
EURO-DAC ’96 with EURO-VHDL ’96
0-89791-848-7/96 $4.00  1996 IEEE

KIR – A graph-based model for description of mixed analog/digital systems�

Christoph Grimm, Klaus Waldschmidt
EMail: fgrimmjwaldschg@ti.informatik.uni-frankfurt.de

Technische Informatik, Professur Prof. Dr. K. Waldschmidt
Johann Wolfgang Goethe - University, Frankfurt am Main

Abstract

Systems can be described in different time models and on
various levels of abstraction. We can distinguish between
models in discrete-event, discrete and continuous time.

Graph-based, formal models allow us to use either dis-
crete event/discrete time models or continuous time models.
The combined use of all three time models in one system is
the main problem when modeling mixed analog/digital sys-
tems.

In this paper, a graph-based model is presented that sup-
ports the use of all three time models in different parts of
a graph. This allows digital, discrete-time systems to be
modeled together with their analog, physical environment.

1. Introduction

For computer aided design of electronic systems, a for-
mal specification of the functions and features is necessary.
We can distinguish between:

� text-based, formal specification using modeling lan-
guages, such as VHDL[1];

� graph-based, formal specification using graphs, such
as petri-nets [5] or data-flow graphs [8], [13].

Mixed analog/digital systems consist of sections modeled
in three different time models [12] (see figure 1). Sections
that work in the continuous-time domain are specified using
differential equations (Differential Equation Specified Sys-
tems, DESS). Sections working in the discrete-time domain
(Discrete Time Systems, DTS) are described using auto-
mata models or difference equations. Discrete-Event Sys-
tems (DEVS) can be described by petri-nets or data-flow
graphs.

�This work is supported by the DFG, grant no. WA 357/9.

t∈ℜ: t=n tclk
continuous time discrete time discrete-event time

t1

t2 t3

t4

t5 t6

t ∈ℜ t1 < t2 t5 < t6

Figure 1. Time models of hybrid systems

Text-based modeling such as VHDL-A [3] permits the
modeling of some sections of a system in discrete/discrete-
event time and the modeling of other sections of the same
system in continuous time.

However, design automation algorithms don’t work on
text-based models. The formulation of algorithms and me-
thods requires graph-based models. In order to get a ho-
mogeneous, graph-based representation of a hybrid system,
Brielmann and Kleinjohann[6] translate continuous-time
systems into discrete-time systems using the z-transform.
The resulting discrete-time system can be represented by
petri-nets (ETPN). This results in a lower precision in simu-
lation than direct simulation of DESS. Furthermore, the ap-
plication of known methods of synthesis for the analog parts
of that homogeneous model seems to be an unsolved prob-
lem.

Hybrid automata can be viewed as a generalization of
timed automata, in which the behavior of variables is gov-
erned in each state by a set of differential equations [4].
They allow modeling of interactions of physical environ-
ment with reactive programs. Hybrid automata represent re-
active behavior by a state transition graph. The differential
equations of each state are represented by their text-based
representation.

None of the known representations allows the com-
mon graph-based modeling of differential equation specified
systems together with discrete-time or discrete-event sys-
tems [9]. The aim of this paper is to propose such a graph-
based model of hybrid systems.

In section 2, we describe the structure and semantics
of the KIR-graph (KIR = Kandis Intermediate Representa-
tion). How this graph-based model can be used to specify or
model behavior of mixed analog/digital systems is shown in
section 3. Existing and potential applications are described
in section 4.

2. The KIR - Graph

Petri-nets and data-flow graphs do not allow the repres-
entation of continuous-time functions. This is due to their
event-driven semantics. This semantic does not permit the
representation of continuous-time signals that are always
valid. These signals are needed to calculate for example dif-
ferentiation and integration of signals over time. The event-
driven semantics of these graphs is determined by their “fir-
ing rule”. This rule defines when the tokens on the in-edges
of the nodes are consumed and when new tokens on the out-
edges are produced.

Modeling of continuous-time systems is done using sig-
nal-flow graphs or block diagrams. These can represent dif-
ferential equations in a graph-based form. They do not have
“firing rules” that are needed to describe reactive, event-
driven behavior. Therefore, they cannot be used for mod-
eling of reactive, event-driven behavior.

The problem using existing graphs is that event-driven
systems need “firing rules” in some form, but continuous-
time systems must be always active. When specifying in a
homogeneous time model, only the operation of a node is
described (e. g. “multiply operands”). The condition that
leads to the execution of an operation is described by the
semantics of the graph. It is not a part of the specification
given by the “user”. However, the existence of different
time models in a mixed analog/digital system requires dif-
ferent “firing rules”.

The KIR-graph tries to avoid these problems using the
following ideas:

� In addition to the operation f , the condition that leads
to the execution of f has to be specified. This means,
that the “firing rule” is not a constant feature for the
whole graph. It can be different for each node.

� The edges of the graph represent signals s(t). They
are a function of time in the corresponding time model
of the graph or node.

Definition 1 (KIR-Edge) Edges represent directed signals
that connect nodes. An edge e is a tuple consisting of a ref-
erence (this means i. e. only its name) to one origin node
vo;r, a set of references to destination nodes Vd;r and a sig-
nal s(t):

e = (vo;r; Vd;r; s(t))

s(t) remains constant, until vo assigns a new value to it.

The signal s(t) can be of three different types: REAL, INT
or ENUM. The type REAL is used to model continuous-
value signals. The type INT is used to model discrete-
value approximation of continuous-value signals. The type
ENUM allows to model discrete-value signals.

Definition 2 (KIR-Node) Nodes represent operations per-
formed on signals. A node v is a tuple consisting of a set of
references to edgesEin;r , a set of references to edgesEout;r,
a set Ea;r � Ein;r of references to in-edges, that can activ-
ate the firing rule, the operation f and a firing rule a (see
definition 4).

v = (Ein;r; Eout;r; Ea;r; f; a)

The operation f of a node can be specified in the following
ways:

� In a declarative way by giving the abstract function
f of all output-signals Seout (t) of the input-signals
Sein(t).

� In an operational way by describing a method or a
structure. The method or the structure are described
by a graph consisting of KIR-nodes and -edges (see
definition 3).

Definition 3 (KIR-Graph) A KIR-graph G is a KIR-node,
whose function f is described in an operational way by a
graph (V;E) of KIR-nodes V and KIR-edges E.

G = (Ein;r; Eout;r; Ea;r; (V;E); a)

Definition 4 (Firing rule of KIR-nodes) A “firing rule” a

determines when the operation f of a node has to be ex-
ecuted. The firing rule consists in two conditions c1; c2:

c1 : T ! ftrue; falseg assigns each time t from the set of
all physical time T one of the values true or false.

c2(s1(t); : : : ; sn(t))
is a function of the signals s1(t); : : : ; sn(t) from the
edges Ea;r (a subset of the in-edges of a node, see de-
finition 2), with the value-range ftrue; falseg.

If both conditions are true, the operation f of the node is
performed.

Definition 3 allows hierarchical ordering of graphs. To
ensure that no node of a graph is firing while the graph itself
is not firing, we restrict the use of firing rules as follows:

Rule 1 (Allowed firing rules) For a firing rule a of a KIR-
graph and the firing rules ai of all its sub-nodes/graphsvi 2
V :

a = true (9ai with: ai = true

Infinitesimal small changes of continuous value signals
could always activate a node sensitive on an edge. To avoid
this:

Rule 2 (Type of Ea;r) The type of the signals of Ea;r of a
node must not be REAL

To give the hierarchical graph a clear structure, we re-
strict the access of edges and nodes to those which are loc-
ally defined or imported als in- or out-edges.

Rule 3 (Visibility of edges)
The in(out)-edges Ein;v , (Eout;v) of a node v of a graph G

are in(out)-edgesEin;G; (Eout;G) or edges EG of G:

(Ein;v [Eout;v) � (EG [Ein;G [Eout;G) 8v 2 G

(vo;r [Vd;r) � VG 8e 2 G

3. Modeling hybrid systems with KIR

In the previous section, we have described the structure
of the KIR-graph. To represent behavior of hybrid systems,
we need a semantic. The semantic is described by firing
rules a. To describe these firing rules, an underlying time
model is required. To simplify the graph-based representa-
tion of VHDL- or VHDL-A descriptions, we use a similar
time model. The time is a pair of a value of physical time
and a value of a causal time model:

t = (tphys 2 <; t� 2 N)

We define the relation “<” as follows:

t1 < t2 , t1;phys < t2;phys

or t1;� < t2;� ^ t1;phys = t2;phys

This leads to two orthogonal ranges of time (figure 2).

continuous (physical) time t ∈T
 DTS and DESS

δ -
time,
δ∈N δ-time and

time-constraint

DEVS-specification
in δ-time

Figure 2. Time-model of the KIR-graph

3.1. Modeling in the discrete-event time model

In hybrid systems, parts of the system are described in an
algorithmic way. An algorithm can be described by a partial
order of a set of operations to be performed. This partial or-
der can be described for example by a data-flow graph. In
the context of a system, it is important, when the algorithm
is executed. Nodes of a data-flow graph are active when the
values of all in-edges are known. These semantics could not
be used in KIR, as the edges are signals, whose values are
always valid and known. The semantics of VHDL use an
event-driven method to activate a process. In KIR, we use
a similar method to describe activation of a node: A node
with a = aDEV S is activated/fires, when the value of a sig-
nal sea(t) of an edge in Ea has changed at time t1.

1. The behavior of discrete-event systems can be
modeled using a KIR-graph with the following con-
ditions c1; c2 in its firing rule aDEV S :

c1 = true 8t 2 <

c2 = true (sea(t1) 6= sea(t2); t1 < t2

2. To satisfy rule 1, all nodes in a graph-node with a =
aDEV S must also have the firing rule aDEV S .

The functions cond(Gif ; Gthen; Gelse)
and iterate(Gcond; Giter) can be used for modeling condi-
tions and iterations. This is similar to the use of branch and
merge-nodes in data-flow graphs. These functions can only
be used inside nodes with a = aDEV S .

3.2. Modeling in discrete time

Often, functions are evaluated independently from ex-
ternal events. Instead of waiting for external events, these
functions are executed in regular time steps tclk.

1. For describing the regularly repeated execution of a
function, the conditions c1; c2 of aDTS are defined as
follows:

c1 = true 8t = n � tclk; n 2 N; tclk 2 <

c2 = true

2. The condition of rule 1 is true, if for all nodes vi 2
V ai = aDEV S or ai = aDTS with tclk;ai = n �
tclk; n 2 N .

If all operations are linear, the KIR-graph corresponds to
a discrete-time signal-flow graph, where all edges E have
the semantics of a multiplication with z�1 (delay of one time
step).

As an example, in figure 3 the representation of the direct
form I ofH(z) = a0+a1z

�1
+a2z

�2

b0+b1z�1+b2z�2
by a KIR-graph is given.

The graph with a = aDTS models behavior in the discrete
time model. The subgraph with a = aDEV S describes the
calculation of new values in the discrete-event time model.

+

+

*

*

* +

+

*

*

*

a0

a1

a2

1/b0

-b1

-b2

x[n] y[n]

Z -1

a = aDTS
a = aDEVS

Z -1

Z -1

Z -1

Figure 3. KIR-graph with aDTS

3.3. Modeling in continuous time

Behavior in continuous time can be described by differ-
ential equations or transfer functions. Graph-based mod-
els for differential equations include signal-flow graphs or
block diagrams. To describe behavior in continuous time,
aDESS is defined as follows:

1. For describing continuous-time behavior in a graph-
based model, the semantics of a block diagram can
be used. Therefore, we define the conditions c1; c2 of
aDESS :

c1 = true 8t 2 <

c2 = true

2. As aDESS = true 8t 2 <, rule 1 allows the use of
all a for all nodes of the graph.

In figure 4 a differential equation is represented by a
continuous-time signal-flow graph, a block-diagram and a
KIR-graph with a = aDESS .

3.4. Modeling hybrid systems

A system is more than only the sum of its parts. There-
fore, it is not possible to use signal-flow graphs, data-flow
graphs and block-diagrams to describe behavior of a hybrid
system. These graphs have a well defined semantics de-
scribing their behavior, but the interaction of the graphs of
different semantics is not defined.

Hybrid systems make use of all three time models. Beha-
vior in all three time models can be described by one KIR-
graph with nodes (subgraphs) with different firing rules. As
hybrid systems are modeled in all three time-models, the
KIR-graph representing system-level behavior can only be

Firing rule of graph-node firing rule of nodes
continuous-time (aDESS) aDEV S ; aDTS ; aDESS

discrete-time (aDTS) aDEV S ; aDTS

discrete-event (aDEV S) aDEV S

Table 1. Allowed firing rules

a KIR-graph with a = aDESS . Due to rule 1, only the
continuous time-model allows us to have subgraphs with
all other firing rules a! The nodes of the KIR-graph repre-
senting system-level behavior can then have the firing rules
a = aDEV S , a = aDTS or a = aDESS .

Graph-nodes with discrete-time activation (a = aDTS)
cannot – due to rule 1 – contain nodes with continuous-time
activation (a = aDESS). Sub-nodes with a = aDEV S are
possible.

Graph-nodes with discrete-event activation
(a = aDEV S) can contain only nodes with a = aDEV S .

Table 1 gives an overview of the firing rules that are al-
lowed in nodes of a graph with given firing rule.

As a graph can consist of nodes with different firing rules,
nodes can also be activated by events on in-edges of a graph
with another firing rule (see table 1). The following combin-
ations can occur:

� DESS ! DTS: A node with a = aDTS is part of a
graph-node with a = aDESS . In this case, there are
no problems since aDTS is independent from the in-
edges. aDESS and rule 1 ensure that the signals of the
in-edges are always valid and up-to-date, when aDTS

activates the function of its node.

� DESS ! DEVS: A node with a = aDEV S is part
of a graph-node with a = aDESS . In this case,
the discrete-event node could be constantly activated
by infinitesimally small changes in the signals of the
in-edges. In this case, the node would describe a
continuous-time behavior. To avoid this, the signals
of the edges Ea that are used in condition c2 of the
firing rule must be value-discrete! Value-discrete sig-
nals can be obtained by comparing two continuous-
value signals.

� DTS ! DEVS: A node with a = aDEV S is part of
a graph-node with a = aDTS . aDEV S ensures that
all necessary calculations are performed at once (in �

time, without delay in physical time).

It can also occur that a graph (e. g. a DESS) uses signals on
the out-edges of a node that is not always active (e. g. DTS,
DEVS). In this case, the edge keeps its value while the node
is inactive. In Definition 1 (KIR-edge) we have defined that

-

1/(RC)

1/(RC) 1/sU1 U2

signal-flow graph block-diagram

1/(RC) 1/s

1/(RC)

-

KIR - graph

f: e5=∫e3(t)dt
a: aDESS

f: e3 = e2-e4
a: aDESS

e1 e2 e3

e4
e5

f: e2=e1/(RC)
a: aDESS

f: e4=e5/(RC)
a: aDESS

Figure 4. Representation of a transfer function by graphs.

f: y(s) = 159155/
 159155+1*s

u1 u2

u3 u4

f: u2 = u1/u4
a: aDESS

a: aDESS

a: aDTS

f: Graph

a: aDESS

a: aDEVS

f: Graph

Figure 5. KIR-graph of the dynamic compressor specified in VHDL in figure 6 (simplified)

an edge keeps its value until the node becomes active again
and the node assigns a new value to the signal.

The KIR-graph is a formal, behavioral model of hy-
brid systems on a high level of abstraction. Since all sig-
nals/edges are directed, there is no direct way to model
networks with across- and through-values (Kirchhoff-laws).
These networks would not specify a behavior or a function,
but model the structure of an existing system. As the KIR-
graph contains only directed, signal-flow oriented models it
is a good specification of a hybrid system.

4. Application

In the project “Specification of Hybrid Systems”, we
have developed methods for evaluation and partitioning of
hybrid systems. A system is specified in a subset of VHDL-
A (“VHDL-hybrid”, e. g. figure 6) on behavioral and func-
tional level as a nonconservative system. A compiler trans-
lates this text-based specification into a KIR-graph (figure
5). In the example from figures 5 and 6, the concurrent
statements hp1, alg and div are subgraphs of a graph with
aDESS . The process alg, which is activated every 100ns, is
translated into a subgraph with aDTS . Sequential statements
in a process are translated into nodes of the subgraph alg
with aDEV S . The differential equation represented by the
transfer function in hp1 can be represented either by its ab-
stract function or – after first steps of synthesis – by a block
diagram. The resulting KIR-graph is written into a file with
a syntax very similar to EDIF or ASCIS-DFG[8].

ENTITY comp IS
PORT(u1: IN REAL; u2: OUT REAL);

END comp;

ARCHITECTURE multiparadigmatic OF comp IS
SIGNAL u3: REAL;
SIGNAL u4: REAL;
ATTRIBUTE fs_min OF hp1: LABEL IS 44.1 kHz;
ATTRIBUTE fs_min OF alg: LABEL IS 44.1 kHz;
ATTRIBUTE fs_min OF div: LABEL IS 44.1 kHz;

BEGIN
hp1: ENTITY s_polynomial (default)

GENERIC MAP((0.0,159155.000),
(1.0,159155.000))

PORT MAP(u1,u3);
alg: PROCESS (u3)

VARIABLE max: REAL;
VARIABLE z: REAL;

BEGIN
IF abs(u3) < 50 THEN

max := 50;
ELSE

max := abs(u3);
END IF;
u4 <= 0.99*u4+0.01*max;
z := max;
WAIT FOR 100 ns;

END PROCESS;
div: u2 <= u1 / u4;

END multiparadigmatic;

Figure 6. Dynamic compressor

There exists a hybrid implementation for each KIR-
graph: DTS and DEVS can be synthesized with known
methods of high-level synthesis. Transfer functions in
DESS can be implemented with analog computing devices.
The resulting system would be a correct implementation of
the specification. Nevertheless, it is not optimal concerning
area, delay and power consumption. The tool KANDIS[11]

is being developed to find a better partitioning. In this tool,
the KIR-graph is used as a starting point for:

� Methods for estimation of area, power and delay.

� Transformations:
continuous-time ! discrete-time with numerical in-
tegration methods, Shannon theorem.
discrete-time/discrete-event! continuous-time.

� Construction and synthesis of analog or digital
structures[11],[10].

� Communication between analog construction and di-
gital synthesis[7].

5. Summary

We have presented a graph-based, formal model for
mixed analog/digital systems. It can serve as intermedi-
ate representation or as the basis of an information model
of VHDL-A. This graph-based model allows to use formal,
graph-based methods in system design or synthesis. Pos-
sible applications are:

� The simulation of hybrid systems. [12] describe the
idea of abstract simulation machines. Each KIR-node
could be such a simulation machine.

� The design of hybrid systems (see section 4). The
formal, graph-based representation allows to formu-
late graph-based methods for analysis and partition-
ing into analog and digital parts.

� Formal verification requires a formal specification.
We would have to prove the equivalence of the formal
specification (KIR-graph) and a model of its imple-
mentation.

In our current work, we use KIR for documenting and prov-
ing transformations that allow us to re-partition the structure
of a KIR-graph representing the behavior of a mixed ana-
log/digital system.

References

[1] IEEE Standard VHDL Language Reference Manual (IEEE
Std 1076-1993). 1994.

[2] 7. E.I.S.-Workshop, Technische Universität Chemnitz, Nov.
1995.

[3] IEEE VHDL subPAR 1076.1: Analog Extensions to VHDL.
Design Objective Document (DOD). Version 2.2. oct 1995.

[4] R. Alur, C. Courcoubetis, T. A. Henzinger, and P. H. Ho. Hy-
brid Automata: An Algorithmic Approach to the Specifica-
tion and Verification of Hybrid Systems . In R. L. Grossman,
A. Nerode, A. P. Ravn, and H. Rischel, editors, Hybrid Sys-
tems (Serie: Lecture Notes in Computer Science, Vol. 736),
pages 209–229. Springer-Verlag, 1993.

[5] L. Benders and M. Stevens. Petri Net Modelling of Task
Level Behavioral VHDL for VLSI. In Second European
Conference on VHDL Methods, pages 180–183, Stockholm,
Sept. 1991.

[6] M. Brielmann and B. Kleinjohann. A formal model for
coupling computer based systems and physical systems. In
European Design Automation Conference, pages 158–163,
1993.

[7] C. Grimm, P. Oehler, and K. Waldschmidt. Eine Zwischen-
darstellung zum Entwurf hybrider Systeme durch Kopplung
verschiedener Konstruktionswerkzeuge (in German). In 7.
E.I.S.-Workshop [2].

[8] G. G. Jong. Data flow graphs: system specification with the
most unrestricted semantics. In The European Design Auto-
mation Conference, pages 401–405, Amsterdam, The Neth-
erlands, Feb. 1991.

[9] T. Leyendecker, P. Oehler, and K. Waldschmidt. Spezifika-
tion hybrider Systeme (in German). Internal Report 11/95,
FB Informatik, J. W. Goethe-University, 1995.

[10] P. Oehler, C. Grimm, and K. Waldschmidt. Begriffshierar-
chien zur wissensbasierten Konstruktion von Filtern, math-
ematischen Operatoren und Wandlern (in German). In 7.
E.I.S.-Workshop [2].

[11] P. Oehler, C. Grimm, and K. Waldschmidt. Kandis - a tool for
construction of mixed analog/digital systems. In EuroDAC,
Brighton, UK, Sept. 1995.

[12] H. Praehofer and B. P. Zeigler. Modelling and Simu-
lation of Non-Homogeneous Models. In F. Pichler and
R. Moreno-Diaz, editors, Computer Aided Systems Theory
— EUROCAST’89 (Serie: Lecture Notes in Computer Sci-
ence, Vol. 410), pages 200–211, Las Palmas, Spain, February
26 — March 4 1989. Springer-Verlag.

[13] U. Steinhausen and et al. System-Synthesis Using Hard-
ware/Software Codesign. Int. Workshop on Hardware-
Software Co-Design, Cambridge, MA, Oct. 7-8, 1993.

	CDROM Home Page
	1996 Home Page
	EURO-DAC96 Home Page
	Front Matter
	Table of Contents
	Session Index
	Author Index

