2 + x1x3 + x2 x3) reveals as a
common cofactor of y1 and y2, and �nally we can obtain
(x1x2 + x1x3 + x2 x3)(y1 + y2). In this way, we can
extract the decomposition function.

However, this is not always possible because the irre-
dundant SOPs are not unique for a given function. For
example, the same function can be represented as:

isopf (X;Y ) = x1x2y1 + x1x3y1 + x2 x3y1
+ x1x2y2 + x2x3y2 + x1 x2y2 + x2 x3y2;

and this is also an irredundant form. In this case, we can-
not identify the decomposition function h(X) because
the cofactors of y1 and y2 are not identical.

From this observation, we can see that the following
condition is required for extracting simple disjunctive
decompositions.

Condition 3.1 (Uniformity of factors)
The decomposition function h(X) must be represented

uniquely as isoph(X) or isoph(X) in isopf(X;Y ), as
shown in Eqn. 2. More exactly, for any assignment

f0;1g to each yj 2 Y , isopf (X;Y ) must be reduced to

one of the four expressions: 0, 1, isoph(X), or isoph(X).

If we can generate an irredundant SOP isopf (X;Y ) that

satis�es this condition, isoph(X) and isoph(X) can be

factored uniquely from isopf(X;Y ).

3.2 Minato-Morreale Algorithm

Minimization or optimization of SOPs has extensively
been studied for long time. Recently, Minato[7] devel-
oped a quite fast algorithm for generating an irredun-
dant SOP directly from a given BDD. This algorithm is
based on recursive operator shown by Morreale[9], and
we call it Minato-Morreale algorithm. This algorithm is
based on the recursive expansion respect to each input
variable, and generates a unique SOP form under a �xed
variable ordering. The detailed algorithm is described in
Appendix.

The following theorem is the main contribution of this
paper.

Theorem 3.2 If a given function has a simple disjunc-
tive decomposition as f(X;Y ) = g(h(X); Y ), Minato-
Morreale algorithm satis�es Condition 3.1 for any one
�xed variable ordering.
(Proof) See Appendix.

(Example) Minato-Morreale algorithm generates the
following di�erent SOPs for the same function shown
in Section 4.1 with the di�erent variable orderings, and
both SOPs satisfy the Condition 3.1.

variable order (x1y1x2y2x3):
x1y1x3 + x1y1x3 + y1x2x3 + y1x2x3
+ x1y2x3 + x1y2x3 + x2y2x3 + x2y2x3

variable order (y2x2x1y1x3):
x2y1x3 + x2y1x3 + x1y1x3 + x1y1x3
+ y2x2x3 + y2x2 x3 + y2x1x3 + y2x1x3:

Theorem 3.2 shows that a simple disjunctive decom-
position can be extracted by factoring the SOP gener-
ated by Minato-Morreale algorithm. It is important that
the theorem stands for any �xed variable ordering, so

we do not have to determine the partition fX;Y g be-
forehand. If more than one simple disjunctive decom-
positions are involved in a given function, the theorem
stands for each decomposition, and all decompositions
can be extracted by one sequence of factorings.

Irredundant SOPs can also be obtained by other al-
gorithms, such as ESPRESSO[2] or simplify command
in SIS[3], however, those algorithms do not satisfy the
Condition 3.1. Thus they cannot be used for extracting
simple disjunctive decompositions.

3.3 Factorization of SOPs

Next we con�rm that all simple disjunctive decomposi-
tions can be extracted by one sequence of factorization.
Here we consider the following three cases.

1. The subblock corresponding to isoph directly con-
nects to the OR gate of the other part (Fig. 3(a)).

In this case, no factoring is needed since isoph is
just a subset of isopf , and possibly it can be a sub-
decomposition of the symmetric group.

2. The subblock corresponding to isoph connects to
only one AND gate of the other part (Fig. 3(b)).

In this case, if isoph consists of only one cube, no
factoring is needed similarly to Case 1.
If isoph has multiple cubes, the cofactor cube (i.e.

cube*) appears more than once in isopf , along with

each cube of isoph. Therefore, isoph can be ex-
tracted by factoring a common literal set included
in multiple cubes of isopf .

3. The subblock corresponding to isoph fan-outs to
more than one AND gates of the other part
(Fig. 3(c)).

In this case, if isoph consists of only one cube, it
can be identi�ed as a common literal set included
in multiple cubes of isopf .
If isoph has multiple cubes, the each cofactor cube
(i.e. cube1*, cube2*, : : :) appears more than once in

isopf , along with each cube of isoph. Since isoph is
represented uniquely in the SOP, it can be merged
into one block in the factorization process.

We discussed here isoph only, but isoph can also be ex-
tracted similarly.

From this consideration, we can see that isoph and

isoph can eventually be extracted by repeating factoriza-
tion of a common literal set. The important point here
is that we do not need a information of partition fX;Y g
in factorization process. This implies that, if more than
one simple disjunctive decompositions are involved in a
given function, all of them are factored simultaneously
in one sequence of factorizations. Notice that we need to
traverse the SOP network to know where and how many
simple disjunctive decompositions have been captured.

In the factorization process, ZBDD-based implicit
SOP representation is also useful to perform factoriza-
tion. Using a fast division algorithm[8], the computation
time is almost linear with the size of ZBDDs, and it does
not depend on the number of cubes or literals in SOPs.
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3.4 Uni�cation of complement subfunc-

tions

Now we have isoph(X) and isoph(X) extracted by fac-
torization, as shown in Fig. 4(a). Obviously they share
no common cubes each other. If we use a pure algebraic
factorization, v and v are regarded as a di�erent literals,

and thus isoph(X) and isoph(X) are factored separately.
This result is not a \simple" decomposition yet. In order
to combine them into one, we use the complement sub-
functions in the factorization process, as Fig. 4(b). For

example, f = ab+ac+ab c can be factored using a com-

plement subfunctions as f = as+as; s = b+c; (s = b c).
This is a really \simple" decomposition.

When the subfunction includes substitution variables,
we should be careful to make a complement subfunction.
Here we show a typical example.

f = as3 + a bs2 + a s1;

s1 = c+ d; s2 = c+ d; s3 = bs1 + s2;

If we make just a complement of s3, then s3 = bs2+s1s2
cannot be used for factorization any more. However,

s3 can also be represented as bs2 + s1, and then we
�nd further factoring as f = as3 + a s3, which corre-
sponds to a simple disjunctive decomposition of f . The
problem is that Minato-Morreale algorithm guarantees
unique forms of subfunctions if they represented with
primary inputs. This property is broken when substi-
tute variables are included.

To solve this problem, we re-construct a BDD of the
complement subfunction with primary input variables
only, and then generate irredundant SOPs by Minato-
Morreale algorithm. After that we try factoring the
SOP with all existing subfunctions in a �xed order. We
maintain a list of all subfunctions and their complement
which are extracted in the factorization process. In this
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output function.

way, we can keep the uniqueness of complement subfunc-
tions.

Uni�cation of complement subfunctions enables us
to extract the decompositions with EXOR gates. If a
function is decomposable with an EXOR gate, the sub-

expressions such as (h1h2+h1h2) or (h1h2+h1 h2) must
be found in the factored SOP network. We detect those
sub-expressions by pattern matching, and replace them
with two-input EXOR gates. If the function involves
multi-input EXOR functions, they must be factored as
a cascade of two-input gates. For example, the three-bit
parity function f = xyz + xy z + xyz + x yz can be
factored as f = xs + x s; s = yz + y z. We replace
them as f = x � s; s = y � z, and merge them into
f = x � y � z.

3.5 Extension to Multi-Output Func-

tions

Our decomposition method can be extended to multi-
output functions. We de�ne simple disjunctive decom-
position of multi-output function as shown in Fig. 5.
If such a decomposition exists, each output function
fk(X;Y ) must have a same decomposition with h(X),
unless fk is irrelevant to X. Thus, we perform Minato-
Morreale algorithm for each fk with a same variable or-
dering, and then apply factorization all together. A di-
visor extracted from fk is used not only for fk but also
for all other outputs. In this way, all existing common
divisors are factored, and all simple disjunctive decom-
positions are exploited.

One di�erent point is that the fan-out free gates in
single output decomposition may have a new fan-out be-
tween the di�erent output functions, and then need ad-



Table 1: Experimental results.
circuit SDD-opt Sawada

name in out lit. lit. SDD time
y

time
z

(ISOP)(�nal) (sec) (sec)
apex1(all) 45 45 3646 2434 1 59.0 -
apex1(po23) 39 1 550 293 2 1.8 >1000
apex2(all) 39 3 3439 272 5 5.9 -
apex2(po1) 36 1 1496 114 6 0.8 >1000
apex3(all) 54 50 3898 2212 0 44.3 -
apex3(po8) 45 1 506 334 3 2.1 >1000
apex6(all) 135 99 3928 1031 1 13.1 -
apex6(po3) 24 1 187 55 4 0.4 426.44
apex7(all) 49 37 1296 265 0 1.7 -
apex7(po4) 24 1 219 48 5 0.2 1.31
c432(all) 36 7 778064 1513 0 415.4 -
c432(po1) 18 1 18 18 10 0.0 -
c880(po24) 45 1 789137 � � � >1000
dalu(po2) 47 1 1930 136 5 0.8 34.26
frg2(all) 143 139 25369 1030 1 19.2 -
frg2(po135) 25 1 433 47 10 0.9 0.80
seq(all) 41 35 12682 2498 1 67.8 -
seq(po6) 38 1 1400 279 4 2.2 >1000
too large(po1) 36 1 1496 115 6 1.0 >1000
vda(po15) 17 1 183 103 0 0.5 20.26
y: SUN Ultra 30, z: SUN Ultra 1, cited from [12].
�: Memory out. (> 4M BDD nodes)

ditional factorization. For example, each single output
function f1 = x1x2x3 + y1 and f2 = x1x2x3 + y2 do not
need factorization, but if they are regarded as a multi-
output function, the common literal set x1x2 should be
factored. We added the procedure to check the common
literal sets between multi-output functions.

4 Experimental Results
Based on the above method, we implemented a multi-
level logic optimizer \SDD-opt," which extracts all sim-
ple disjunctive decompositions. BDD and ZBDD-based
symbolic manipulation techniques[8] support fast execu-
tion for large-scale functions.

Table 1 shows experimental results for the circuits
chosen from MCNC'91 benchmark. In this table, the col-
umn \lit.(ISOP)" shows the number of literals included
in the irredundant SOP, generated by Minato-Morreale
algorithm. \lit.(�nal)" is the total number of literals in
the factored SOP network. The column \SDD" shows
the number of simple disjunctive decompositions which
are found in the �nal network. If the circuit has multiple
primary outputs, we count the common decompositions
for the multiple-output function. We compared our re-
sults with the restricted exhaustive search method by
Sawada et al.[12], which also reported the number of all

simple disjunctive decompositions2.
The experimental results show that SDD-opt can ex-

tract and enumerate all simple disjunctive decomposi-
tions of the large-scale functions. We can see that our
approach is practicable and e�cient for extracting sim-
ple disjunctive decompositions.

Figure 6 shows the decomposition results for some se-
lected examples. These lists indicate the partitions of

2LODE[5] is the latest previous work, but here we could not

compare directly because the experiment in [5] enumerates the

number of decomposable primary outputs, not the number of all

decompositions.

apex6(po3): x74 [x28 x29 x38 x73 x75 x76 x80 x81

x92 x93 x84 x110 (x90 x91 [x33 x34 x35 x36 x87

x88 x89]) [x85 x86]]

apex7(po4): x28 [x16 [x31 x32 x42 [x2 x3 x4 x5

x6 x7 x10 x11 x12] (x39 x40 x41) (x43 x44 x45

x46 x47 x48 x49)]]

frg2(po135): (x41 x43 x58 [x139 (x140 x143 [x59

x60 x61 x62 x63 [x44 x49] [x45 x50] [x46 x51]

[x47 x52] [x48 x53]] (x134 x135 x136 x137))])

seq(po6): (x8 x33 x34 [x1 x2 x3 x4 x5 x6 x10

x12 x13 x14 x15 x16 x17 x18 x19 x20 x22 x23 x24

x25 x29 x30 x31 x32 x35 x36 x37 x38 x39 x40 x41

[x11 x28] [x26 x27]])

too_large(po1): x28 [x1 x2 x3 x8 x9 x10 x11 x13

x14 x15 x17 x20 x21 x22 x23 x24 x25 x26 x29 x30

x31 x32 x33 x34 x35 x36 [[x4 x18] [x12 x19]] (x5

x6 x7) [x16 x27]]

Figure 6: Decomposition results.

Table 2: Comparisons with other optimizers.
circuit original �nal literals

name in out literals
y
LODE

y
SIS

y
SDDopt

9symml 9 1 277 76 223 104
CM150 21 1 77 47 51 62
PARITY 16 1 60 60 60 60
alu2 10 6 453 354 357 557
cmb 16 4 62 36 51 33
f51m 8 8 169 98 91 185
lal 26 19 221 134 105 112
mux 21 1 92 47 51 62
term1 34 10 624 165 197 147
ttt2 24 21 341 258 216 223
s1494 14 25 1393 793 661 816
s298 17 20 244 146 114 167
s526 24 27 445 257 191 238
s832 23 24 769 431 352 400

y: Cited from [5].

primary inputs corresponding to the simple disjunctive
decompositions. The bracket [ ] denotes an ordinary
decomposition, and the parenthesis ( ) denotes a sym-
metric group of decompositions. For example, (a b c)

implies [[a b] c], [[a c] b], and [[b c] a]. SDD-
opt displays such a structural information after factor-
ization. It is a useful information for analyzing function-
ality of the circuit, and can be utilized for technology
mapping and circuit partitioning.

Not only �nding simple disjunctive decompositions,
SDD-opt gives a compact multi-level logic network for a
given function. We compared the number of literals in
�nal SOP networks with other optimizers LODE[5] and
SIS[3]. LODE also exploits simple disjunctive decom-
positions based on BDD manipulation. Table 2 shows
that our results are sometimes better and sometimes
worse. SDD-opt guarantees to extract all simple disjunc-
tive decompositions, but if the function is dominated by
other non-simple or non-disjunctive decompositions, fur-
ther optimization might be possible. Anyway, our results
show that SOP-based factorization is strong enough to
make a \�rst version" of compact network before apply-
ing more intensive optimization.

Lastly, we show an example where our method is very
e�ective. As shown in Fig. 7, an n-bit adder has a simple
disjunctive decomposition on each digit. SDD-opt can
extract those decomposition points independently of the
initial network structure, and thus a nearly minimum
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Figure 7: Decomposition of an n-bit adder.

design can be obtained.

5 Conclusion
In this paper, we presented a method to extract all sim-
ple disjunctive decompositions by generating irredun-
dant SOPs and applying factorization. The experimen-
tal results show that we can quickly generate the multi-
level SOP networks including all possible simple disjunc-
tive decompositions.

Minato-Morreale algorithm has an important feature
that the simple disjunctive decompositions are uniquely
factored in the result of SOPs. Other SOP minimization
algorithms, such as ESPRESSO[2], does not guarantee
this uniformity.

Through out the discussion, we clari�ed the relation-
ship between SOP-based factorization and functional de-
composition. We can conclude that two-level logic mini-
mization and factorization can be strong enough to per-
form simple disjunctive decomposition. In other words,
the result of factorization will not be remarkably im-
proved by any other strong optimization methods when
the function is dominated by simple disjunctive decom-
positions. Thus, our result shows a guideline to the
choice of logic optimization strategies.

As future work, it will be important to explore the
techniques of non-simple or non-disjunctive decomposi-
tion.
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Appendix
(Minato-Morreale Algorithm)

GetISOP(f(X)): /* f(X) : f0; 1gn ! f0; 1; dg*/

if (f(X) always returns 0 or d) isop 0

else if (f(X) always returns 1 or d) isop 1

else f

v  one of variable in X

/* choose top variable in BDD. */

f1(X
0
) f(Xjv=1) /* X0

= X � fvg: */

f0(X
0
) f(Xjv=0) /* f1; f0 are cofactors of f . */

fP (X
0) 

�
d if (f1(X

0
) = 1) ^ (f0(X

0
) 6= 0)

f1(X
0) otherwise

/* fP must be covered by cubes with v. */

isopP  GetISOP(fP (X
0))

/* generates isopP recursively. */

fN (X
0) 

�
d if (f0(X

0) = 1) ^ (f1(X
0) 6= 0)

f0(X
0) otherwise

/* fN must be covered by cubes with v. */

isopN  GetISOP(fN (X
0))

/* generates isopN recursively. */

f 0

1(X
0) 

�
d if already covered by isopP
f1(X

0) otherwise

f 0

0(X
0) 

�
d if already covered by isopN

f0(X
0) otherwise

fD(X
0) 

(
0 if (f 0

1(X
0) = 0) _ (f 0

0(X
0) = 0)

d if (f 0

1(X
0) = d) ^ (f 0

0(X
0) = d)

1 otherwise

/* fD must be covered by cubes without v; v. */

isopD  GetISOP(fD(X
0))

/* generates isopD recursively. */

isop v � isopP + v � isopN + isopD
g

return isop

(Proof of Theorem 3.2) The function f can be rep-
resented with a decomposition chart, as shown in Fig. 8.
Since f is simple disjunctive decomposable, each column

c1; c2; : : : ; cn(n = 2jY j) of this chart must fall into one of

the four functions: h(X); h(X); 0, and 1.
We assume the variable ordering x1; x2; : : : ; xjXj

for X, and y1; y2; : : : ; yjY j for Y . In general,
the two orderings are interleaved, for example,
(x1; x2; y1; x3; y2; y3; x4; : : :). Thus we should consider
all cases related to the order of the variables.
1. In case of the variable ordering as

(x1; : : : ; xjX j; y1; : : : ; yjY j):



X
Y

1c

11..100..0

00..0

11..1

c nc2

Figure 8: Decomposition chart of f .
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Y
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11..100..0

00..0
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c nc201..1

10..0

f 0

f1

Y

1c

11..100..0

c nc2
1..1

0..0
X’

Y

1c

11..100..0

c nc2
1..1

0..0
X’

Y

1c

11..100..0

c nc2
1..1

0..0
X’

f P

f N

f D

Figure 9: Expansion of f by xi.

When we expand f by a variable in X , each col-
umn ck of the decomposition chart is expanded in-
dependently, and three sub-functions are generated
as shown in Fig. 9. After expanding by all the vari-
ables in X, each column yields one of the SOPs

isoph(X), isoph(X), 0, or 1. We then expand it by
the variables in Y . Some of the variables in Y are
appended to the SOPs and �nally they combined
into one SOP. Thus, the decomposition function
h(X) and its complement are represented uniquely
as in Equation 2.

2. Next, we consider an interleaved ordering as
(x1; : : : ; xi; yj; xi+1; : : : ; xjXj; y1; : : : ; yj�1;

yj+1; : : : ; yjY j) :

When we expand f by a variables in fx1; : : : ; xig,
each column ck of the decomposition chart is ex-
panded independently, and three sub-functions are
generated as shown in Fig. 9. After expanding by
all the variables in fx1; : : : ; xig each column of sub-

function contains one of functions h�(X), h�(X), 0

or 1, where h�(X) and h�(X) are the sub-function of

h(X), h(X), obtained by the previous expansions.

Next, we expand it by yj . As shown in the descrip-
tion of Minato-Morreale algorithm, we divide the
function f into two cofactors f1 and f0, by assign-
ing yj = 1; 0. In this process, the decomposition
chart is divided into two parts, as shown in Fig. 10.
For computing sub-function fP ; fN , and fD, each
corresponding columns in f1 and f0 are processed
independently. We consider all possible combina-
tions of f0 and f1 from the four functions h�(X),

h�(X), 0 and 1. In Fig. 11, we list all the combina-
tions and their results (except symmetric cases).

X
Y

1c

00..0

00..0

11..1

c nc2 cn/2 cn/2+1

01..1 11..110..0

f 0 f1

Figure 10: Expansion of f by yj.

f1 f0 fP fN fD
h�

0 h�
0 0

h�
1 0 1 h�

h� h�
0 0 h�

h� h� h� h� 0
0 0 0 0 0
1 0 1 0 0
1 1 0 0 1

Figure 11: Combination of f1; f0 and fP ; fN ; fD.

For all possible combinations of f1 and f0, no new
sub-functions are produced in fP ; fN , and fD. Af-
ter the expansion by yj, each column containing

h�(X) or h�(X) are followed by the expansions
by fxi+i; : : : ; xjX jg. Thus, interleaving yj in X

does not disturb the generation of isoph(X) and

isoph(X). The uniformity of decomposition func-
tion h(X) and its complement are kept also for this
variable ordering.

By considering di�erent interleaving of variables, we
can produce any variable ordering. Thus, Minato-
Morreale algorithm guarantees the uniformity of decom-
position function h(X) and its complement, for any �xed
variable ordering. 2
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