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Abstract

This paper discusses the design of a MIPS-I processor
kernel using VHDL. The control structure of this proces-
sor is distributed, with a small controller in each pipeline
stage controlling sequencing of operations and communica-
tion with adjacent pipeline stages. Instruction flow manage-
ment is performed using asynchronous communication sig-
nals. Due to its high-level description and distributed con-
trol structure, the kernel can easily be extended. Thus, in-
struction set extension hardware/software co-evaluation can
be performed efficiently using rapid prototyping.

1. Introduction

To optimize processor performance to a particular appli-
cation, one approach of hardware/software co-design is in-
struction set extension. To improve performance on any par-
ticular problem, many instruction sets have been proposed.
While most proposals thoroughlyevaluate the impact of pro-
posed instruction set extensions on the software, the impact
on hardware design is rarely evaluated. In this work, we
present a processor kernel to support hardware/software co-
evaluation of instruction set extensions.

Depending on the proposed instruction set extensions, an
implementation may either be too large to be implemented
economically, or the extensions may slow down the proces-
sor so that any performance effects of an optimized ISA may
be lost. To evaluate hardware effects of instruction set ex-
tensions, we have designed an extendible RISC processor
architecture. By implementing proposed instruction set ex-
tensions, hardware aspects of the proposed extensions can
be evaluated.

Adapting an instruction set to a particular problem is a
difficult task, as many unknown problems have to be ex-
plored. To achieve overall optimization of program perfor-
mance, the execution time equation has to be optimized [4]

execution time =
instructions

program
�

cycles
instruction

�

seconds
cycle

Due to the many factors involved in performance opti-
mization, suggested optimization solutions often minimize
only the number of instructions necessary to solve a prob-
lem, or at best the number of cycles.

However, many of the suggested special purpose instruc-
tions are complex. As a result, it may not be possible to clock
an extended processor at the same frequency as the original
design. This is often neglected by studies, as the processor
characteristics can be difficult to predict, and as a full imple-
mentation of a processor is often out of scope. Thus, stud-
ies most often use software simulators such as SPIM [10] to
predict performance. While these instruction set emulators
can be used to test software, generate traces and gather statis-
tics, they do not allow to predict the effects of the extended
instruction set architecture on the processor design itself.

To investigate hardware/software co-evaluation of vari-
ous instruction set extensions, we have decided to imple-
ment an extensible MIPS-I architecture kernel [6]. This ker-
nel gives us the possibility to study the effects of extended
instruction set architectures on processor speed and imple-
mentation area.

For the processor to be useful for these purposes, we iden-
tified the following requirements:

high-level description The format of the processor de-
scription should be easy to understand and modify.

modular To add new instructions, only the relevant parts



should have to be modified. A monolithic design would
make experiments difficult.

extendible All data structures and interfaces should be de-
signed such that new fields can be added with ease.

synthesizable The processor description should be synthe-
sizable to derive actual hardware implementations.

This work is organized as follows: we discuss the imple-
mentation of the MIPS-I processor in section 2. We describe
test and validation of the processor description in section 3,
and report synthesis results in section 4. Various applica-
tions for the presented model are given in section 5, and we
discuss related work in section 6. We draw our conclusions
in section 7.

2. Implementation

2.1. Design Approach

To make the design easy to modify and adaptable to var-
ious purposes, we decided to use a high-level description.
While a low-level physical or standard-cell based layout
may have higher performance, this design would be harder
to modify. Added instructions would require either total re-
design, or would achieve sub-optimal results by being forced
to fit into a design not optimized for the new functionality.

Thus, we decided to describe the processor in a hardware
description language and use synthesis tools generate the ac-
tual layout. For architecture studies, a high-level description
approach is advantageous, as it is easier to modify and adapt
to accommodate new instructions to be studied. Also, the ef-
fects of various implementation decisions, such as whether
to use a ripple-carry adder or a carry look-ahead architec-
ture can be studied by postponing these implementation de-
cisions to the synthesis step.

The base MIPS processor is designed using VHDL as de-
scription language and the Synopsys Design Compiler [16]
as synthesis tool [11]. To ensure portability and simplify
maintenance of the code, we have developed the VHDL
processor description following the ESA VHDL modeling
guidelines [15].

2.2. Architecture

An easily modifiable description is necessary, but not suf-
ficient. To experiment with different extensions, the struc-
ture of the base design has to provide mechanisms to add in-
structions easily, and keep modification to a minimum and
as localized as possible. The overall processor framework
should remain unmodified, and should be capable of inte-
grating additional instructions. Not only additional ALU in-
structions should be handled, but all types of instructions,
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Figure 1. Control unit in a conventional processor design:
the data path and the control unit are separate blocks.

A single, monolithic control unit controls the entire data

path.

such as new control flow mechanisms or novel memory ac-
cess methods.

In many traditional processors, the control unit is cen-
tralized and controls all CPU functions. However, esp. for
pipelined architectures, this control unit is one of the most
complex parts of the design: the state machine has to take
care of introducing pipeline stalls, squashing bubbles, han-
dle exceptions, etc.

Even in “normal” architectures, where the instruction set
is fixed before implementation starts, the control unit is one
of the most difficult parts of the design. When the architec-
ture is designed to be extendible and the instruction set is
not fully defined, designing such a state machine is not fea-
sible. As new instructions are added, they may use an un-
predictable number of cycles or have some special synchro-
nization demands that cannot be implemented easily.

In our design, we have decided to break up the unstruc-
tured control unit in small, manageable units. Instead of a
centralized control unit, which aims to control the complete
data path (see figure 1), the control unit is integrated with the
pipelined data path. Thus, each pipeline stage is controlled
by its own, simple control unit. Overall flow control of the
processor is implemented by cooperation of the control units
in each stage (see figure 2). This control model is based on
communicating state machines using asynchronous control.

Each pipeline stage contains a process modeled in VHDL
that stores the current state and determines what actions are
to be taken. Each pipeline stage can be in one of three basic
states:

WORK The stage executes an instruction.

STALL The stage has computed a result, but cannot pass it
to the following stage.
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Figure 2. Decentralized control unit: the control unit
has been partitioned to reflect the different data path

segments. The control units communicate using asyn-
chronous handshake signals to implement the global

control functions such as flow control.

IDLE The stage is idle, i.e., it does not compute any instruc-
tion, nor is it stalled.

This basic model is extended to cover the operational re-
quirements of each stage. For example, in the memory ac-
cess stage MEM, the WORK state is subdivided into states
for cache access, main memory access, processor bus busy,
cache update and fixup.

The processor pipeline is controlled by cooperation be-
tween the state machines present in each pipeline stage.
Each pipeline stage is connected to its immediate neighbors,
and indicates whether it is able to supply or accept a new
instruction. Communication with adjacent pipeline stages
is performed using two asynchronous signals, ready and
accept. When a stage has finished processing, it asserts
theready signal to indicate that data is available to the next
pipeline stage. The next pipeline stage will then indicate
whether it is ready to accept these data by using theaccept
signal. The state transitions of a single pipeline stage de-
pending on the asynchronous control signals are shown in
figure 3.

Using this approach, the centralized control unit present in
most CPUs can be replaced by cooperating state machines
(see figure 4). These state machines are easier to debug
(since they have fewer states) and extend. Since all data nec-
essary to determine what actions are to be taken next are
available in the pipeline stage (current operation status, and
synchronization signals from neighboring stages), comput-
ing the next state is simple.

This asynchronous, self-arbitrating approach has been
proven to be an efficient and elegant solution for data flow
problems, but has to be adapted for implementing CPUs
[12], [9].
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Figure 3. FSM transition diagram for pipeline synchro-
nization. The following conditions are evaluated: last

cycle of computation (L), next pipeline stage can accept

data (A), previous pipeline stage can supply data (R).
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Figure 4. Pipeline synchronization using cooperating

state machines.

A drawback of this approach is that synchronization be-
tween adjacent state machines has a price. Communication
is only possible at the end of a cycle, when the result of the
current operation is known. Only then can the next state of
the FSM be computed from local information and the state of
neighboringpipeline stages. Since information has to propa-
gate from one end of the pipeline to the other at the very end
of a cycle, the synchronization mechanism is potentially a
critical path.

In a CPU, data flows not only in one direction, information
is also passed to earlier pipeline stages. Processor features
such as branches, delay slots, forwarding and esp. exception
handling require additional coordination. Thus, additional
communication and synchronization is needed between non-
adjacent pipeline stages.

To implement exception handling, we have implemented
an exception controller which collects exception informa-



tion from all pipeline stages. This controller is responsible
for annulling the appropriate pipeline stages and start fetch-
ing the exception handler.

3. Test and Validation

To verify our design, we have used traditional verifica-
tion methods based on test benches. The test bench imple-
ments a MIPS processor environment, complete with inter-
rupt controller, read/write buffer, cache, and RAM. We have
used this test bench to simulate the processor model both at
the behavioral and gate levels. In addition to this test vec-
tor based simulation, we have added a high-level graphical
verification phase.

The high-level tool RISCview is an X Window System ap-
plication which displays the internal state of the model. This
is performed by parsing traces generated by a VHDL simula-
tor to extract information about the CPU state. The state dis-
played includes: active machine instructions, the pipeline,
the state of each pipeline stage, the register file, and what-
ever else may be necessary to verify functionality.

This approach has the advantage of being able to trace the
operation of the CPU and identify any problems by scrolling
through a program and look at the corresponding CPU state.
This method does not replace other verification techniques,
but reduces the amount of ASCII trace data which has to be
scanned to identify problems in the design. The tool can be
used with both the original VHDL description and the post-
synthesis net list, as the only data used are traces generated
by the VHDL simulator.

Most notably, the following functionality can be verified
directly using a graphical display of traces:

� synchronization/communication between pipeline
stages

� state machines

� basic computation and data flow

� exception handling mechanism

Figure 5 shows a snapshot of the graphical validation
tool: the top button bars allow single stepping, tracing, and
scrolling through program execution. The main window dis-
plays the pipeline state graphically: each pipeline stage is
associated with its current FSM state, the instruction exe-
cuted in the pipeline, and the instruction address. A sum-
mary of the register file status and the program code are also
given. Active instructions are high-lighted in the program
code window.

High-level verification is mainly used to verify functional
correctness. Low-level problems (such as timing violations)
cannot be verified directly (although many problems can be
uncovered because of their impact on program correctness).

Figure 5. Snapshot of the graphical validation tool: The

pipeline displayed executes an instruction in the write-
back stage, and the memory stage is idle because the ex-

ecute stage operates on a multicycle operation. This op-

eration stalls the instruction decode and address transla-
tion phases, while the instruction fetch is allowed to com-

plete (the stage is in state CAL, i.e., cache access load).

To ensure correctness of low-level implementation details,
interfaces, and timing, we also use traditional simulation
techniques with test vectors for ensuring compliance with
specifications.

4. Synthesis and Complexity of Design

We have synthesized the VHDL description of the MIPS-I
kernel using the Synopsys Design Compiler, and the result-
ing circuit operates at 10 MHz (i.e., 10 native MIPS) using
the LSI 10K library (a single poly, double metal, 1:5� pro-
cess). Synthesis is performed bottom-up, using constraints
to ensure the optimization of global paths. This is necessary
since synchronization between the different FSMs (which
is propagated through the entire pipeline at the end of each
clock cycle) is one of the critical paths in the design.

By using a bottom-up compilation strategy, all modules
can be synthesized in parallel, on different workstations.
This speeds up the building of a processor considerably. The
simpler top-down strategy which consists of translating the
entire design at once required considerable resources: syn-
thesis time was about 5 days on a Sun 10/41, using up to
300 MB of swap space. Also, most synthesis tools can only
efficiently synthesize designs with several thousand gates.
Our current design exceeds the recommended module size
by an order of magnitude!

Table 1 gives the number of source code lines and the
gate count for each module of the synthesized design. The
register file was not synthesized using Synopsys, as regu-
lar memory structures cannot be efficiently generated using
logic synthesis. Instead, module generators provided by the



Module Lines Gates Description
AT 394 1008 AT pipeline stage (PC, TLB access)
IF 608 1177 instruction fetch unit
ID 885 1840 instruction decode unit
EXE 726 4393 execution unit (ALU)
MD 411 3414 integer multiply/divide unit
MEM 958 3503 data memory access
WB 149 386 register file writeback
RF 150 N/A register file
CP0 688 3505 coprocessor 0 (exception handling,

TLB)
CCON 229 437 cache controller
R3000 1024 N/A top level entity (glue logic between

modules, declaration of data types,
etc.)

Total 6222 19712 MIPS-I kernel

Table 1. Overview of the MIPS-I model: this table gives

the number of code lines per module, and the gate count

for the synthesized design. (This design was compiled
using Synopsys (v3.3a) and targeted at the LSI 10K li-

brary.)

ASIC vendor should be employed.1 Also, the CP0 copro-
cessor gate count does not include the register file necessary
to implement the TLB.

As expected, the critical path of the design is the synchro-
nization of the pipeline stages. This path begins when the
result of a memory operation is known at the end of a cycle
in the MEM stage, and has to propagate to through the EXE
and ID stages to the program counter in the AT stage.

Other tight paths are the branch decisions in the EXE
stage, the processing of the cache miss signal in the MEM
FSM and the exception handling mechanism which has to
collect data from all pipeline stages, and issue the appropri-
ate discard signals to squash pipeline operations.

To optimize the communication paths between state ma-
chines, state machine extraction can be used to generate
a single centralized state machine from the state machines
present in each function block. Since all state machines op-
erate with the same clock, the decentralized communicating
states machines can also be viewed as a single state machine
where the state vectors of all state machines are concatenated
to form a single state register.

The concatenated state machine can then be optimized to
use efficient state encoding and minimize the logic to imple-
ment state transitions. Thus, the multiple layers of combi-
national logic distributed across several modules can be op-
timized to just a few layers. The resulting monolithic state
machine is similar to the centralized control units in other
designs, but in the source level description, this machine is

1Using Synopsys synthesis, the register file would translate to about
14000 gates!

broken down into several cooperating modules.
To optimize the control logic, we have tried to automati-

cally generate a single state machine from the state machines
found in each pipeline stage and driven by the same clock.
This optimization would allow reduction of the communica-
tion overhead by global state assignment and optimization,
while maintaining the advantages of a modular structure at
the source level. However, due to limitations of the Synop-
sys state machine optimization tools, this has not been pos-
sible.

For comparison, the original 2� MIPS R2000 was de-
signed using custom design techniques and then shrunk to
1:5� as MIPS R3000. Both the original MIPS parts and our
design have been targeted at a single poly, double metal pro-
cess. The MIPS R2000 part used about 110k transistors for
the entire design, with about 30k used for the TLB and regis-
ter files, for a total of about 80k for the data path. The MIPS
R3000 achieved an operating frequency of 16.7 MHz.

5. Model Usage

The presented model can be used for two purposes:

� Evaluation of proposed instruction set extensions.

� Derivation of a prototype implementation of an ex-
tended application-specific MIPS processor.

Our MIPS processor model can be used to evaluate how
well proposed instruction set extensions integrate in an ex-
isting macro-architecture. To allow for new functionality
present in extended instructions, the available resources can
be parameterized. This includes adding additional function
blocks, extending existing function blocks (such as adding
additional functionality to the ALU) and introducing new in-
terfaces between blocks.

Our evaluation approach is to extend the base MIPS pro-
cessor to implement proposed instruction set extensions.
Then, both the base processor and the extended model are
synthesized to produce an ASIC implementation (using the
same compilation parameters). From the resulting ASIC net
lists, we extract information such as area and timing.

By comparing the synthesis results of the original MIPS
processor with the extended model, we can derive data such
as implementation area and maximum cycle time for a pro-
cessor. However, this data is only valid for a given macro-
architecture, as a major change in the architecture may im-
prove the efficiency of a proposed instruction (e.g. by adding
an additional pipeline stage to account for the latency of
some instructions).

Once evaluation has been completed, a full model of
the extended processor is available in synthesizable VHDL.
This can be used to generate a final implementation to be
used in a computer system.



The proposed model can also be used to derive FPGA pro-
totypes from the synthesizable VHDL description. This al-
lows to run extensive tests of newly implemented instruction
set extensions with early prototypes. To facilitate this use,
we have investigated the use of high-level optimization tech-
niques for FPGA targets to minimize FPGA resource usage
[2].

We have started to evaluate instruction set extensions tar-
geted at improving Prolog program performance [3], which
have been developed to support the high-performance VIP
Prolog interpreter designed at our university [8].

6. Related Work

Many architecture evaluation and codesign projects have
used VHDL at a purely behavioral, non-synthesizable level
(e.g., in TOSCA [1]). Usage of VHDL in these models is
similar to writing high-level programming language (such as
C) models [13].

Software models have a long history to derive software
performance data and instruction set usage [5]. While high-
level simulators such as SPIM [10] can be used to generate
traces to study software effects of proposed instruction sets
on software, they do not include enough detail for low-level
analysis. By performing a simulation of the internal pro-
cess structure, low-level simulators modeling the architec-
ture can be used to collect many low-level data such as mem-
ory band-width, processor stalls etc. This cycle-by-cycle
model deals with the allocation of operations to pipeline
stages, but ignores effects on processor speed and imple-
mentation size.

The PEAS-I system generates instruction sets from a set
of benchmark programs and generates CPU cores described
in the SFL hardware description language [14].

Processor implementation has been done mostly to per-
form validation using special emulators such as the Quick-
turn RPM system. Koe at al. [7] report that processor emu-
lation on FPGA systems is limited mostly by off-chip inter-
connect resources, which mirrors our experience.

7. Conclusion

Up to now, hardware/software codesign has been con-
cerned mostly with partitioning of problems where the prob-
lem is partitioned between software on a well-known and
existing CPU and peripheral support chips. In such envi-
ronments, hardware/software co-simulation is mainly con-
cerned with validating the interface [13].

We have shown how to apply hardware/software codesign
strategies to processor instruction set evaluation. In these
environments, the hardware/software interface consists of
the instruction set proper, and a full evaluation must include
a detailed model of the microprocessor.

We have introduced a synthesizable MIPS-I kernel written
in VHDL. This kernel has been designed to be extendible in
order to support hardware/software co-evaluation of instruc-
tion sets.
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