
Abstract

A system-design methodology based on the synergistic
integration of the specification modeling and the perfor-
mance modeling design stages is presented. This synergy is
supported by: 1) a novel technique that dynamically and
automatically incorporates delay information into an exe-
cutable specification from the corresponding performance
model, and 2) a novel simulation-based algorithm that
automatically checks conformance between the two mod-
els. VHDL is the primary means for integrating these two
disparate design stages.

1. Introduction

As the design of a complex system proceeds from an
abstract concept into a detailed design, significant time and
effort is spent in analyzing the evolving stages. Communi-
cation between these stages is often awkward. Many design
errors are introduced or left undetected in the final product
due to miscommunication of design intent among these
stages.

If not eliminated early, design errors typically manifest
themselves during later stages when it is costlier to fix
them. To support the early detection and elimination of
these errors, a design methodology must provide effective
communication among the various design stages of the
product.

A review [2, 3, 17, 18, 19, 3, 1]of the state-of-the-art
research in the field of digital-system design, however,
reveals that support for interaction between the different
design stages have not been extended to early design

stages. Support for increased communication between lev-
els of abstraction higher than algorithmic level is rare. For
a detailed review of existing methodologies, see [10, 15].

The methodology presented here offers a strong interac-
tion between models developed during the two early design
stages: operational-specification modeling and perfor-
mance modeling. Operational-specification modeling doc-
uments the external behavior of the system under design.
The operational-specification model is an implementation-
independent specification of the behavior, and is execut-
able. A performance model abstracts the performance
related features of an implementation. Qualitative and
quantitative estimates of performance related characteris-
tics are then obtained by a combination of analysis and sim-
ulation-based techniques.

There are three advantages of this novel methodology
[12, 13, 15, 16]. First, a simulation-based technique, called
conformance checking, detects conformance between a
system specification and the performance model of its pro-
posed implementation. The checking is automatic and
requires minimal designer effort. Second, a novel tech-
nique, calledperformance annotation, incorporates imple-
mentation-dependent delays obtained from performance
model into the specification model. The incorporation
occurs automatically during the combined execution of
both models. Since a specification typically lacks imple-
mentation-dependent information, such incorporation
leads to more realistic simulation scenarios for debugging
purposes. Third, a partial implementation can now be ana-
lyzed in the context of the specification of the rest of the
system under design. The designer is therefore able to bet-
ter study the suitability of the implementation compared to
studying it only in isolation. Overall performance charac-
teristics of the system can be predicted even if its perfor-

System Design Using
an Integrated Specification and Performance Modeling

Methodology

Ambar Sarkar
Viewlogic Systems Inc.

293 Boston Post Road, Marlboro
MA 01752, U.S.A.

EURO-DAC ’96 with EURO-VHDL ’96
0-89791-848-7/96 $4.00 1996 IEEE

mance model has been only partially developed.
The specific modeling environments chosen are State-

charts[4] for operational-specification modeling and ADEPT
[1] for performance modeling. Statecharts is a graphical lan-
guage for describing system behavior and is an extension of
the finite-state machine formalism. ADEPT is a simulation-
based environment, utilizing the VHDL [5] language and has
an underlying formalism based on Colored Petri Net[8]. It
offers designers the ability to model the information flow of
a proposed implementation, at a high level of abstraction.

The integration between operational specification and
performance modeling is implemented using VHDL. The
primary reason for choosing VHDL is its suitability for rep-
resenting and analyzing different modeling domains and
abstractions of a digital system. Tools are readily available
for translating Statecharts and ADEPT descriptions into
equivalent VHDL descriptions [7, 11]. Once the models are
translated, their interactions with the environment can also
be described using VHDL, allowing the execution of these
very disparate models in a common simulation environment.
Further, the designers can operate at the modeling language
of their expertise, without requiring any extensive knowl-
edge of VHDL.

The remainder of the paper is organized as follows. In
Section 2, the design methodology is presented, followed by
brief descriptions of the techniques of performance annota-
tion and conformance checking. In Section 3, we briefly
describe an application of the methodology for the design of
a realistic and complex system. In Section 4, we report the
results that were obtained from this application. In Section 5
we conclude with lessons learned and future work.

2. Integrated methodology

The integrated methodology is shown in Figure 1. First,
a Statecharts specification of the entire system under
design is developed. Next, a test-bench is developed using
ADEPT. This test-bench emulates the environment in
which the system under design is expected to operate.

The next step is to link the ADEPT test-bench with the
Statecharts specification so that both models can be simu-
lated concurrently, possibly exchanging simulation stimuli
with each other. Linking is further described in Section
2.1. Collectively, this linked model is called theIntegrated
Model. Simulation of the Integrated Model at this stage
allows the designer to obtain preliminary performance
estimates without having developed any performance
models. Note that the simulation occurs in VHDL environ-
ment, as explained further in Section 2.1.

It is desirable to develop complex designs in a stepwise-
refined, incremental manner. Thus, the Statecharts descrip-
tion of the entire system is partitioned into several compo-
nents. The designer’s goal is now to develop
implementations for each Statecharts component one at a
time.

For each Statecharts component, the designer first pro-
poses an implementation and develops a corresponding
ADEPT model. To incorporate implementation-dependent
delays specified in the ADEPT model into the Statecharts
model, the latter is instrumented using performance anno-
tation (See Section 2.2). As a result, the Statecharts model
will execute with delays as predicted by the ADEPT
model. The ADEPT model is then linked to theIntegrated
Model.

y
Create test-bench in ADEPT
Create Integrated Model by linking:

ADEPT test-bench
Statecharts model

Simulate Integrated Model and obtain performance data
Repeat

Select a component of the Statecharts model
Create an ADEPT model for this component
Update Integrated Model:

Performance annotate Statecharts model component
Link ADEPT model with Integrated Model

Repeat
Simulate Integrated Model.
Check for conformance violations
Correct Statecharts or ADEPT models if needed

Until no more conformance violations occur
Simulate Integrated Model and obtain performance data

Until the entire Statecharts model has been accounted for.
Connect all the ADEPT models that were developed.

Figure 1. Integrated design methodology.

This newly linkedIntegrated Model is simulated next.
Conformance errors are detected at this stage. These errors
may be due to a combination of erroneous implementations
or ambiguous specifications. The Statecharts and the ADEPT
models are modified to eliminate these errors. The linking
and simulation steps are repeated until the outputs of the two
models conform. Once all conformance violations are elimi-
nated, the designer may further refine previously obtained
performance estimates to reflect the inclusion of the new
ADEPT model.

Once all the components of the Statecharts model of the
entire system have a corresponding conformed ADEPT
model, all the ADEPT models are connected together. This
ADEPT model now represents a conformed model of the
entire system under design.

2.1 Linking for integrated simulation

Figure 2 shows how VHDL is used to simulate Statecharts
and ADEPT models in the common environment. Linking is
the process by which the designer specifies the interactions
of a Statecharts or an ADEPT model with its environment.
We call the act of specifying these interactionslinking and
the code emulating these interactions the link code.

Linking is specified by the designer in the model’s lan-
guage. The linking information can then be automatically
translated into VHDL. A Statecharts or an ADEPT model
can interact with its environment in a fixed number of ways.
For example, a Statecharts communicates with its environ-
ment using events and conditions, whereas the ADEPT
model communicates by activating or deactivating its ports.
For each possible type of interaction of these models with
their environments, we have defined rules to generate the

corresponding link code in VHDL. Once all the interac-
tions are specified, the link code can be automatically gen-
erated using these rules.

Both the Statecharts and the ADEPT model are trans-
lated into their equivalent VHDL code. The models are
represented as separate VHDL components. The corre-
sponding entity declaration of these VHDL components
represent the interface through which these models
exchange information with the outside world. This inter-
face is a collection of VHDL ports. A stimulus generated
by the model for its environment will appear as a event on
the signal associated with the corresponding port. Simi-
larly, any stimulus can be passed into the model by gener-
ating a VHDL signal on the corresponding port.

The actual exchange of information is managed by a
separate VHDL component. This VHDL component con-
tains the link code described earlier. The link code moni-
tors VHDL events occurring in ports of one model and
performs the task of maintaining interaction of the model
with its environment.

2.2 Performance annotation

A Statecharts model typically lacks implementation-
dependent delay information. Performance annotation
instruments a Statecharts model so that delay information
from the performance model is automatically incorporated
into the execution of a Statecharts model. The execution of
the Statecharts model and the performance model is syn-
chronized. The modifications cause a Statecharts event to
be delayed by the same amount of simulation-time as is
encountered by the performance model for the analogous
event.

The performance-annotation technique does not intro-

VHDL Code

Performance

using
ADEPT

VHDL Code

Link Code
in VHDL

Environment

Model

Figure 2. Integrated Simulation of Statecharts and ADEPT model.

Statecharts
using

Specification
Operational

duce any implementation dependent changes into Statecharts
and preserves the design intent of the specifier. A complete
description of this technique can be found in [10].

2.3 Conformance checking

 A conformance error is detected when the ADEPT model
produces an output that was either not predicted by the State-
charts model or had occurred in an order that violates the
dependencies in the Statecharts. Two outputs have an output
dependency if the occurrence of one output depends on the
occurrence of the other output. The outputs generated by the
two models are monitored and compared during simulation to
see if they agree with each other. The conformance checking
algorithm ensures that the dependencies between the State-
charts outputs are preserved in the set of analogous outputs
produced by the ADEPT model and reports when these out-
put dependencies are violated.

However, detecting violations of output dependencies is
difficult. Corresponding outputs of the two models may be
generated at different times, and possibly in different order.
Note that two outputs in the Statecharts specification may
have no dependencies on each other. This implies a non-
determinism in the order of the occurrence of these outputs.
If the corresponding ADEPT model produces outputs in a dif-
ferent order, that should not be flagged as a violation of con-
formance. However, if the outputs had dependencies, the
ADEPT model should produce the outputs in the same order
as produced by the Statecharts model. This problem is similar
to that of validating circuits synthesized in thefree-floating
IO scheduling mode [20].

Conformance checking is similar tocomparison check-
ing[21] used in the context ofsoftware-design diversity [22],
back-to-back testing [23]. However, none of these
approaches allow non-determinism in their output sequence,
and thus can severely restrict the design space by eliminating
many designs even if they conform by our definition. A com-
plete description and proof of this technique can be found in
[10].

3. Token ring: an application

The design of a token-ring[6] was chosen as an exam-
ple. The token-ring is a complex system that would be
able to demonstrate the viability of the proposed method-
ology for realistic design problems.

The methodology was applied as follows. First a com-
plete Statecharts description of the token ring was devel-
oped. A test-bench was developed in ADEPT to drive the
simulation of the entire Statecharts model. These two
models were linked together and executed to generate
preliminary performance estimates.

A component of the token ring was identified next and
an ADEPT model of that component was developed.
This ADEPT model was then linked with the existing
Statecharts model. Linking the ADEPT model effec-
tively replaced the corresponding component in the Stat-
echarts model of the entire token ring. This linked model
was then simulated to collect updated timing information
and to check for design or specification errors. If the tim-
ing results were not satisfactory or if there were remain-
ing conformance errors, either the Statecharts or the
ADEPT or both models were modified. This process was
repeated until no more conformance errors were detected
and the timings obtained were satisfactory. These steps
were repeated for each component of the token ring.

For a complete description of the application of this
methodology to the design of token-ring see [9].

3.1 Designing the watchdog timer

One component of the token ring is the watchdog
timer, which generates a timeout when it fails to detect
any activity in the ring for a specified length of time. A
black-box representation of the Statecharts and the cor-
responding ADEPT model for the watchdog timer is
shown in Figure 3.

3.2 Simulation and conformance checking

Both the Statecharts and the ADEPT models were

TIME_OUT

TOKEN_ARRIVED

en(MON_INA)

en(MON_ACT)

Black-box representing
Statecharts description
of the Watchdog timer

Figure 3. Identifying the interfaces (a) Blackbox representation of Statecharts model (b) ADEPT component

TIME_OUT_ACK

TIME_OUT_ERR

(a)

wt_token_in
TOKEN_IN

wt_mon_stat

wt_normal

wt_timeout
(b)

WATCHDOG_TIMER

Activity in Environment
Corresponding Statecharts

Activity
Corresponding ADEPT activity

The token arrives at the sta-
tion

generate event
TOKEN_ARRIVED as input to
Statecharts model

activate wt_token_in port

Monitor becomes inactive EN (MON_INA) occurs as
input to Statecharts model

deactivatewt_mon_stat port

Monitor becomes active EN (MON_ACT) occurs as
input to Statecharts model

activatewt_mon_stat port

Time-out occurs in ADEPT TIME_OUT_ACK generated
as input to Statecharts model

wt_timeout port activated

Figure 5. Identifying the interactions of between the models and their environments.

representing the ADEPT and Statecharts models and the
link code were simulated.

A commercial simulator was used to execute the VHDL
code representing the integrated model. In this case, we
especially monitored theTIME_OUT_ERR event. Genera-
tion of theTIME_OUT_ERR event indicated a conform-
ance error between the Statecharts and ADEPT model of
the watchdog timer.

4. Results

We applied our integrated-simulation based methodol-
ogy to the design of a network based on IEEE 802.5 token-
ring specification. The token-ring provided a nontrivial
test-bed to demonstrate the effectiveness our integrated-
simulation based approach. We were able to obtain several
interesting results, which can be grouped into two major
categories.

In the first category, a number of design errors were
detected, which covered both specification and implemen-
tation errors. The sources of these errors were counterintu-
itive specification semantics, designer oversight,
specification ambiguity, and misinterpreted design intent.
The diversity in the range of sources of errors detected
demonstrates how our methodology effectively uncovers a
wide class of errors. In the second category, preliminary
performance estimates were obtained using partially
developed performance models, which may not have been
feasibly obtained without integrated simulation.

The errors detected and performance estimated above
might have been obtained independently without applying
the integrated simulation approach. However, we are not
aware of any other approaches that obtain such results in a
reasonably efficient and practical manner. Using inte-
grated simulation, we were able to detect errors that we
believe would have otherwise propagated to lower-level
design stages, or would have been left undetected.

translated into VHDL components. The VHDL code corre-
sponding to the Statecharts model of the watchdog timer is
automatically generated by iLogix expressVHDL toolset[7].
Similarly, the ADEPT model was automatically converted to
VHDL by the ADEPT tool. The entity descriptions of the
two models are shown in Figure 4.

Figure 5 tabulates how events occurring on the interface
of the watchdog timer relates to events for the corresponding
Statecharts and ADEPT models. This information is pro-
vided by the designer. Generation of the link code can be
automated, given information in this table.

The link code is created as another VHDL component that
manages the interaction of the testbench with these models.
Finally, the integrated model, including VHDL components

entity WATCHDOG_TIMER_A is
port(

WT_TOKEN_IN: inout Token_res ;
WT_TIMEOUT: inout Token_res ;
WT_NORMAL: inout Token_res ;
WT_MON_STAT: in Token

);
end WATCHDOG_TIMER_A;

Figure 4. VHDL interfaces of a) State-
charts and b) ADEPT models of the Watch-
dog timer.

entity WATCHDOG_TIMER_S is
port (
 EN_MON_ACT: in trigger;
 EN_MON_INA: in trigger;
 TOKEN_ARRIVED: in trigger;
 TIME_OUT_ACK: in trigger;
 TIME_OUT: buffer trigger;

TIME_OUT_ERR: buffer trigger
);
end WATCHDOG_TIMER_S; (a)

(b)

5. Conclusions and future work

Two important, early, but dissimilar design-stages are opera-
tional specification and performance modeling. We have shown
how our integrated-simulation based methodology successfully
reconciled the dissimilarities between these two design stages
and produced a seamless environment for system design and
verification.

The methodology was developed on the platform of State-
charts and ADEPT environments. The ideas developed here can
be extended to other modeling languages and environments. In
our approach, we perform the simulation of the integrated
model in a VHDL environment. It would be interesting to
observe the effect of the simulation on the Statecharts compo-
nent of the integrated model in the Statecharts modeling envi-
ronment. This way, a the designer will have a visual feedback of
the effects of incorporating ADEPT related simulation informa-
tion into the Statecharts model.

The ADEPT model can also be translated into an analogous
Statecharts representation. This will allow one to apply analyt-
ical techniques from the Statecharts modeling domain to the
ADEPT models. In fact, we have developed rules to translate an
ADEPT model to Statecharts. These rules are presented in [10].
Further research is required to identify the advantages of such
cross-domain analyses.

6. Acknowledgments

I would like to thank Ron Waxman and Jim Cohoon at the
University of Virginia for their constant feedback and construc-
tive criticisms. Thanks are also due to Samuel Sortais, Sylvan
Revel, and Alain Gonier from IRESTE for their invaluable help
in demonstrating various steps of the methodology.

7. References

[1] J.H. Aylor et al. The Integration of Performance and Functional
Modeling in VHDL. InPerformance and Fault Modeling with VHDL.
Schoen, J. M., Prentice Hall, Englewood Cliffs, NJ 07632: 22-45,
1992.

[2] J. P. Calvez. Embedded Real-time Systems: A Specification and
Design Methodology,Wiley Series in Software-Engineering Practice,
1993

[3] D. D. Gajski, N. Dutt, A. Wu. and S. Lin.HIGH-LEVEL SYN-
THESIS: Introduction to Chip and System Design. Kluwer Academic
Publishers, 1992.

[4] D. Harel. On Visual Formalisms.CACM 31:514-530 1988.

[5] IEEE. IEEE Standard VHDL Language Reference Manual. IEEE
Inc., NY, 1988.

[6] IEEE. Token-Ring Local Area Network: Premier Issue,IEEE
Network, Jan 1987, Vol. 1, No. 1.

[7] i-Logix Inc., ExpressVHDL Documentation,1992

[8] J. Peterson. Petri-nets.ACM Computing Surveys 9(3):223-
252 Sep 1977.

[9] S. Revel.Integration of Specification and Performance
Models.IRESTE 3, July 1994.

[10] A.Sarkar, Integrating Operational Specification with Per-
formance Modeling for Digital-System Design,Ph.D. Thesis,
May 1995.

[11] S. Srinivasan. ADEPT: An Advanced Design Environ-
ment Prototype Tool. InM.S. Thesis., Department of Electrical
Engineering, University of Virginia, 1990.

[12] A. Sarkar et al. Integrating Operational Specification and
Performance Modeling. Fall'92 VHDL International Users'
Conference, Washington DC, 10/18/92.

[13] A. Sarkar et al. System Design Utilizing Integrated Spec-
ification and Performance Models.Proceedings, VHDL Inter-
national Users Forum, Oakland, California, May 1-4, 1994, pp
90-100.

[14] S. Revel.Integration of Specification and Performance
Models.IRESTE 3, July 1994.

[15] A. Sarkar et al, A survey of specification methodologies
for reactive systems,Current Issues in Electronic Modeling,
Issue 3,Kluwer Academic Publishers, 1995.

[16] A. Sarkar et al. Integrating Operational Specification with
Performance Modeling for Digital-System Design.Current
Issues in Electronic Modeling, Issue 6,Kluwer Academic Pub-
lishers, 1996.

[17] D. Schefström and D. van den Broek,Tool Integration:
Environments and Frameworks, Wiley Series in Software
Based Systems, 1993.

[18] A. L. Opdahl and A. Solvberg. A Framework for Perfor-
mance Engineering during Information System Development.
Advanced Information Systems Engineering (Advanced Infor-
mation Systems Engineering CAiSE `92, Manchester, UK):65-
87 May 12-15, 1992 proceedings.

[19] A. M. Davis. A Comparison of Techniques for the Speci-
fication of External System Behavior.Communication of the
ACM 31(9):1098-1115 September 1988

[20] D. Knapp, T. Ly, D. MacMillen, and R. Miller. “Behav-
ioral Synthesis Methodology for HDL-Based Specification and
Validation.” DAC-95:286-291, Jun 1995.

[21] S. S. Brilliant, J.C. Knight and P.E. Ammann. On the Per-
formance of Software Testing using Multiple Versions.FTCS
20pp. 408-415. 1990.

[22] C.C. Ramamoorthy, Y.R. Mok, F.B. Bastani, G.H. Chin,
and K. Suzuki. “Application of a Methodology for the Devel-
opment and Validation of Reliable Process Control Software”,
IEEE Transactions on Software Engineering,Vol SE-7, No. 6,
November 1981.

[23] M.A. Vouk, M.L. Helsabeck, K.C. Tai and D.F. McAllis-
ter. “On Testing of Functionally Equivalent Components of
Fault-Tolerant Software”.Proc. COMPSAC 86,1986, pp 414-
419.

	CDROM Home Page
	1996 Home Page
	EURO-DAC96 Home Page
	Front Matter
	Table of Contents
	Session Index
	Author Index

