Restricted Simple Disjunctive Decompositions
Based on Grouping Symmetric Variables

Hiroshi Sawada, Shigeru Yamashita and Akira Nagoya
NTT Communication Science Laboratories
2-2 Hikaridai, Seika-cho, Soraku-gun, Kyoto 619-02, JAPAN
{sawada, ger, nagoya} @cslab.kecl.ntt.co.jp

Abstract

This paper presents an efficient method for a simple dis-
Jjunctive decomposition, where candidates for the bound
set are restricted to sets of symmetric variables to reduce
the computation cost. Symmetric variables are detected by
depth-first traversals of an ordered binary decision diagram
(OBDD), and decompositions are carried out by changing
the variable order of the OBDD. We do not change the
variable order until the change is really needed. Exper-
imental results show that even if the decomposition form
was restricted, many practical functions could be decom-
posed. The execution time for decomposition was very small
even for functions with many variables. Combined with
an exhaustive search, the method successfully decomposed
some functions that could not be decomposed by exhaustive
search alone in a practical amount of time.

1. Introduction

Finding a simple disjunctive decomposition form

f(X) = g(h(X®),XF) of a Boolean function helps to

synthesize an optimal multi-level logic circuit. In the
decomposition form, X is a set of variables, { X B, X} is
a partition of X, and X B is called a bound set. The form
is called “simple” because h is a single-output function
and “disjunctive” because X® and X¥ have no common
variables.

The fundamental concept of a simple disjunctive decom-
position has been studied by Ashenhurst [1]. He used a de-
composition chart, whose size grows exponentially to the
number of variables, to check the existence of a decompo-
sition. Roth and Karp [11] have proposed a decomposi-

 tion method using a sum of product form. Recently, sev-
eral researchers [3, 7, 13] have proposed decomposition al-
gorithms based on OBDDs (Ordered Binary Decision Dia-
grams [2]). Although the decomposition test after a bound
set was decided can be done efficiently, a difficulty still

1066-1395/97 $10.00 © 1997 IEEE

39

lies in finding an appropriate bound set. The number of
possible bound sets grows exponentially to the number of
variables, thus an exhaustive search is difficult for functions
with many variables.

In this paper, we propose a restricted simple disjunctive
decomposition. The decomposition form is restricted such
that the bound set is a set of symmetric variables. The
purpose of the restriction is to reduce the computation
cost for finding an appropriate bound set, so that the
decomposition can be applied to functions with many
variables. We consider a set of symmetric variables to
be a good candidate for a bound set that gives a simple
disjunctive decomposition. In addition, if the set of
symmetric variables satisfies certain properties, we can
identify the existence of a simple disjunctive decomposition
without doing the decomposition tests described above.

Symmetry of a Boolean function is a property that the
function is invariant under any permutation among a subset
of variables. Knowledge of the symmetry is useful, for
example, in logic synthesis [5] and in Boolean matching [4].
Recently, several efficient techniques to detect symmetry
have been proposed. Moller et al. [9] have proposed the idea
of asymmetry, which can be obtained from the structure of
an OBDD, to filter out the possibility of symmetry. Panda et
al. [10] have combined the symmetry check of two adjacent
variables and the dynamic variable ordering of an OBDD
[12]. Tsai et al. [15] have used generalized Reed-Muller
forms for symmetry detection. In our method, we will
follow the idea of asymmetry to detect symmetric variables.

The form of an OBDD representing a function depends
on the variable order, so it is important to find a good
variable order. In a simple disjunctive decomposition test
using an OBDD, all variables in the bound set are moved
up to higher levels (nearer to the root node) than variables in
the free set. Since changing the variable order in an OBDD
is an expensive operation, we give attention to reducing the
number of times the variable order is changed.

This paper is organized as follows. In Section 2, we
give some definitions of Boolean functions, OBDDs, simple

f =x,® x2+x30 X, level index

={vy, v3}

Figure 1. An ordered binary decision diagram

disjunctive decomposition, and symmetry. In Section 3,
we discuss a procedure for the restricted simple disjunctive
decomposition whose bound set is a set of symmetric
variables. In Section 4, experimental results are presented.
We conclude this paper in Section 5.

2. Preliminaries

2.1. Boolean functions and ordered binary decision
diagrams

Let f(z1,...,24): {0,1}™ — {0,1} be a completely
specified Boolean function. The cofactors of f with respect
to z;=1 and z;=0 are f;,=f(z1,...,%i-1,1,Zit1,.. ., Zn)
and fz,=f(x1,...,%i-1,0,Ziy1,...,%ys), respectively. In
this paper, we only consider variables that a function f
essentially depends on, thus f;, # fz, for any variable z;
in f.

An ordered binary decision diagram (OBDD) [2] is
a directed acyclic graph representing Boolean functions
(Figure 1). An OBDD has two kinds of nodes: variable
nodes and constant nodes. A constant node represents a
Boolean constant 0 or 1. A variable node v is associated
with a Boolean variable x; and represents a function f. It
has two outgoing edges labeled with 0 and 1, which point
the nodes representing functions f and f7, respectively.

When traversing from any variable node to a constant
node according to the cofactors of variables, each variable
must occur at most only once and in a given order. We
define a level of a variable node as follows: if there exists
an edge from a variable node v; to another variable node
vj, the level of v; is more than that of v;. We also define a
variable order 7 to be a one-to-one mapping from levels to
indexes of variables.

40

2
X::h

— 5

b

Figure 2. A simple disjunctive decomposition

2.2. Simple disjunctive decomposition

A simple disjunctive decomposition of a function f(X)
is of the form (Figure 2)

f(X) = g(h(XP),XT),

where X B and X¥ are sets of variables such that XB U
XF = X and XB N XF = @, and g: {0,1}}X"1+1
{0,1} and k: {0, 1}1X”I — {0, 1} are completely specified
Boolean functions. The sets X? and XF are called the
bound set and the free set, and g is called the image; we
call h the subfunction in this paper.

The fundamental concept of a simple disjunctive decom-
position has been studied by Ashenhurst {1]. Recently, sev-
eral researchers have proposed OBDD-based algorithms for
decomposition. We use the following definition and theo-
rem found in [7].

Definition 1 In the OBDD of a function f with a variable
order , let cut_set(f, m,1) denote the set of nodes whose
levels are less than [, and that have edges from nodes in
levels greater than or equal to [. O

Theorem 1 For an n-variable function f(zi,...,z,) and
a variable order m, if |cut_set(f,n,1)| < 2, there exists
a simple disjunctive decomposition of f whose bound set
and free set are X? = {z.(n),..., Tz} and XF
{xw(l—l)’ L) xw(l)}'

0

For the function f in Figure 1, cut_set(f,,3)
{vi,vs}. Since |cut_set(f,,3)| 2, there exists
a simple disjunctive decomposition of the form f

g(h(z2,21), 74, 73) -

2.3. Symmetry

A function f(z1,...,z,) is symmetric in {z;,z;} (or
{zi,%;}) if the interchange of z; and x; (or ;) leaves the
function invariant. For example, the function f in Figure
1 is symmetric in {z3,z4} and in {z1,Z2}. A function
f is symmetric in {z;,z;} (or {z;,Z;}) if and only if
fzi'z'j = f?c'im_.,- (or f:mzj = f?iij)-

A function f is symmetric in a subset X’ of input
variables or their complements if any permutation of the

subset leaves the function invariant. The set X' is called a
maximal symmetry group [8] (a maximal set of symmetric
variables) of f if there is no variable or its complement
z; € X' orT; ¢ X' such that f is also symmetric in z; U X’
orZ; UX'

For a complete specified function, symmetry is an
equivalence relation. Thus, symmetry in a subset of
variables can be calculated from a set of symmetries in two
variables. Examples are listed below.

If a function f is symmetric in {z;,z;} and {z;, 4}, then
it is symmetric in {z;, z;, zx }.
If a function f is symmetric in {z;,%;} and {z;, zx}, then
it is symmetric in {z;, T;, T }-
If a function f is symmetric in {z;,Z;} and {z;,Z)}, then
it is symmetric in {z;,%;, zx}. |

In addition, we use the following definitions found in
[5]. A function f is multiform symmetric in variables x;
and z; if f is symmetric in both {z;,z;} and {z;,%;}. A
function f is single-variable symmetric in z; in the space
z;=0 if z;'s two cofactors of [z, are identical; fz,z, =
Jz:z;- A function f is single-variable symmetric in z;
in the space ;=1 if ;'s two cofactors of f,, are identical;

fziij = fziwj .

Proposition 1 Let a function f have a maximal symmetry
group. If f is multiform symmetric in a pair of variables
in the maximal symmetry group, then f is multiform
symmetric in all pairs of variables in the maximal symmetry

group.]

Proposition 2 Let a function f have a maximal symmetry
group. If f is single-variable symmetric in a pair of
variables in the maximal symmetry group, then f is single-
variable symmetric in all pairs of variables in the maximal
Symmetry group. O

3. Decomposition procedure

3.1. The overall procedure

In this section, we show our procedure for the restricted
simple disjunctive decomposition. The decomposition
form is restricted such that the bound set is a maximal
symmetry group. Because of the restriction, we can offer
an efficient procedure based on symmetry detection and
variable reordering in an OBDD. The point of our procedure
is that we do not change the variable order until the change
is really needed. This is because variable reordering is an
expensive operation. Overall, the procedure is as follows.

1. Construct an OBDD representing a function f to be
decomposed.

41

2. Examine the symmetry, including multiform symme-
try. We can then check a decomposition whose sub-
function is implemented in an XOR gate. If it can be
decomposed, stop here.

3. Change the variable order of the OBDD such that
variables in a maximal symmetry group are adjacent
in the new order, and examine the single-variable
symmetry. We can now check a decomposition whose
subfunction is implemented in an AND gate and some
inverters. If it can be decomposed, stop here.

4. Move all variables in a maximal symmetry group up
to higher levels than the other variables. Then, we
can check a decomposition whose bound set is the
maximal symmetry group.

3.2. Symmetry detection and decomposition with
an XOR gate

We firstly examine the symmetry of f in an OBDD
representation whose variable order is . Let n be the
number of variables of f. Since symmetry is an equivalence
relation, all we have to do for a complete check of the
symmetry is the following. For all z,¢;y (n > i > 2),
examine whether there exists a variable z,(;y such that f
is symmetric in {Z(;), T(j)} and/or {x, ¢y, Tr(;)} and j
is maximum under the condition 7 > j.

To check symmetry of two variables, we use the idea of
asymmetry proposed in [9, 10] to filter out the possibility of
symmetries.

Theorem 2 Let a function f be represented in an OBDD
whose variable order is . f is asymmetric in two variables
Zx(i) and Tr(;) (1 > j), if a node at level ¢ does not have any
successor at level 7, or if a node at level j can be reached
from the root node traversing a path that does not contain
any node at level <. |

The above asymmetry conditions can be examined by
depth-first traversals in the OBDD. At the same time,
we can examine the symmetry of two adjacent vari-
ables {Zr(i), Tr(i-1)} OF {ar:,,(,),.r,,(z 1)} by checking

f:w(-)f”n(‘ 1) = f;]w(u)%(t 1) zn(-)”r(: 1y
for all nodes v at level 1.

As for pairs of variables that are not filtered out by the
asymmetry check, we examine the symmetries according to
the following theorem. The examination can also be done

by depth-first traversals in the OBDD.

x?l‘(l)z‘ll'(l 1)

Theorem 3 Let a function f be represented in an OBDD
whose variable order is 7. f is symmetric in two variables
{x,,(,),a:,r(])} or {Tr(i), Tu(j)} (G > _7), if every node v at
level i satisfies f b
i+1Tm(5)

for all

r(@)bi-1b5 41T n(yy T xﬂ(t)bl 1
v

v
or :E,,(,')bi_l--~bj+1:t1,(j) —:f,r(,;)bi_],'--bj_'_lfﬂ(j)

x,?(") fji:
x;(l) : g —'f>

XF =

2]
cut_set(f,m,1)={vy,v,} 0[1X17T0
4

™]
" (80, X7 | [e(1, x|

Figure 3. Decomposition with an XOR Gate

cofactors of variables in levels ranging from i—1 to j+1 (b
is either Tr(k) Of Tr(k))- o

Now we obtain information about symmetry, including
multiform symmetry. We can then check whether there
exists a restricted simple disjunctive decomposition whose
subfunction is implemented in an XOR gate.

Proposition 3 If a function f has a maximal symmetry
group containing multiform symmetric variables, there
exists a simple disjunctive decomposition of f whose bound
set is the maximal symmetry group and the subfunction is
implemented in an XOR gate. a

Figure 3 shows the interpretation of this proposition.
Suppose that the variables in the maximal symmetry group
are moved up to levels ranging from n to I. Because

the variables are multiform symmetric, - T =
w()Pw(i—1)
v v

En ()T ntimt) Sty Ta(ioty = JEn(syFa_y, 1O ANy nOde
vatlevel i (n > i > [+1), which lead to |cut_set(f,w,l)| =
2. According to Theorem 1, there exists a simple disjunctive
decomposition. The OBDD of the subfunction k is obtained
by replacing the nodes representing g(0, X ') and g(1, X)
into Boolean constants 0 and 1, respectively. We can see
that the subfunction is implemented with an XOR gate.

Note that we do not change the variable order while
checking for multiform symmetry. After we find the
existence of multiform symmetric variables, we change the
variable order and decompose the function.

3.3. Grouping symmetric variables and decomposi-
tion with an AND gate

If there exist no pair of multiform symmetric variables,
we change the variable order of the OBDD such that
 variables in a maximal symmetry group are adjacent in
the new order. When two variables Zn(;) and T, ;) are

Tk ,
Xy = . L

XF"—.—’

1) X,
=0
9 1

|]

g(1, x7) [

L'ut_set(f ,y =, l) = {vl)’ vl}

Yo |£(0, XF)

Figure 4. Decomposition with an AND Gate

symmetric (> j), we apply jumpup(j,i — 1) operation,
which moves the variable at level j to level i—1 and
decreases the level of every variable from level i—1 to level
j+lby 1.

Now we can examine whether all pairs of variables in a
maximal symmetry group are single-variable symmetric by
checking the following condition. For a pair of two adjacent
variables ;) and T (;—1) in the maximal symmetry group,

%Jvr(i)'fn(e—l) = %)‘n(i)zw(i—l) or :w(iﬁnu—x) = :na)%(i—l)
for all nodes v atlevel i. We can then check a decomposition
whose subfunction is implemented in an AND gate and
some inverters.

Let us invert some of the variables in the maximal
symmetry group such that the variable z; has the property
that f is single-variable symmetric in a variable z; in the
space x;=0. That is, if f is single-variable symmetric in a
vatiable z; in the space z;=1, invert the variable x;. Let the
resultant function be f’.

Proposition 4 If a function f’ has a maximal symmetry
group containing single-variable symmetric variables, there
exists a simple disjunctive decomposition of f' whose
bound set is the maximal symmetry group and the
subfunction is implemented in an AND gate. |

Figure 4 shows the interpretation of this proposition.
Suppose that the variables in the maximal symmetry group
are moved up to levels ranging from n to [. Because

v —

the variables are single-variable symmetric, fi‘n’(i)Ir(i—l) =

%’ﬂ(“z"(i_l) = f:ﬂ(iﬁ"(i_” for any node v in level ¢
(n > i > [+1), which leads to |cut_set(f,w,l)| = 2.
According to Theorem 1, there exists a simple disjunctive
decomposition. The OBDD of the subfunction h is obtained
by replacing the nodes representing g(0, X¥') and g(1, X ')
into Boolean constants 0 and 1, respectively. We can see
that the subfunction is implemented with an AND gate.

Note that we do not change the variable order such that
the maximal symmetry group is in levels ranging from n
to [while checking for single-variable symmetry. After we
find that there exist single-variable symmetric variables, we
change the variable order and decompose the function.

3.4. Moving up variables in a maximal symmetry
group

If there exists neither multiform symmetric variables
nor single-variable symmetric variables in any maximal
symmetry group, we move the variables in a maximal
symmetry group up to higher levels than the other variables.
Let gtop be the highest level of variables in the maximal
symmetry group and gsize be the size of the group. Until
gtop becomes n, we repeatedly apply jumpdown(gtop +
1, gtop + 1 — gsize) operation, which moves the variable
at level gtop+1 to level gtop+1—gsize and increase the
level of every variable in the maximal symmetry group
by 1. Then, according to Theorem 1, we can examine
whether there exists a simple disjunctive decomposition
whose bound set is the maximal symmetry group.

4. Experimental results

The procedure for the restricted simple disjunctive
decomposition presented so far has been implemented.
We performed experiments on combinational (two-level or
multi-level) circuits of the MCNC benchmark [16]. From
the circuit description, we constructed OBDDs of primary
outputs in terms of primary inputs with the initial variable
order obtained by heuristics [6]. We then applied the
procedure to each of the single-output functions. If a
decomposition form was found, we applied the procedure
recursively to the image and the subfunction of the
decomposition.

Table 1 shows the experimental results. Due to space
limitations, we had listed the results of only one primary
output for each circuit. We selected the primary output
whose function had the largest number of variables. The
columns “name”, “po” and “#in” show the circuit name,
the index of the selected primary output and the number of
variables of the function.

We conducted three experiments on each function
for comparison. The column “restricted” corresponds
to the restricted simple disjunctive decomposition shown
in Section 3. The column “exhaustive” corresponds
to the method in which an exhaustive search [14] was
used for finding a bound set that gives a decomposition.
The column “restricted+exhaustive” corresponds to the
combined method in which the exhaustive search was
applied after no more decomposition was found by the
“restricted” method.

43

The columns “XOR”, “AND” and “SYM” correspond
to XOR gates, AND gates and the subfunctions produced
in the decomposition shown in Subsection 3.4; the column
“random” corresponds to functions that could not be
decomposed by the “restricted” method. These columns
show the input sizes of functions of the type; the
number in a parenthesis indicates the number of functions
of the same input size. In “XOR” and “AND”, we
merged successive functions if we could. For example,
a decomposition result ((z, - Tp) - x3) - (x4 ® x5)
(XOR: 2 and AND: 2(3)) was converted to x; - Tg -
z3 - (4 ® z5) (XOR: 2 and AND: 4). The columns
“random” show the difference of the decomposition results
between “restricted” and “exhaustive”. For example, in
the circuit “x4”, the “random” function with 9 inputs that
could not be decomposed by the “restricted” method was
decomposed into functions with 2 and 8 inputs by the
“exhaustive” method. Note that the decomposition results
of “exhaustive” and “restricted+exhaustive” are the same.
“Time” is the CPU seconds on a Sun Ultra 1 Model 170E,
where “>1000" means that the execution did not finish in
1000 seconds. We limited the maximum number of usable
OBDD nodes to 1,000,000.

From the results of the “restricted” method, we can
observe the following. Even if we restricted a bound set
to a maximal symmetry group, we found simple disjunctive
decomposition forms in many practical functions. The
execution time was negligible even for functions with
many variables. The “exhaustive” method decomposed
the “random” functions that could not be decomposed
in the “restricted” method, but it required an expensive
execution time and generally failed for functions with more
than 24 variables. The “restricted+exhaustive” method
successfully decomposed some functions that could not
be decomposed by the “exhaustive” method in a practical
amount of time. This is because the restricted simple
disjunctive decomposition reduced the number of variables
in the function to be decomposed before applying the
exhaustive search.

5. Conclusion

'We have presented an efficient procedure for a restricted
simple disjunctive decomposition. It is based on symmetry
detection and variable reordering of an OBDD. The
decomposition form is restricted such that the bound set
is a maximal symmetry group. Because of the restriction,
the computation cost is very small. Even if we restricted
a bound set to a set of symmetric variables, we found
simple disjunctive decomposition forms in many practical
functions. Thus the procedure will be useful as a preprocess
for multi-level logic synthesis.

As a future work, we would like to develop an

Table 1. Experimental resuits

exhaustive

restricted+exhaustive

circuit restricted
name po #in|[XOR AND SYM random time(sec) || random time(sec) || random time(sec)
C880 24 45 0 24 0 41 0.70 —] >I1000 — >T1000
apex|1 23 39 0 5,6 0 30 0.18 —1| >1000 — >1000
apex2 1 36 0 2(4),3 0 30 1.59 —| >1000 — >1000
apex3 8 45 0 2(3) 0 42 0.23 —| >1000 — >1000
apex$5 77 25 0 46,11 0 7 1.03 — | >1000 2,6 1.11
apex6 3 24 0 2(2) 0 22 020 2(2),7,14 | 419.22 | 2(2),7,14 426.44
apex7 4 24 0 37 0 16 0.12) 2(2),6,9 276 2(2),6,9 1.31
cordic 1 23| 42) 23] 3(3) 8 0.40 8 74.37 8 0.40
count 16 20 2 16 0 4 0.09 2,3 0.11 2,3 0.08
cps 1 22 0 5 3 16 026 22),7.8(330.77| 2(2),7,8 0.80
dalu 2 47 0l 2(2),14(2) 3 17 0.50 — 1 >1000 17 34.26
des 65 19| 2(6) 3 0 11 081 2,3(2).6 28.69 | 2,3(2),6 0.83
duke2 7 18 0 0 0 18 0.09 2,17 15.83 2,17 15.98
frg2 135 25 01]2(5),3(2),4 0 13 036 2(3),10 6.99 I 2(3),10 - 0.80
misex2 10 14 0 23, 0 5 0.07 2,4 0.18 24 0.07
064 1 130 0| 2(65),65 0 0 1.25 0 0.40 0 1.23
pdc 30 13 0 3 0 11 1.22 11 2.05 11 1.54
seq 6 38 0 2(2),3 0 34 0.61 —1 >1000 — >1000
spla 1 16 0 2(2),14 0 0 1.08 0 3.05 0 1.08
t481 1 16(2(5) 2(10) 0 0 0.16 0 9.74 0 0.17
term1 8 20 2| 2(6),4,5,6 0 0 0.18 0 0.83 0 0.17
too_large 1 36 0 2(4),3 0 30 1.61 —1 >1000 — >1000
vda 15 17 0 0 0 17 0.23 17 20.30 17 20.26
vg2 2 25 0 2 0 24 0.08 —| >1000 — >1000
x4 26 15 0 3,5 0 9 0.16 2, 0.98 2,8 0.17

efficient procedure for a general (not restricted) simple
disjunctive decomposition. We also have to evaluate the
effectiveness of a simple disjunctive decomposition by
integrating the procedure into a practical multi-level logic
synthesis system.

References

[1]1 R. L. Ashenhurst.

The Decomposition of Switching
Functions. In Proc. of an International Symposium on the
Theory of Switching, Apr. 1957.

[71 Y.-T. Lai, M. Pedram, and S. Vrudhula.

BDD Based

Decomposition of Logic Functions with Application to
FPGA Synthesis. In Proc. DAC, pages 642-647, June 1993.

[8] 1. Mohnke, P. Molitor, and S. Malik. Limits of using Signa-
tures for Permutation Independent Boolean Comparison. In
Proc. ASP-DAC, pages 459-464, Aug. 1995.

91

D. Moller, J. Mohnke, and M. Weber.

Detection of

Symmetry of Boolean Functions Represented by ROBDDs.
In Proc. ICCAD, pages 680-684, Nov. 1993.

{10]

S. Panda, F. Somenzi, and B. F Plessier.

Symmetry

Detection and Dynamic Variable Ordering of Decision
Diagrams. In Proc. ICCAD, pages 628-631, Nov. 1994.

[11]

J. P. Roth and R. M. Karp. Minimization Over Boolean

[2]

(3]

(4]

(5]

(6]

R. E. Bryant. Graph-Based Algorithms for Boolean Func-
tion Manipulation. IEEE Trans. Comput., C-35(8):667-691,
Aug. 1986.

S. Chang and M. Marek-Sadowska. Technology Mapping
via Transformations of Function Graphs. In Proc. ICCD,
pages 159-162, Oct. 1992.

D. I. Cheng and M. Marek-Sadowska. Verifying Equiva-
lence of Functions with Unknown Input Correspondence. In
Proc. EDAC, pages 81-85, Feb. 1993.

C. R. Edwards and S. L. Hurst. A Digital Synthesis Pro-
cedure Under Function Symmetries and Mapping Methods.
IEEE Trans. Comput., ¢-27(11):985-997, Nov. 1978.

M. Fujita, Y. Matsunaga, and T. Kakuda. On Variable
Ordering of Binary Decision Diagrams for the Application
of Multi-level Logic Synthesis. In Proc. EDAC, pages 50~
54, Feb. 1991.

44

(12

[13]

(14]

[15]

[16]

Graphs. IBM Journal, pages 227-238, Apr. 1962.

R. Rudell. Dynamic Variable Ordering for Ordered Binary
Decision Diagrams. In Proc. ICCAD, pages 4247, Nov.
1993.

T. Sasao. FPGA Design by Generalized Functional
Decomposition. In T. Sasao, editor, Logic Synthesis and
Optimization, pages 233-258. Kluwer Academic Publishers,
1993.

H. Sawada, T. Suyama, and A. Nagoya. Logic Synthesis
for Look-Up Table based FPGAs using Functional Decom-
position and Support Minimization. In Proc. ICCAD, pages

353-358, Nov. 1995.
C. Tsai and M. Marek-Sadowska. Generalized Reed-Muller

Forms as a Tool to Detect Symmetries. [EEE Trans.

Comput., 45(1):33-40, Jan. 1996.
S. Yang. Logic Synthesis and Optimization Benchmarks

User Guide Version 3.0. MCNC, Jan. 1991.

	Main Page
	GLSVLSI97
	Front Matter
	Table of Contents
	Author Index

