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Abstract Mukherjee et al. [15]. Very recently, Zhao et al. presented an ap-

_proach that combines iterated static learning with recursive learn-
ing constrained to recursion level one [16]. It is based on set alge-
bra and is similar to single pass deductive fault simulation.

This paper presents a flexible and efficient approach to evaluat
ing implications as well as deriving indirect implications in logic
circuits. Evaluation and derivation of implications are essential in
ATPG, equivalence checking, and netlist optimization. Contrary Contrary to the above methods, which work on the structural
to other methods, our approach is based on a graph model of adescription of a circuit, other approaches use a Boolean satisfi-
circuit’s clause description called implication graph. It combines ability (SAT) based model. The SAT-model allows an elegant
both the flexibility of SAT-based techniques and high efficiency oproblem formulation which can easily be adapted to various log-
structure based methods. As the proposed algorithms operate onlics. This abstraction, however, often impedes development of
on the implication graph, they are independent of the chosen logicefficient algorithms as structural information is lost. Larrabee
Evaluation of implications and computation of indirect implica- included a clause based formulation of Schulz's algorithm into
tions are performed by simple and efficient graph algorithms. Ex-NEMEsI17]. Her approach has been improved by the iterated
perimental results for various applications relying on implication method of TEGus [18]. The transitive closure algorithms sug-

demonstrate the effectiveness of our approach. gested by Chakradhar et al. rely on a relational model of binary
. clauses [19]. Silva et al. proposed another form of dynamic learn-
1 Introduction ing in GRASP[20] where indirect implications are determined by

Recently, substantial progress has been achieved in the fields & conflict analysis during the backtracking phase of a SAT-solver.

Boolean equivalence checking and optimization of netlists. Tech- In many areas of logic synthesis and formal verification Bi-
niques for deriving indirect implications, which were originally de- nary Decision Diagrams (BDD) have become the most widely used
veloped for ATPG tools, play a key role in this development. data structure as they provide many advantageous properties, e.g.
Indirect implications have been successfully applied in algo- canonicity and high flexibility. Besides their exponential memory
rithms for optimizing netlists. For this task, either a set of per- complexity, when used for ATPG, equivalence checking, and op-
missible transformations is derived [1, 2, 3] or promising transfor- timization of large netlists, BDDs suffer from the drawback that
mations are applied and their permissibility is later verified by an implications cannot be derived efficiently on this data structure.
ATPG tool [4, 5, 6]. Furthermore, they are of great importance in For a given signal assignment it can only be decided if another sig-
ATPG-based approaches to Boolean equivalence checking of bothal assignment is implied or not. So, finding all possible implica-
combinational and sequential circuits [7, 8, 9, 10, 11] as they he|ptions from a given signal assignment is expensive because theoret-
identify equivalent internal signals in the circuits to be compared. ically all possible combinations of signal pairs have to be checked.
In the late 1980s, Schulz et al. incorporated computation of in- Therefore, BDD-based approaches such as functional learning [15]
direct implications into the ATPG tool &cRATEJ12]. Indirect restrict their search to potential learning areas, which are identified
implications are indispensable when dealing with redundant faultsPy hon BDD-based implication. Consequently, structural or hybrid
as they help to efficiently prune the search space of the branchaPproaches, i.e. BDDs combined with other methods, are predom-
and-bound search. In order to derive more indirect implications,inant in ATPG, equivalence checking and optimization of netlists.
the originally static technique of &RATES which the authors ~ Even though most of these approaches make heavy use of implica-
refer to as (static) learning, has been extended to dynamic learntions, the data structures that are used for deriving and evaluating
ing [13, 14]. implications are often suboptimal and inflexible. That is why we
Recursive learning [7], proposed by Kunz et al. in 1092, was theProPose a flexible data structure which is specifically optimized
first complete algorithm for determining indirect implications. As With respect to implication.
the problem of finding all indirect implications is NP-complete,  In this paper, we introduce a framework for implication based
only small depths of recursion are feasible. Recently, it hasalgorithms which inherits the advantages of structural as well as
been shown that recursive learning can be adequately modelle§AT-based approaches. Our approach combines both the flexibil-
by AND-OR reasoning graphs [3]. Another complete method for ity and elegance of a SAT-based algorithm and the efficiency of
deriving indirect implications based on BDDs was suggested bya structural method by working on a graph model of the clause

0-89791-993-9/97 $10.00 O 1997 IEEE



system, calledmplication graph Its memory complexity is only  eration of an implication graph for an arbitrary multi-valued logic,
linear in the number of modules in the circuit. Due to structural e.g. the 10-valued logik.q known from robust path delay ATPG,

information available in the graph, fundamental problems such ass discussed in [21].

justification, propagation and particularly implication are carried
out efficiently on the graph. The search for indirect implications
reduces to graph algorithms that can be executed very fast and A signal variablex € L3 requires two encoding bit andc for

are easily extended to exploit bit-parallelism. As the implication its internal representation. The complete scheme of encoding for
graph can automatically be generated for any arbitrary logic, allL3 is shown in Table 1. In order to easily detect inconsistencies,

2.1 Encoding

presented algorithms remain valid independent of the chosen logic. x€ L3 || encoding interpretation
This allows rapid prototyping of implication based tools for new &
multi-valued logics. 0 0 1 signalxis 0

The remainder of this paper is organized as follows. In Sec. 2, 1 1 0 signalxis 1
we show how to derive the implication graph. Next, we discuss X 0 0 signalx is unknown
how implications are evaluated and how indirect implications can 1| 1 | conflictat signak
be computed in Sec. 3 and 4, respectively. In order to demon- Table 1: 3-valued logic and its encoding

strate the high efficiency of our approach, experimental results for o ) ) i .
various applications using the proposed implication engine are preconflicting signal assignments are denotedpy- 1A ¢, = 1. This
sented in Sec. 5. Sec. 6 concludes the paper. property is expressed in the following definition:

: : DEFINITION 1 An assignment is called non-conflicting @ A
2 Impllcatlon graph Cx < 0 holds for all signal variables

As performing implications is one of the most prominent and Based hi di h h tabl £ all 4 modul
time consuming tasks in ATPG, equivalence checking, and opti- ased on this encoding, the truth tables of all supported module

mization of netlists, it is of utmost importance to use a data struc-YPES aré converted into encoded tables. For example, the truth

ture that is best suited. Unlike other graphical representations OFabIe of a _2-|nput AND-gated= AND(a, b)) four_1d in Table 2 is
clause systems, our data structure represents all information Conqonverted into the encoded table of Table 2. This encoded table can
tained in both the structural netlist and the clause database. The imitruth tablg | encoded table | | optimized table |
plication graphs used in 8MESIF17] and TRAN[19] model only b Cc C&| [Ca Ci[Ch CillCc C¢
binary clauses, clauses of a higher order are solely included in the - 1- -1
clause database. 1- 1
Since our approach is generic in nature, any combinational cir- -1
cuit can automatically be compiled into its implication graph rep-
resentation. Only information about a logic and its encoding as
well as the truth table descriptions of supported module types have
to be provided. The basic steps of compilation are given in Fig. 1.
First, all supported module types are individually compiled into

optimization circuit 1
module @

IZ:> IZ:> Table 2: AND-gate: truth table — encoded table — optimized

table
M rodule database be interpreted as specifying the on-set as well as the off-set of two

Boolean functionsc andcg. Conflicting assignments belong to the
don't-care-set, as they are explicitly checked for by the implication
engine. Exploiting these don't-cares, functiomsandc; in the
encoded table are optimized bgBERESSO
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Figure 1: Deriving the implication graph

22 CI ription
encoded truth tables. Then, these tables are optimized by a two- Clause descriptio

level logic optimizer, e.g. EPRESSO This step is explained in The characteristic function describing the AND-gate with re-
Sec. 2.1. Next, a set of clauses is extracted from the optimized taSPect to the given encoding can easily be given iCitajunctive
ble, which is shown in Sec. 2.2. As shown in Sec. 2.3, the set ofNormal Form (CNF)by analyzing the individual rows of the op-
clauses is transformed into an implication subgraph that is stored irfimized table of Table 2. Every row in this table corresponds to a
the module database. Then, for every module in the circuit the ap€lause contained in th€NF. Here, theCNF comprises the three
propriate generic subgraph is taken from the module database ar@lauses~Ca V s, ¢,V C¢, and—ca V —Cp V Cc. That is, all valid
personalized with the input and output signals of the given module.value assignments to the inputs and outputs of the AND-gate are
Finally, all identical nodes are merged into a single node resultingimplicitly given by the non-conflicting satisfying assignments to
in the complete implication graph. the characteristic equation:

The following sections only consider the 3-valued lobig =
{0,1,X} in order to present the basic ideas of our approach. Gen-  CNF & (3 vV Ce) A (~Cy V Ce) A (CaV GV Ce) <1 (1)



2.3 Building the implication graph

By exploiting the following equivalencies the clause description
of Eq. (1) is converted into the corresponding implication graph.

XVy & (X=y)A (Y =X @
XVyVz &  (=XATY = Z)A(XA-Z—=Y)A
(yA-Z—X) ®)

Figure 3: Implication graph for 2-input AND-gate
It is sufficient to provide equivalencies for binary and ternary
clauses only, as any claus_e system of a higher order can be de(;orré-_4 Advantages
posed into a system of binary and ternary clauses [21]. Having
transformed all clauses into binary and ternary clauses, the sub- USing the proposed implication graph as a core data structure in
graphs shown in Fig. 2 are used for representation of these clause§AD algorithms has many advantages.
These graphs contain two types of nodes. While the first type rep_(1) Important tasks such as implication and justification can be

] ] carried out on the implication graph in the same manner for any
xXVy: XVyvz: % arbitrary logic. The peculiarities of the chosen logic are included

C C E@Y‘ in the graph. Implication and derivation of indirect implications

reduce to efficient graph algorithms as will be shown in Sec. 3.3

VORION and 4.4.
@ @ (2) Most SAT-based algorithms use a static order for variable as-
signments during their search for a satisfying assignment [17, 19].

Furthermore, these algorithms assign values to internal signals dur-
Figure 2: Implication subgraph for a binary and a ternary clause ing justification. Since BDEM, it has been well known that as-
signing values only to primary input signals helps to reduce the
garch space. Obviously, primary inputs are a special property of
the given instance of SAT which is not exploited by algorithms for
solving arbitrary SAT problems. The algorithm oEGustries to

mimic PODEM by ordering the clauses in a special manner [18].
Our approach does not need such techniques, as structural infor-
mation is provided by edge tags.

(3) Algorithms working on the implication graph can easily ex-
ploit bit-parallelism as the status of every node can be represented
by one bit only. For example, on a 64-bit machine 64 value assign-
ments can be processed in parallel, making bit-parallel implication
very efficient.

S i 7 (4) Sequential circuits are often modelled as an iterative logic ar-
So far, the implication graph only captures the logic function- 5y (1| A). In this model the time domain is unfolded into multi-
ality of a circuit. Since structural information is indispensable for_p|e copies of the combinational logic block. These logic blocks

some tasks, such as justification and propagation, we provide thigan pe compiled into the corresponding implication graphs. Using
information within the implication graph by marking its edges with bit-parallel techniques, a 64-bit machine allows to keep 64 time-

three different tagd, b, ando. Edges that denote an implication  fames without increasing the size of the implication graph.

from an input to an output signal of a module are marked ith ) .

(forward edge). Relations from output to input signals are tagged3 HOw to perform implications

with b (backward edge). All other edges, e.g. input to input rela- 3 1 Strycture based

tions and indirect implications, are given tagother edgeh. The L . .
tags for the 2-input AND-gate are found in Fig. 3. By means of . Structure based |mp||cat|(_)n 'S a spec!al form_ of event-driven
these tags, a directed acyclic graph (DAG) can be extracted frongr.nulatlc.m. Coqtrary tq oerary simulation, Wh'Ch sFarts ‘Tﬂ the
the implication graph. If all edges but the forward edges are re-Primary inputs, implication is started at an arbitrary signal in the

moved, we obtain a DAG that forms the base of an efficient algo-c'rcu'tiI Therr]efort_a, It h"’_‘s to procehedhtov_varoll_s the prlmaryfoutputs
rithm for backtracing and justification. as well as the primary inputs such that implications are often cat-

E imole circuit. the three diff t circuit d inti . egorized into forward and backward implications. Obviously, this
¢ dor adsmt:p € circutt, the ¢ ;e_e EI e;e? (F:)llrcw e;crlp |otr;]st|n- technique requires many table lookups for evaluating the module
roduced above are presented In £Xx. 2.1. IFlease observe tha mof%ctions. This becomes patrticularly costly for multi-valued log-
clause based approaches work cBN¥F in L,. Our approach op-

. . . . ics, e.g. the ones used in path delay ATPG.
erates on £€NF of variables encoded with respect to a given logic, s, &9 susedinp Y
herels. 3.2 Clause based

Clause based implication relies &oolean Constraint Propa-
1Tags denoting other edges have been omitted in later examples. gation (BCP) BCP corresponds to an iterative application of the

resents the encoded signal values, the second one symbolizes t
conjunction operation. The latter type is depicted\yr a shaded
triangle. Every ternary clause has three associateddes that
uniquely represent the ternary clause in the implication graph.
Coming back to the 2-input AND-gate, iGNF-description is
transformed into the implication graph shown in Fig. 3. Every bit
of the encoding for a sign& is represented by a corresponding
node in the implication graph, e.g. nodgc}) in Fig. 3 gives bit
ca(cy) of signala. As we require non-conflicting assignments, lit-
erals—cy (—cy) can be replaced by (cx) such that only nodes cor-
responding to non-negated encoding bits are contained in Fig. 3.




Example 2.1Circuit descriptions: structural — clauses — impli- e if nodes; represents an encoding bit aatlleast onepre-
cation graph decessor is marked .

This rule is applied until no further propagation of marks is possi-
ble.

All nodes that have been marked represent signal values that can
be implied from the initial assignment given By. Conflicting sig-

e Structural:

e CNFfor Lg: nal assignments are easily detected during implication, since they
CNF; o cause both nodex andc;, to be marked.
(G4 V) A (G V ) A (nGg VCeVEr) A | f = AND(d,e) _Letus use the circuit of Ex. 2.1 for the sake of explanation. As-
(~CaV/ Ca) A (~Cp V Ca) A (~C3V —GEVC;) A | d=OR@b) signing qulcql vglue 0 to signa corre;ponds 'to marlgng node
(=Ch V Ce) A (o V Ce) A (ﬁc*a\/ —ct \/c*d) A le— OR(b,c) Ce in the implication graph. After running the implication proce-
b cr e o1 ’ dure, the following nodes are marked;, cg andct. To finally
« Implication graph folLs: obtain the implied signal values with respect to the given logic, the
marked nodes are decoded according to the given encoding, i.e. we
@ c;‘ determineb=0,c=0, f =0.
4 Deriving indirect implications
b b Contrary to direct implications, detection of indirect implica-
f tions requires a special analysis of the logic function of a circuit as
b b ; ; they represent information on the circuit that is not obvious from
/ its description. Most methods for computation of indirect implica-

tions are subject to order dependency. That is, some indirect im-

/

1

N plications can only be found if certain other indirect implications

! have already been discovered. In order to avoid this problem, it has
@ @ @ @ been suggested to iterate their computation [18].

i 4.1 Structure based
,' b The SOcRrRATESsalgorithm [12] was the first to introduce com-
I putation of indirect implications using the following tautologies:
I
foaf b b
\ (a—b) < (-b—-a) 4)
f

\ "‘ v @asbA(as—b = -a ®)
sy

@ @

While Eq. (4) (aw of contrapositiohmay generate a candidate for
Ch @ an indirect implication, Eq. (5) identifies a fix value.
Indirect implications are primarily computed in a pre-processing
unit clause rule proposed by Davis et al. in 1960 [22]. In BCP, phe_tse. The idea is to temporaril_y set_ a g_iver_l signal to a Ceft‘"’“”
unary clauses are used to simplify other clauses until no furthelJOgIC ""’?'“e- Then, all possible direct |r_np||c_at|on_s from this sig-
nal assignment are computed. For all implied signal values, it is

simplification is possible or some clause becomes unsatisfied. Im- . e . S
plication is started by adding a unary clause, which represents th8hecked if the contrapositive cannot be deduced by direct implica-

initial signal assignment, to th@NF. All unary clauses computed gic;nst(ilre;]arl?ln?i Crzltinoinn)dirm tthilrsn Cl?set’i t:e coz:}ratplc))snrlverls a:tmc;
by BCP correspond to implications from the initial assignment as ectimplication. As ect Impiications cannot be represente

within the data structure used to describe the circuit, structural al-

they force the corresponding signals to a certain logic value. The . i A
most time consuming task in BCP is the search for clauses that Cagorlthms have to store them in an external data structure. This adds
dditional complexity to structure based algorithms.

be simplified by the unit clause rule. This search is not necessar)‘/”‘
when working on the implication graph since clauses that shareé4.2 Clause based

common variables are connected in the graph. Clause based computation [17, 18] is similar to the structural al-
o gorithm of Sec. 4.1. Each free literalcontained in theCNF is
3.3 Implication graph based temporarily set to 1. Then BCP is used to derive all possible direct

timplications, i.e. unary clauses. For all generated unary clauses
b, it is checked if the contrapositiveb — —a is an indirect im-
eglication. In this case, the corresponding clabse—a is added
to the clause database. Thereby, indirect implications enrich the
data structure used for representing the circuit functionality. Once
an indirect implication has been added to the clause database, it
RULE 1 Starting from an initial se& of marked nodes, all suc-  does no longer require any special attention. This is one impor-
cessor nodes; are marked tant advantage of clause based algorithms over structure based ap-
e if nodes; is an-node andill its predecessors are marked.  proaches [18].

Implication graph based implication is simple and efficient, as i
only requires a partial traversal of the implication graph. Implying
from a signal assignment means that first the corresponding nod
are marked in the implication graph. Then, the implication proce-
dure traverses the implication graph obeying the following rule:



4.3 AND-OR enumeration 4.4.1 Reconvergence analysis

A different approach, known as recursive learning, has been The basic idea_ of pletermini_ng i_ndirect impli_catic_ms'byasearch
taken by Kunz et al. [3, 7]. Indirect implications are deduced by anOf réconvergencies is shown in Fig. 5. While implicatimn- ¢,
AND-OR search [23] for all possible implications resulting from  direct
a signal assignment. This search is performed by recursively in- ¢, — ¢,
jecting and reversing signal assignments, which correspond to the
different possibilities for justifying a gate, followed by deriving all
direct implications. Signal values that are common to all justifica- B ,/'O\\
tions of a gate yield indirect implications. Only a simple structural : @*’
algorithm for executing implications is applied. ) \CD/(

Let us illustrate the principles of the AND-OR enumeration with
the circuit of Ex. 2.1 and the AND-OR tree found in Fig. 4. The

indirect

3 Cp — Ca ,,/O
@< . D~—Cp)
3 RS

Figure 5: Learning by contraposition on the implication graph

initial assignment f =0}

is deduced by direct implicatiom, — c; forms an indirect impli-
cation. TheA-node can only be passed if both of its predecessors
are marked, i.e. it forms a reconvergentode during implication.
777777777777777777777777777 If we start implication at node;;, however, we cannot pass the
node, as its other predecessglis not marked. Applying the law
of contraposition taza — ¢, we deduceg, — c; such thatcg is
implied fromcg.

This observation is expressed in the following lemma:

level 1
d=0 a=0 LEMMA 1 Letcy represent the initial assignment. A reconvergent
”””””””””””””””””””””””””””””””””””” structure(cy, ¢y) in the implication graph yields an indirect impli-
(c=0.e cationcy, — ¢ only if
e Cx is a fanout node in the implication graph.
level 2 e a nodecy is marked via a\-node and both predecessors
of the A-node have been marked by implying along disjoint
c=0 e=0c=1 e=1 d=0 a=0d=1 a=1 paths in the implication graph. (Proof: [21])
Figure 4: AND-OR enumeration Using Lemma 1 it can be shown that the search for reconver-

gencies in the implication graph detects all indirect implications,
root node of the AND-OR tree reflects the initial assignment, it which are found by clause and structural based approaches.

is of the AND-typé. In our example, a logical 0 is assigned to THEOREM 1 All indirect implications found by BCP on the (en-
signal . As no further signal values can be implied, OR-node coded) clause description can be identified by a search for the re-
f = 0is the only successor of the root node. The justifications for convergent structures defined in Lemma 1. (Proof: [21])

f =0ared; = {d =0} andJ, = {e=0}. In order to derive an
indirect implication, we have to search for implied signal values
that are common to both justifications. Helbe= 0 is implied for

both justifications. This is represented by a new OR-rtnde0 in o ¢4 and ce have been marked, the succeedingiode andc; are

level 0 of the AND_-OR_tree_. In_general, New OR-n_ode_s in level marked, too. The\-node has been reached via two disjoint paths
correspond to indirect implications. Further examination of gates.

in level 2, which have become unjustified because of seltiiog), in the graph (indicated _b_y the dzshed and .SOl'.d “n?’ re_spe_ctlvely)
: i L SR such that the contrapositivig — ¢, forms an indirect implication.
does not yield additional indirect implications.

This indirect implication is included into the graph in form of the
grey edge leading from nodg to nodec;,.

Applying our graph analysis offers the following advantages:

An implication graph based method for computing indirect im- (1) The search for reconvergence regions in the implication graph
plications inherits all advantages of clause based techniques bueduces the set of candidate signals that may yield an indirect im-
eliminates the costly search process required during BCP-baseglication. Clause based methods have to temporarily assign a value
implication. Moreover, our approach integrates computation of in-to all literals contained in thENF.
direct implications based on the law of contraposition and AND- (2) Reconvergence analysis is carried out very fast by an adapted
OR enumeration into the same framework. version of the algorithm presented in [24].

(3) Our method does not require a learning criterion such as the

2|y general, an AND-node (marked by an arc) represents a signal asapproach of [12].
signment dL_Je to justification of an _unju_stified gate, wherc_eas_e_m QR-node4.4.2 Extended reconvergence analysis
denotes a signal value that can be implied from a chosen justification. Jus- .
tified gates correspond to OR-leaves and unjustified gates to internal OR- Contrary to the reconvergence analysis of Sec. 4.4.1, the ex-
nodes in the AND-OR graph [3]. tended reconvergence analysis detects conditional reconvergencies

We explain the reconvergence analysis with the implication
graph of Ex. 2.1. Let’s assume that fanout nagleis marked.
Then, the implication procedure of Sec. 3.3 is invoked. As both

4.4 Implication graph based




at signal nodes. As it corresponds to an AND-OR search in thetively. So as to distinguish between the consequences of the two
implication graph, we need the following definitions: justifications, each one is assigned a different color. Thus, node
cs = 1 is given a green marker (represented by dashed lines in
Fig. 7) and all signals that can be implied fragh= 1 are marked
green. The same is done fof = 1 using a red marker (dotted
o ) o ~lines in Fig. 7). Nodes that are assigned both colors, i.e. nodes
Unjustified ternary clauses are found in the implication graph with- \yhere the markers reconverge, can be implied independent of the
out effort. They are represented bynodes that have exactly one - chosen justification. These nodes can therefore be elevated to the
of their two predecessors marked. previous level in the AND-OR tree. In our example, only node
DEFINITION 3 Letcy,Cy,...,Cm be some unspecified literals ina ¢ is marked by both colors and we derive the indirect implication
clause&C =c1 Vo V...V that is unjustified, and 18t Vs, . .. ,\Vm C — Cp. Further analysis of unjustified clausgg andC, in level
denote the assigned values. Then, the set of non-conflicting assigr?- of the AND-OR tree does not yield additional indirect implica-
ments] = {cy =V1,C, = Vs,...,Cm = Vim} is called a justification  tions.

of clauseC, if the value assignments lhhmakeC evaluate to 1. This example indicates that the trace of the extended reconver-
gence analysis is identical to the AND-OR tree generated by AND-
OR enumeration if marked-nodes are converted to AND-nodes
and marked signal nodes to OR-nodes. Obviously the extended
reconvergence analysis is capable of determining all indirect im-

DEFINITION 2 AclauseC=c;V V...V cyis called unjustified
iff all literals cy,cy,...,cnh do not evaluate to 1 and at least one
complement-c; of a literalc; is 1.

In a clause based framework a complete set of justificatipfier
an unjustified claus€ is easily given byJ; = {{c1 = 1},{c; =
1},...,{cm=1}}. For our approach, sét is even simpler, as only
ternary clauses can be unjustifiedlherefore J. always consists o . T
of exactly two justifications. plications given enough colors, i.e. it is complete.

We will now explain how these two justifications can be derived An efficient_ p_rocgdure_ implementing this extended reconver-
in the implication graph with Fig. 6. The given ternary clause gence analysis is given in [21]. It takes advantage of the impli-
cation graph by encoding the colors locally at the nodes using only

bit slices of a full machine word. Thus, subtrees of the AND-OR
tree are stored in parallel in different bit-levels. Additionally, a bit-

_ parallel version of the implication algorithm introduced in Sec. 3.3
is used. Our algorithm supports a depthr édvels in the AND-OR

@ tree on a 2-bit architecture. On a DECAIlphaStation, for example,
; ; @ a maximal depth of 6 levels is available.

Pt

:C \
1
3 Z,

Let us briefly summarize the advantages of our approach:

(1) The implication graph model allows the full word size to be

exploited by means of bit-parallel techniques. The search for indi-

© 9 rect implications, requires efficient set operations as an OR-node

&= may only be elevated if it is a successor of both AND-nodes be-
longing to an unjustified clause. These set operations are carried

Cx V Gy V ¢z is unjustified due to an assignment@f= 1. This out effectively on the implication graph by performing local bit-

is indicated by the twae\-nodes that have exactly one predecessor operations at signal nodes such that no separate data structure is

(ct) marked. Here, the ternary clause can be justified by setfing needed. Please note, that the advantage of efficient set operations

or cy to 1. If we consider that the subgraph denoting the ternaryremains, if we extend our algorithm to handle arbitrary depths of

clausecy V ¢y V ¢z is a straightforward graphical representation of AND-OR enumeration, which has already been done.

Figure 6: Unjustified ternary clausg V ¢y V ¢; due to assignment

the following formulae (2) The notion of unjustified gates necessary in [3, 7] reduces to
the simple concept of unjustified ternary clauses. Due to this con-
Cx \NCy = Cz & Cx ACp — Gy & Gy A C; — Cx cept and the uniformity of our description, AND-OR enumeration

. L . can easily be performed for arbitrary logics applying the same pro-
it becomes apparent that both possible justificatiolds are found cedure. This has already been done for Idgig. On the contrary,

in the consequents of those implications which have the literalpigher valued logics are complicated to deal with in the structural

making the clause unjustified, i.€, in their antecedent. These approach of [7, 3].

consequents correspond to the successors of the.iades. _ (3) Detected indirect implications can be included into the graph
Let us now explain how the extended reconvergence analysigmmediately, which often facilitates the computation of other indi-

corresponds to an efficient AND-OR search on the implication ot implications.

graph with help of Fig. 7 EhOW'“g the implication gra*ph O*f Ex.2.1. (4) Some indirect implications are easily computed by the law of

An initial assignment ot = 1 makes claus€q = CyV Ce V € contraposition while requiring a high depth of AND-OR search.

unjustified. Next, the possible justificatiodg = {cg = 1}, Jo, = As our approach integrates both methods into one framework, in-

{cg = 1} for Cq are determined as the successors of the awo  gjrect implications can be identified by the best suited technique.
nodesa; anda, belonging to claus€y. TheseA-nodes corre-

spond to AND-nodesly, and J, in the AND-OR tree, respec- D  EXperimental results

3If a binary clause is unjustified according to Definition 2, it reduces The implication engine, presented in this paper, has been imple-

to a unary clause. Unary clauses represent necessary assignments (impliggented in a C language library of functions that has been applied
signal values) for the given signal assignment. successfully to several CAD problems. Please note, that some of
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Figure 7: Extended reconvergence analysis on the implication graph

he or n r Its have alr n lished in r alcircuit # gates # literals delay time
.t € p‘(t-:‘hse telq ?.SU ts ha .? a. eady b?l'ie pu%:lgd . pal[?e f deg before  after| before after| before  after [s]
ing with application specific issues. The underlying implication |7~ 150 1401 318 302 299 264 238
engine was not discussed. We have included these results in of-c499 370 352 920 7721 234 19.0| 2416
der to show the efficiency of our flexible approach. While the ex- | ¢1355 370 352 920 772| 234 19.0| 2400
periments for ATPG and netlist optimization were carried out on | c880 337 289 722 650/ 50.6 410/ 658
a DECStation3000/600, the experiments for equivalence checking ¢1908 488 402/ 933 B03| 412 33.9| 1364

formed on a DECAlphaStation245. ATPG and netlist | Cousa | saro aora| sodo 21901 373 31.0| 16288
were performed o p _ -AlFGan : c6288 | 3148 3009| 5357 5923| 117.7  92.3| 60083
optimization rely on an earlier version of our implication engine, ; 6439 5018| 12419 12012 3235 262.6 s
that does not support the techniques of Sec. 4.4.2. So far, these agl+ed.: 8.1% 3.2% 18.8% -

vanced techniques have only been used for equivalence checking

: Table 4: Results of delay optimization

Table 3 presents results for ATPG considering various fault mod-ther tables in [25, 26, 27] where an extensive comparison to other

els [25, 26, 27]. Due to the flexibility of the implication graph

o non—rob_ust robu_st stuck_—at
cwag; #tezte “meg[sé #tgsgeo “mg [Sg]) #testzeo tlmeO[SZ] are provided in Table 4. The basic idea and the approach, that
2299 3%5722 1125 133257 172412'_4 ?50 01 applies our implication engine to verify the permissibility of circuit
2670/l 130626 53.9!l 153701 60.3|| 2630 1.0 transformations, is described in [6]. The number of gates, literals,
c3540|| 1202580 6032.3|| 88354|10595.7|| 3291 2.4 and the circuit delay before and after optimization, as well as the
c5315|| 342117 643.4|| 81435 5251.8] 5291 1.2 required CPU time are given.
s5378 21928 11.2|| 18656 43.6 4397 1.3 . . . .
c6288|l 30688133 61832.2| 26254| 31225.4] 7710 0.6 Results for equivalence checking of netlists are presented in Ta-
c7552| 277244 1499.4|| 86252| 5746.0|| 7419 52 ble 5. It lists the total time required for equivalence checking, i.e.
$9234 59854 50.6{| 21389 153.4 6475 18.2 rcuit fi |
s13207| 476145 1364.4 27603 8485 9608 156 circul _ftime[s] evelnax
$15850)| 10782994 21320.7|| 182673 2221.8| 11330, 9.0 total | indirect implications
$38417|| 1138194 2385.6|| 598062 13001.5 30859 68.6 c432 13 1.2 1
s38584|| 334927| 2004.1|| 92239| 2071.5|| 34493 88.7 c499 1.4 1.4 1
. 1355 7.0 6.6 1
Table 3: Result of rn generation ¢
able 3: Result of test pattern generatio c1908 | 195 189 1
the various logicsl(s, Lo, L10, Log) required for the different fault €2670 | 24.1 20.7 2
models could easily be handled. Table 3 gives the number of tested 3540 | 791.0 742.1 2
faults and CPU time required for performing ATPG for non-robust gggég %392 i44i i
and robust path delay faults as well as stuck-at faults in combina- o7552 | 570.1 5250 3

tional circuits (or sequential circuits with enhanced scan design).

The excellent quality of the achieved results can be seen from fur- Table 5: Results for verifying against redundancy free circuits

state-of-the-art tools is made.
Results for optimization of mapped netlists with respect to delay




ATPG plus computation of indirect implications, and the time con- [8]
sumed by the latter in columns 2 and 3, respectively. The maximal
depth of AND-OR search necessary for successful verification is
also given in column 4. We provide these early results in order
to show that our implication engine forms a suitable data struc-
ture for building an efficient equivalence checker. Our straightfor-
ward approach adopts the basic idea of the well-known equivalencél0]
checker FANNIBAL [28] but does not include its advanced heuris-
tics, e.g. observability implications and heuristics for candidate se-
lection. Nevertheless, the results shown in Table 5 are comparablﬁl]
to the ones reported in [28]. This indicates that our implication
engine is well suited for equivalence checking. Please note, that it

is easily incorporated into state-of-the-art implication based or hy-[12]
brid, i.e. BDDs combined with implications, equivalence checkers
such that these approaches can benefit, too.

6 Conclusion

In this paper we have proposed an efficient implication engine
working on a flexible data structure called implication graph. It
has been shown that indirect implications can be effectively com-114]
puted by analysis of the graph. Experimental results confirm the
efficiency and flexibility of our approach.

In the future, our preliminary equivalence checker will be ex- [15]
tended by deriving observability implications directly on the im-
plication graph. Furthermore, we will investigate how a hybrid
technigue using BDDs and the implication graph can be advanta-[161
geous for equivalence checking.
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