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Abstract

This paper presents a flexible and efficient approach to evaluat-
ing implications as well as deriving indirect implications in logic
circuits. Evaluation and derivation of implications are essential in
ATPG, equivalence checking, and netlist optimization. Contrary
to other methods, our approach is based on a graph model of a
circuit’s clause description called implication graph. It combines
both the flexibility of SAT-based techniques and high efficiency of
structure based methods. As the proposed algorithms operate only
on the implication graph, they are independent of the chosen logic.
Evaluation of implications and computation of indirect implica-
tions are performed by simple and efficient graph algorithms. Ex-
perimental results for various applications relying on implication
demonstrate the effectiveness of our approach.

1 Introduction
Recently, substantial progress has been achieved in the fields of

Boolean equivalence checking and optimization of netlists. Tech-
niques for deriving indirect implications, which were originally de-
veloped for ATPG tools, play a key role in this development.

Indirect implications have been successfully applied in algo-
rithms for optimizing netlists. For this task, either a set of per-
missible transformations is derived [1, 2, 3] or promising transfor-
mations are applied and their permissibility is later verified by an
ATPG tool [4, 5, 6]. Furthermore, they are of great importance in
ATPG-based approaches to Boolean equivalence checking of both
combinational and sequential circuits [7, 8, 9, 10, 11] as they help
identify equivalent internal signals in the circuits to be compared.

In the late 1980s, Schulz et al. incorporated computation of in-
direct implications into the ATPG tool SOCRATES[12]. Indirect
implications are indispensable when dealing with redundant faults
as they help to efficiently prune the search space of the branch-
and-bound search. In order to derive more indirect implications,
the originally static technique of SOCRATES, which the authors
refer to as (static) learning, has been extended to dynamic learn-
ing [13, 14].

Recursive learning [7], proposed by Kunz et al. in 1992, was the
first complete algorithm for determining indirect implications. As
the problem of finding all indirect implications is NP-complete,
only small depths of recursion are feasible. Recently, it has
been shown that recursive learning can be adequately modelled
by AND-OR reasoning graphs [3]. Another complete method for
deriving indirect implications based on BDDs was suggested by

Mukherjee et al. [15]. Very recently, Zhao et al. presented an ap-
proach that combines iterated static learning with recursive learn-
ing constrained to recursion level one [16]. It is based on set alge-
bra and is similar to single pass deductive fault simulation.

Contrary to the above methods, which work on the structural
description of a circuit, other approaches use a Boolean satisfi-
ability (SAT) based model. The SAT-model allows an elegant
problem formulation which can easily be adapted to various log-
ics. This abstraction, however, often impedes development of
efficient algorithms as structural information is lost. Larrabee
included a clause based formulation of Schulz’s algorithm into
NEMESIS[17]. Her approach has been improved by the iterated
method of TEGUS [18]. The transitive closure algorithms sug-
gested by Chakradhar et al. rely on a relational model of binary
clauses [19]. Silva et al. proposed another form of dynamic learn-
ing in GRASP [20] where indirect implications are determined by
a conflict analysis during the backtracking phase of a SAT-solver.

In many areas of logic synthesis and formal verification Bi-
nary Decision Diagrams (BDD) have become the most widely used
data structure as they provide many advantageous properties, e.g.
canonicity and high flexibility. Besides their exponential memory
complexity, when used for ATPG, equivalence checking, and op-
timization of large netlists, BDDs suffer from the drawback that
implications cannot be derived efficiently on this data structure.
For a given signal assignment it can only be decided if another sig-
nal assignment is implied or not. So, finding all possible implica-
tions from a given signal assignment is expensive because theoret-
ically all possible combinations of signal pairs have to be checked.
Therefore, BDD-based approaches such as functional learning [15]
restrict their search to potential learning areas, which are identified
by non BDD-based implication. Consequently, structural or hybrid
approaches, i.e. BDDs combined with other methods, are predom-
inant in ATPG, equivalence checking and optimization of netlists.
Even though most of these approaches make heavy use of implica-
tions, the data structures that are used for deriving and evaluating
implications are often suboptimal and inflexible. That is why we
propose a flexible data structure which is specifically optimized
with respect to implication.

In this paper, we introduce a framework for implication based
algorithms which inherits the advantages of structural as well as
SAT-based approaches. Our approach combines both the flexibil-
ity and elegance of a SAT-based algorithm and the efficiency of
a structural method by working on a graph model of the clause



system, calledimplication graph. Its memory complexity is only
linear in the number of modules in the circuit. Due to structural
information available in the graph, fundamental problems such as
justification, propagation and particularly implication are carried
out efficiently on the graph. The search for indirect implications
reduces to graph algorithms that can be executed very fast and
are easily extended to exploit bit-parallelism. As the implication
graph can automatically be generated for any arbitrary logic, all
presented algorithms remain valid independent of the chosen logic.
This allows rapid prototyping of implication based tools for new
multi-valued logics.

The remainder of this paper is organized as follows. In Sec. 2,
we show how to derive the implication graph. Next, we discuss
how implications are evaluated and how indirect implications can
be computed in Sec. 3 and 4, respectively. In order to demon-
strate the high efficiency of our approach, experimental results for
various applications using the proposed implication engine are pre-
sented in Sec. 5. Sec. 6 concludes the paper.

2 Implication graph
As performing implications is one of the most prominent and

time consuming tasks in ATPG, equivalence checking, and opti-
mization of netlists, it is of utmost importance to use a data struc-
ture that is best suited. Unlike other graphical representations of
clause systems, our data structure represents all information con-
tained in both the structural netlist and the clause database. The im-
plication graphs used in NEMESIS[17] and TRAN[19] model only
binary clauses, clauses of a higher order are solely included in the
clause database.

Since our approach is generic in nature, any combinational cir-
cuit can automatically be compiled into its implication graph rep-
resentation. Only information about a logic and its encoding as
well as the truth table descriptions of supported module types have
to be provided. The basic steps of compilation are given in Fig. 1.
First, all supported module types are individually compiled into

encoded
table clauses
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circuit

implication
subgraph

logic +
encoding

module
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Figure 1: Deriving the implication graph

encoded truth tables. Then, these tables are optimized by a two-
level logic optimizer, e.g. ESPRESSO. This step is explained in
Sec. 2.1. Next, a set of clauses is extracted from the optimized ta-
ble, which is shown in Sec. 2.2. As shown in Sec. 2.3, the set of
clauses is transformed into an implication subgraph that is stored in
the module database. Then, for every module in the circuit the ap-
propriate generic subgraph is taken from the module database and
personalized with the input and output signals of the given module.
Finally, all identical nodes are merged into a single node resulting
in the complete implication graph.

The following sections only consider the 3-valued logicL3 =

f0;1;Xg in order to present the basic ideas of our approach. Gen-

eration of an implication graph for an arbitrary multi-valued logic,
e.g. the 10-valued logicL10 known from robust path delay ATPG,
is discussed in [21].

2.1 Encoding

A signal variablex2L3 requires two encoding bitscx andc�x for
its internal representation. The complete scheme of encoding for
L3 is shown in Table 1. In order to easily detect inconsistencies,

x2 L3 encoding interpretation
cx c�x

0 0 1 signalx is 0
1 1 0 signalx is 1
X 0 0 signalx is unknown

1 1 conflict at signalx

Table 1: 3-valued logic and its encoding

conflicting signal assignments are denoted bycx = 1^c�x = 1. This
property is expressed in the following definition:

DEFINITION 1 An assignment is called non-conflicting iffcx^

c�x , 0 holds for all signal variablesx.

Based on this encoding, the truth tables of all supported module
types are converted into encoded tables. For example, the truth
table of a 2-input AND-gate (c = AND(a;b)) found in Table 2 is
converted into the encoded table of Table 2. This encoded table can

truth table
a b c
0 0 0
0 1 0
1 0 0
1 1 1
0 X 0
1 X X
X 0 0
X 1 X
X X X

encoded table
ca c�a cb c�b cc c�c
0 1 0 1 0 1
0 1 1 0 0 1
1 0 0 1 0 1
1 0 1 0 1 0
0 1 0 0 0 1
1 0 0 0 0 0
0 0 0 1 0 1
0 0 1 0 0 0
0 0 0 0 0 0
1 1 - - - -
- - 1 1 - -

optimized table
ca c�a cb c�b cc c�c
- 1 - - - 1
- - - 1 - 1
1 - 1 - 1 -

Table 2: AND-gate: truth table — encoded table — optimized
table

be interpreted as specifying the on-set as well as the off-set of two
Boolean functionscc andc�c. Conflicting assignments belong to the
don’t-care-set, as they are explicitly checked for by the implication
engine. Exploiting these don’t-cares, functionscc and c�c in the
encoded table are optimized by ESPRESSO.

2.2 Clause description

The characteristic function describing the AND-gate with re-
spect to the given encoding can easily be given in itsConjunctive
Normal Form (CNF)by analyzing the individual rows of the op-
timized table of Table 2. Every row in this table corresponds to a
clause contained in theCNF. Here, theCNF comprises the three
clauses:c�a_ c�c, :c�b_ c�c, and:ca_:cb_ cc. That is, all valid
value assignments to the inputs and outputs of the AND-gate are
implicitly given by the non-conflicting satisfying assignments to
the characteristic equation:

CNF, (:c�a_c�c)^ (:c�b_c�c)^ (:ca_:cb_cc), 1 (1)



2.3 Building the implication graph

By exploiting the following equivalencies the clause description
of Eq. (1) is converted into the corresponding implication graph.

x_y , (:x! y)^ (:y! x) (2)

x_y_z , (:x^:y! z)^ (:x^:z! y)^

(:y^:z! x) (3)

It is sufficient to provide equivalencies for binary and ternary
clauses only, as any clause system of a higher order can be decom-
posed into a system of binary and ternary clauses [21]. Having
transformed all clauses into binary and ternary clauses, the sub-
graphs shown in Fig. 2 are used for representation of these clauses.
These graphs contain two types of nodes. While the first type rep-

:y

x_y_z :x_y :

:x y

:yx ^ ^

^

:z

y

:x

z

x

Figure 2: Implication subgraph for a binary and a ternary clause

resents the encoded signal values, the second one symbolizes the
conjunction operation. The latter type is depicted by^ or a shaded
triangle. Every ternary clause has three associated^-nodes that
uniquely represent the ternary clause in the implication graph.

Coming back to the 2-input AND-gate, itsCNF-description is
transformed into the implication graph shown in Fig. 3. Every bit
of the encoding for a signalx is represented by a corresponding
node in the implication graph, e.g. nodeca(c�a) in Fig. 3 gives bit
ca(c�a) of signala. As we require non-conflicting assignments, lit-
erals:cx (:c�x) can be replaced byc�x (cx) such that only nodes cor-
responding to non-negated encoding bits are contained in Fig. 3.

So far, the implication graph only captures the logic function-
ality of a circuit. Since structural information is indispensable for
some tasks, such as justification and propagation, we provide this
information within the implication graph by marking its edges with
three different tagsf , b, ando. Edges that denote an implication
from an input to an output signal of a module are marked withf
(forward edge). Relations from output to input signals are tagged
with b (backward edge). All other edges, e.g. input to input rela-
tions and indirect implications, are given tago (other edge)1. The
tags for the 2-input AND-gate are found in Fig. 3. By means of
these tags, a directed acyclic graph (DAG) can be extracted from
the implication graph. If all edges but the forward edges are re-
moved, we obtain a DAG that forms the base of an efficient algo-
rithm for backtracing and justification.

For a simple circuit, the three different circuit descriptions in-
troduced above are presented in Ex. 2.1. Please observe that most
clause based approaches work on aCNF in L2. Our approach op-
erates on aCNF of variables encoded with respect to a given logic,
hereL3.

1Tags denoting other edges have been omitted in later examples.
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Figure 3: Implication graph for 2-input AND-gate

2.4 Advantages
Using the proposed implication graph as a core data structure in

CAD algorithms has many advantages.
(1) Important tasks such as implication and justification can be

carried out on the implication graph in the same manner for any
arbitrary logic. The peculiarities of the chosen logic are included
in the graph. Implication and derivation of indirect implications
reduce to efficient graph algorithms as will be shown in Sec. 3.3
and 4.4.
(2) Most SAT-based algorithms use a static order for variable as-

signments during their search for a satisfying assignment [17, 19].
Furthermore, these algorithms assign values to internal signals dur-
ing justification. Since PODEM, it has been well known that as-
signing values only to primary input signals helps to reduce the
search space. Obviously, primary inputs are a special property of
the given instance of SAT which is not exploited by algorithms for
solving arbitrary SAT problems. The algorithm of TEGUStries to
mimic PODEM by ordering the clauses in a special manner [18].
Our approach does not need such techniques, as structural infor-
mation is provided by edge tags.
(3) Algorithms working on the implication graph can easily ex-

ploit bit-parallelism as the status of every node can be represented
by one bit only. For example, on a 64-bit machine 64 value assign-
ments can be processed in parallel, making bit-parallel implication
very efficient.
(4) Sequential circuits are often modelled as an iterative logic ar-

ray (ILA). In this model the time domain is unfolded into multi-
ple copies of the combinational logic block. These logic blocks
can be compiled into the corresponding implication graphs. Using
bit-parallel techniques, a 64-bit machine allows to keep 64 time-
frames without increasing the size of the implication graph.

3 How to perform implications
3.1 Structure based

Structure based implication is a special form of event-driven
simulation. Contrary to ordinary simulation, which starts at the
primary inputs, implication is started at an arbitrary signal in the
circuit. Therefore, it has to proceed towards the primary outputs
as well as the primary inputs such that implications are often cat-
egorized into forward and backward implications. Obviously, this
technique requires many table lookups for evaluating the module
functions. This becomes particularly costly for multi-valued log-
ics, e.g. the ones used in path delay ATPG.

3.2 Clause based
Clause based implication relies onBoolean Constraint Propa-

gation (BCP). BCP corresponds to an iterative application of the



Example 2.1Circuit descriptions: structural — clauses — impli-
cation graph

� Structural:

a

b

c

d

e

f

� CNF for L3:
CNF3 ,

(:c�d_c�f )^ (:c�e_c�f )^ (:cd_:ce_cf ) ^ f = AND(d;e)
(:ca_cd)^ (:cb_cd)^ (:c�a_:c�b_c�d) ^ d = OR(a;b)
(:cb_ce)^ (:cc_ce)^ (:c�b_:c�c_c�e) ^ e= OR(b;c)

, 1
� Implication graph forL3:
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unit clause rule proposed by Davis et al. in 1960 [22]. In BCP,
unary clauses are used to simplify other clauses until no further
simplification is possible or some clause becomes unsatisfied. Im-
plication is started by adding a unary clause, which represents the
initial signal assignment, to theCNF. All unary clauses computed
by BCP correspond to implications from the initial assignment as
they force the corresponding signals to a certain logic value. The
most time consuming task in BCP is the search for clauses that can
be simplified by the unit clause rule. This search is not necessary
when working on the implication graph since clauses that share
common variables are connected in the graph.

3.3 Implication graph based

Implication graph based implication is simple and efficient, as it
only requires a partial traversal of the implication graph. Implying
from a signal assignment means that first the corresponding nodes
are marked in the implication graph. Then, the implication proce-
dure traverses the implication graph obeying the following rule:

RULE 1 Starting from an initial setSI of marked nodes, all suc-
cessor nodessj are marked

� if nodesj is a^-node andall its predecessors are marked.

� if node sj represents an encoding bit andat least onepre-
decessor is marked .

This rule is applied until no further propagation of marks is possi-
ble.

All nodes that have been marked represent signal values that can
be implied from the initial assignment given bySI . Conflicting sig-
nal assignments are easily detected during implication, since they
cause both nodescx andc�x to be marked.

Let us use the circuit of Ex. 2.1 for the sake of explanation. As-
signing logical value 0 to signale corresponds to marking node
c�e in the implication graph. After running the implication proce-
dure, the following nodes are marked:c�b, c�c andc�f . To finally
obtain the implied signal values with respect to the given logic, the
marked nodes are decoded according to the given encoding, i.e. we
determineb= 0, c= 0, f = 0.

4 Deriving indirect implications
Contrary to direct implications, detection of indirect implica-

tions requires a special analysis of the logic function of a circuit as
they represent information on the circuit that is not obvious from
its description. Most methods for computation of indirect implica-
tions are subject to order dependency. That is, some indirect im-
plications can only be found if certain other indirect implications
have already been discovered. In order to avoid this problem, it has
been suggested to iterate their computation [18].

4.1 Structure based
The SOCRATESalgorithm [12] was the first to introduce com-

putation of indirect implications using the following tautologies:

(a! b) , (:b!:a) (4)

(a! b)^ (a!:b) ) :a (5)

While Eq. (4) (law of contraposition) may generate a candidate for
an indirect implication, Eq. (5) identifies a fix value.

Indirect implications are primarily computed in a pre-processing
phase. The idea is to temporarily set a given signal to a certain
logic value. Then, all possible direct implications from this sig-
nal assignment are computed. For all implied signal values, it is
checked if the contrapositive cannot be deduced by direct implica-
tions (learning criterion). In this case, the contrapositive is an in-
direct implication. As indirect implications cannot be represented
within the data structure used to describe the circuit, structural al-
gorithms have to store them in an external data structure. This adds
additional complexity to structure based algorithms.

4.2 Clause based
Clause based computation [17, 18] is similar to the structural al-

gorithm of Sec. 4.1. Each free literala contained in theCNF is
temporarily set to 1. Then BCP is used to derive all possible direct
implications, i.e. unary clauses. For all generated unary clauses
b, it is checked if the contrapositive:b! :a is an indirect im-
plication. In this case, the corresponding clauseb_:a is added
to the clause database. Thereby, indirect implications enrich the
data structure used for representing the circuit functionality. Once
an indirect implication has been added to the clause database, it
does no longer require any special attention. This is one impor-
tant advantage of clause based algorithms over structure based ap-
proaches [18].



4.3 AND-OR enumeration

A different approach, known as recursive learning, has been
taken by Kunz et al. [3, 7]. Indirect implications are deduced by an
AND-OR search [23] for all possible implications resulting from
a signal assignment. This search is performed by recursively in-
jecting and reversing signal assignments, which correspond to the
different possibilities for justifying a gate, followed by deriving all
direct implications. Signal values that are common to all justifica-
tions of a gate yield indirect implications. Only a simple structural
algorithm for executing implications is applied.

Let us illustrate the principles of the AND-OR enumeration with
the circuit of Ex. 2.1 and the AND-OR tree found in Fig. 4. The

fc= 0;e= 0g

level 2

level 0

b= 0b= 0

initial assignmentf f = 0g

f = 0 b= 0

e= 0

c= 0 e= 0 c= 1 e= 1 d= 0 a= 1d= 1a= 0

level 1
d= 0 a= 0 c= 0

J2 = fe= 0g

J1 =

fd= 0;

J1 = fd= 0g

a= 0g

J2 =

fd = 1;
a= 1g

J2 =

fc= 1;e= 1g
J1 =

Figure 4: AND-OR enumeration

root node of the AND-OR tree reflects the initial assignment, it
is of the AND-type2. In our example, a logical 0 is assigned to
signal f . As no further signal values can be implied, OR-node
f = 0 is the only successor of the root node. The justifications for
f = 0 areJ1 = fd = 0g andJ2 = fe= 0g. In order to derive an
indirect implication, we have to search for implied signal values
that are common to both justifications. Here,b= 0 is implied for
both justifications. This is represented by a new OR-nodeb= 0 in
level 0 of the AND-OR tree. In general, new OR-nodes in level 0
correspond to indirect implications. Further examination of gates
in level 2, which have become unjustified because of settingb to 0,
does not yield additional indirect implications.

4.4 Implication graph based

An implication graph based method for computing indirect im-
plications inherits all advantages of clause based techniques but
eliminates the costly search process required during BCP-based
implication. Moreover, our approach integrates computation of in-
direct implications based on the law of contraposition and AND-
OR enumeration into the same framework.

2In general, an AND-node (marked by an arc) represents a signal as-
signment due to justification of an unjustified gate, whereas an OR-node
denotes a signal value that can be implied from a chosen justification. Jus-
tified gates correspond to OR-leaves and unjustified gates to internal OR-
nodes in the AND-OR graph [3].

4.4.1 Reconvergence analysis
The basic idea of determining indirect implications by a search

for reconvergencies is shown in Fig. 5. While implicationca ! cb

c�b ! c�a

indirectdirect
ca ! cb

c�b

c�x

cx

c�a
ca ^

^

cb

Figure 5: Learning by contraposition on the implication graph

is deduced by direct implication,c�b ! c�a forms an indirect impli-
cation. Thê -node can only be passed if both of its predecessors
are marked, i.e. it forms a reconvergent^-node during implication.
If we start implication at nodec�b, however, we cannot pass thê-
node, as its other predecessorcx is not marked. Applying the law
of contraposition toca ! cb, we deducec�b ! c�a such thatc�a is
implied fromc�b.

This observation is expressed in the following lemma:

L EMMA 1 Let cx represent the initial assignment. A reconvergent
structure(cx;cy) in the implication graph yields an indirect impli-
cationc�y ! c�x only if

� cx is a fanout node in the implication graph.
� a nodecy is marked via â -node and both predecessors
of the^-node have been marked by implying along disjoint
paths in the implication graph. (Proof: [21])

Using Lemma 1 it can be shown that the search for reconver-
gencies in the implication graph detects all indirect implications,
which are found by clause and structural based approaches.

THEOREM 1 All indirect implications found by BCP on the (en-
coded) clause description can be identified by a search for the re-
convergent structures defined in Lemma 1. (Proof: [21])

We explain the reconvergence analysis with the implication
graph of Ex. 2.1. Let’s assume that fanout nodecb is marked.
Then, the implication procedure of Sec. 3.3 is invoked. As both
cd and ce have been marked, the succeeding^-node andcf are
marked, too. Thê -node has been reached via two disjoint paths
in the graph (indicated by the dashed and solid line, respectively)
such that the contrapositivec�f ! c�b forms an indirect implication.
This indirect implication is included into the graph in form of the
grey edge leading from nodec�f to nodec�b.

Applying our graph analysis offers the following advantages:
(1) The search for reconvergence regions in the implication graph

reduces the set of candidate signals that may yield an indirect im-
plication. Clause based methods have to temporarily assign a value
to all literals contained in theCNF.
(2) Reconvergence analysis is carried out very fast by an adapted

version of the algorithm presented in [24].
(3) Our method does not require a learning criterion such as the

approach of [12].

4.4.2 Extended reconvergence analysis
Contrary to the reconvergence analysis of Sec. 4.4.1, the ex-

tended reconvergence analysis detects conditional reconvergencies



at signal nodes. As it corresponds to an AND-OR search in the
implication graph, we need the following definitions:

DEFINITION 2 A clauseC= c1_c2_ : : :_cn is called unjustified
iff all literals c1;c2; : : : ;cn do not evaluate to 1 and at least one
complement:ci of a literalci is 1.

Unjustified ternary clauses are found in the implication graph with-
out effort. They are represented bŷ-nodes that have exactly one
of their two predecessors marked.

DEFINITION 3 Let c1;c2; : : : ;cm be some unspecified literals in a
clauseC= c1_c2_ : : :_cn that is unjustified, and letV1;V2; : : : ;Vm
denote the assigned values. Then, the set of non-conflicting assign-
mentsJ = fc1 =V1;c2 =V2; : : : ;cm =Vmg is called a justification
of clauseC, if the value assignments inJ makeC evaluate to 1.

In a clause based framework a complete set of justificationsJc for
an unjustified clauseC is easily given byJc = ffc1 = 1g;fc2 =

1g; : : : ;fcm= 1gg. For our approach, setJc is even simpler, as only
ternary clauses can be unjustified.3 Therefore,Jc always consists
of exactly two justifications.

We will now explain how these two justifications can be derived
in the implication graph with Fig. 6. The given ternary clause

cy cx

^ ^

^

c�z

c�x

cz

c�y

Figure 6: Unjustified ternary clausecx_cy_cz due to assignment
c�x = 1

cx_ cy_ cz is unjustified due to an assignment ofc�x = 1. This
is indicated by the twô -nodes that have exactly one predecessor
(c�x) marked. Here, the ternary clause can be justified by settingcz
or cy to 1. If we consider that the subgraph denoting the ternary
clausecx_ cy_ cz is a straightforward graphical representation of
the following formulae

c�x^c�y ! cz, c�x^c�z ! cy , c�y^c�z ! cx

it becomes apparent that both possible justifications inJc are found
in the consequents of those implications which have the literal
making the clause unjustified, i.e.c�x, in their antecedent. These
consequents correspond to the successors of the two^-nodes.

Let us now explain how the extended reconvergence analysis
corresponds to an efficient AND-OR search on the implication
graph with help of Fig. 7 showing the implication graph of Ex. 2.1.
An initial assignment ofc�f = 1 makes clauseCα = c�d _ c�e_ cf

unjustified. Next, the possible justificationsJα1 = fc
�
e = 1g, Jα2 =

fc�d = 1g for Cα are determined as the successors of the two^-
nodesα1 and α2 belonging to clauseCα. These^-nodes corre-
spond to AND-nodesJα1 and Jα2 in the AND-OR tree, respec-

3If a binary clause is unjustified according to Definition 2, it reduces
to a unary clause. Unary clauses represent necessary assignments (implied
signal values) for the given signal assignment.

tively. So as to distinguish between the consequences of the two
justifications, each one is assigned a different color. Thus, node
c�e = 1 is given a green marker (represented by dashed lines in
Fig. 7) and all signals that can be implied fromc�e = 1 are marked
green. The same is done forc�d = 1 using a red marker (dotted
lines in Fig. 7). Nodes that are assigned both colors, i.e. nodes
where the markers reconverge, can be implied independent of the
chosen justification. These nodes can therefore be elevated to the
previous level in the AND-OR tree. In our example, only node
c�b is marked by both colors and we derive the indirect implication
c�f ! c�b. Further analysis of unjustified clausesCβ andCγ in level
2 of the AND-OR tree does not yield additional indirect implica-
tions.

This example indicates that the trace of the extended reconver-
gence analysis is identical to the AND-OR tree generated by AND-
OR enumeration if marked̂-nodes are converted to AND-nodes
and marked signal nodes to OR-nodes. Obviously the extended
reconvergence analysis is capable of determining all indirect im-
plications given enough colors, i.e. it is complete.

An efficient procedure implementing this extended reconver-
gence analysis is given in [21]. It takes advantage of the impli-
cation graph by encoding the colors locally at the nodes using only
bit slices of a full machine word. Thus, subtrees of the AND-OR
tree are stored in parallel in different bit-levels. Additionally, a bit-
parallel version of the implication algorithm introduced in Sec. 3.3
is used. Our algorithm supports a depth ofr levels in the AND-OR
tree on a 2r -bit architecture. On a DECAlphaStation, for example,
a maximal depth of 6 levels is available.

Let us briefly summarize the advantages of our approach:
(1) The implication graph model allows the full word size to be

exploited by means of bit-parallel techniques. The search for indi-
rect implications, requires efficient set operations as an OR-node
may only be elevated if it is a successor of both AND-nodes be-
longing to an unjustified clause. These set operations are carried
out effectively on the implication graph by performing local bit-
operations at signal nodes such that no separate data structure is
needed. Please note, that the advantage of efficient set operations
remains, if we extend our algorithm to handle arbitrary depths of
AND-OR enumeration, which has already been done.
(2) The notion of unjustified gates necessary in [3, 7] reduces to

the simple concept of unjustified ternary clauses. Due to this con-
cept and the uniformity of our description, AND-OR enumeration
can easily be performed for arbitrary logics applying the same pro-
cedure. This has already been done for logicL10. On the contrary,
higher valued logics are complicated to deal with in the structural
approach of [7, 3].
(3) Detected indirect implications can be included into the graph

immediately, which often facilitates the computation of other indi-
rect implications.
(4) Some indirect implications are easily computed by the law of

contraposition while requiring a high depth of AND-OR search.
As our approach integrates both methods into one framework, in-
direct implications can be identified by the best suited technique.

5 Experimental results
The implication engine, presented in this paper, has been imple-

mented in a C language library of functions that has been applied
successfully to several CAD problems. Please note, that some of
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Figure 7: Extended reconvergence analysis on the implication graph

the presented results have already been published in papers deal-
ing with application specific issues. The underlying implication
engine was not discussed. We have included these results in or-
der to show the efficiency of our flexible approach. While the ex-
periments for ATPG and netlist optimization were carried out on
a DECStation3000/600, the experiments for equivalence checking
were performed on a DECAlphaStation2504=266. ATPG and netlist
optimization rely on an earlier version of our implication engine,
that does not support the techniques of Sec. 4.4.2. So far, these ad-
vanced techniques have only been used for equivalence checking.

Table 3 presents results for ATPG considering various fault mod-
els [25, 26, 27]. Due to the flexibility of the implication graph

non–robust robust stuck–at
circuit # tested time [s] # tested time [s] # tested time [s]

c432 15855 9.6 3730 31.9 520 0.2
c499 367744 112.5 133557 17242.4 750 0.1

c2670 130626 53.9 15370 60.3 2630 1.0
c3540 1202580 6032.3 88354 10595.7 3291 2.4
c5315 342117 643.4 81435 5251.8 5291 1.2
s5378 21928 11.2 18656 43.6 4397 1.3
c6288 30688133 61832.2 26254 31225.4 7710 0.6
c7552 277244 1499.4 86252 5746.0 7419 5.2
s9234 59854 50.6 21389 153.4 6475 18.2

s13207 476145 1364.4 27603 848.5 9608 15.6
s15850 10782994 21320.7 182673 2221.8 11330 9.0
s38417 1138194 2385.6 598062 13001.5 30859 68.6
s38584 334927 2004.1 92239 2071.5 34493 88.7

Table 3: Result of test pattern generation

the various logics (L3;L9;L10;L20) required for the different fault
models could easily be handled. Table 3 gives the number of tested
faults and CPU time required for performing ATPG for non-robust
and robust path delay faults as well as stuck-at faults in combina-
tional circuits (or sequential circuits with enhanced scan design).
The excellent quality of the achieved results can be seen from fur-

circuit # gates # literals delay time
before after before after before after [s]

c432 150 140 318 302 29.9 26.4 238
c499 370 352 920 772 23.4 19.0 2416
c1355 370 352 920 772 23.4 19.0 2400
c880 337 289 722 650 50.6 41.0 658
c1908 488 402 933 803 41.2 33.9 1364
c5315 1576 1374 3249 2790 37.3 31.0 16288
c6288 3148 3009 5357 5923 117.7 92.3 60083
∑ : 6439 5918 12419 12012 323.5 262.6 -
red.: 8.1% 3.2% 18.8% -

Table 4: Results of delay optimization

ther tables in [25, 26, 27] where an extensive comparison to other
state-of-the-art tools is made.

Results for optimization of mapped netlists with respect to delay
are provided in Table 4. The basic idea and the approach, that
applies our implication engine to verify the permissibility of circuit
transformations, is described in [6]. The number of gates, literals,
and the circuit delay before and after optimization, as well as the
required CPU time are given.

Results for equivalence checking of netlists are presented in Ta-
ble 5. It lists the total time required for equivalence checking, i.e.

circuit time[s] levelmax
total indirect implications

c432 1.3 1.2 1
c499 1.4 1.4 1
c1355 7.0 6.6 1
c1908 19.5 18.9 1
c2670 24.1 20.7 2
c3540 791.0 742.1 2
c5315 33.4 24.8 2
c6288 8.9s 4.4s 1
c7552 570.1 525.0 3

Table 5: Results for verifying against redundancy free circuits



ATPG plus computation of indirect implications, and the time con-
sumed by the latter in columns 2 and 3, respectively. The maximal
depth of AND-OR search necessary for successful verification is
also given in column 4. We provide these early results in order
to show that our implication engine forms a suitable data struc-
ture for building an efficient equivalence checker. Our straightfor-
ward approach adopts the basic idea of the well-known equivalence
checker HANNIBAL [28] but does not include its advanced heuris-
tics, e.g. observability implications and heuristics for candidate se-
lection. Nevertheless, the results shown in Table 5 are comparable
to the ones reported in [28]. This indicates that our implication
engine is well suited for equivalence checking. Please note, that it
is easily incorporated into state-of-the-art implication based or hy-
brid, i.e. BDDs combined with implications, equivalence checkers
such that these approaches can benefit, too.

6 Conclusion
In this paper we have proposed an efficient implication engine

working on a flexible data structure called implication graph. It
has been shown that indirect implications can be effectively com-
puted by analysis of the graph. Experimental results confirm the
efficiency and flexibility of our approach.

In the future, our preliminary equivalence checker will be ex-
tended by deriving observability implications directly on the im-
plication graph. Furthermore, we will investigate how a hybrid
technique using BDDs and the implication graph can be advanta-
geous for equivalence checking.
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