
Fault Behavior Observation of a Microprocessor System through a
VHDL Simulation-Based Fault Injection Experiment

A.M. Amendola**, A. Benso*, F. Corno*, L. Impagliazzo**, P. Marmo**, P. Prinetto*,
M. Rebaudengo*, M. Sonza Reorda*

* **
Politecnico di Torino CRIS

Dipartimento di Automatica e Informatica Centro Ricerche Innovative per il Sud
Corso Duca degli Abruzzi 24 Via Nuova delle Brecce 260

I-10129 Torino, Italy I-80147 Napoli, Italy

Abstract1

Evaluating and possibly improving the fault
tolerance and error detecting mechanisms is
becoming a key issue when designing safety-critical
electronic systems. The proposed approach is based
on simulation-based fault injection and allows the
analysis of the system behavior when faults occur.
The paper describes how a microprocessor board
employed in an automated light-metro control system
has been modeled in VHDL and a Fault Injection
Environment has been set up using a commercial
simulator. Preliminary results about the effectiveness
of the hardware fault-detection mechanisms are also
reported. Such results will address the activity of
experimental evaluation in subsequent phases of the
validation process.

1. Introduction

In recent years, there has been a rapid increase in
the use of digital systems in critical real-time
applications such as railway traffic control systems,
aircraft flight, telecommunications, where computer
resource failures can cost lives and/or money. This
trend has led to concerns regarding the validation of
the dependability properties of these systems. A
dependable computer system is designed with the
capability of: 1) detecting errors caused by hardware

1 Contact address: Paolo Prinetto, Dipartimento di

Automatica e Informatica, Politecnico di Torino,
Corso Duca degli Abruzzi 24, I-10129 Torino (Italy),
e-mail Paolo.Prinetto@polito.it

or software faults, 2) locating the cause of errors, 3)
recovering from errors.

The validation process should provide [KKAb95]:
1) a measure of the ability of a system of detecting,
locating, and recovering from errors, 2) confidence in
the system before it is deployed, 3) a measure of the
effectiveness of embedded fault tolerance
mechanisms, and 4) a feedback during the
development stage for improving the design and
implementation of the system.

Fault injection has been recognized as an effective
approach to evaluate the behavior and performance of
complex systems under the effects of faults and to
obtain parameters such as fault coverage and fault
latencies. Fault injection is a powerful method to
evaluate the dependability and the efficiency of fault-
handling and fault-detection techniques implemented
in a dependable computer system. More specifically,
it can be used to evaluate error detection coverage and
latency of employed error detection techniques while
executing realistic programs.

A classification of the fault injection methods is
based on the division into hardware-based (physical)
[GKTo89] [AAAC90] and software-based fault
injection [SVSY90] [KKAb95]. Furthermore, the
software-based techniques can be separated in
software-implemented fault injection, where data is
altered and/or timing of an application is influenced
by software while running on real hardware, and
simulation-based fault injection, where the whole
system behavior is modeled using simulation.
Simulation-based fault injection can provide good
control over the time and the location of the injected
faults and good observability over the internal system
state and behavior. Moreover, the simulation-based
approach normally allows to avoid any undesired
change (intrusion) in the examined system, due to the

presence of the fault injection mechanisms, which is
seldom possible with hardware- or software-based
techniques. Two techniques have been proposed to
inject faults into a simulated model [JARO94]: 1)
code alteration, i.e., modifying the base components
of the architecture or adding dedicated components to
inject faults on the interconnections between different
modules of the system, and 2) using the simulator,
i.e., using the commands available through the
simulator to modify the value of signals and variables
of the system. Previous examples of simulation-based
fault injection systems are NEST [DSYB90],
DEPEND [GoIy93], REACT [ClPr93], MEFISTO
[JARO94], and ADEPT [GJPr95].

This paper describes a simulation-based fault
injection experiment on a real-time communication
microprocessor architecture (IP module) used in
automated light-metro systems. The experiment uses
a VHDL model of the system and aims at reproducing
the effects of faults located inside the processor chip
and in the external memory, as well as faults affecting
the busses. These errors are injected into the system
using the code alteration technique. Based on the
results of the fault injection experiments, we are able
to evaluate the effectiveness of the existing hardware
fault detection mechanisms: further analysis will then
focus on faults which are not detected, and will verify
whether they trigger higher-level software and
hardware fault-tolerance mechanisms. The main
contribution of this paper is the description of an
industrial experience in the use of a commercial
VHDL simulation environment for assessing the
hardware reliability of a microprocessor-based control
system.

The organization of the paper is as follows:
Section 2 briefly describes the considered
microprocessor system, Section 3 outlines the model
we adopted for Fault Injection experiments, and
Section 4 reports some information about the
approach we followed to model the system using
VHDL; Section 5 reports some preliminary results,
and Section 6 draws some conclusions.

2. System Description

The microprocessor system we focus on in this
paper is an Industry Pack (IP) module [Gree94]
devoted to handling the serial communications of a
hosting Motorola MVME162 Controller Board
[Moto94].

The MVME162 Controller board is used in the
new design of control equipments of automated light-
metro systems. Communications between the central
controller and the field unit controllers (lights,
switches, sensors, etc.) are performed exploiting the
serial channels managed by three IP modules.

Each IP module (Fig. 1) is equipped with a 16
MHz Motorola 68302 micro-controller, a 256 KByte
dual-port SRAM memory, and some interface
circuitry based on a Xilinx device. This circuitry
mainly allows the 68040 hosting board processor to
access the dual-port memory and interact with the
68302 processor through some shared interrupt lines.

Fig. 1: Architecture of the IP module.

Each IP module handles three serial channels:
several synchronous and asynchronous protocols are
supported by the hardware. In our application, only
the HDLC protocol is adopted; data are received from
each channel and written in the SRAM, or read from
the SRAM and sent to a channel. These operations
are implemented in hardware for each channel
through a specific part of the 68302 processor named
Serial Communication Controller (SCC).

An initial hypothesis on the interaction with
MVME162 is described in the following. The IP
modules act as slaves of the 68040 processor of the
hosting MVME162 board. The latter interacts with
the IP module in two ways:

• at the bootstrap, by programming it: in this
phase, the dual-port memory addresses are set
up and the IP module software is loaded;

• during the normal behavior, by reading and
writing data to and from the dual-port
memory.

A simple program runs on each module, executing
commands written by the master 68040 processor in
the dual-port memory. Commands specify whether a
send or receive operation must be performed, on
which channel, and where data have to be written to
or read from within the memory.

Dual Port
SRAM

Xilinx

Data

Address

Control
68302

Processor

SCC SCC SCC

M
V

M
E

16
2

Ch1 Ch2 Ch3 IP module

3. Building the Fault Injection
Environment

The main goal of the Fault Injection experiments
we performed is to evaluate which faults are not
detected by the local fault detection mechanisms
existing on the IP modules (e.g., exceptions generated
by the 68302 processor). As a second goal, the
experiments aim at classifying the possible faults
according to the errors they produce and to their
observability. This will allow us to verify whether
these faults can be detected by higher level fault
detection mechanisms, and to possibly modify the
software in order to make it able to detect them.

3.1 The FARM Model

When designing a Fault Injection environment, it
is necessary to take some decisions concerning the
adopted Fault Models, the Activation patterns used to
exercise the system, the set of Readouts gathered
during the experiment, and the derived Measures.
This set of parameters composes to the so called
FARM set [AAAC90].

3.1.1 Fault Models
Due to their simplicity and wide acceptance, the

following categories of faults have been taken into
consideration:

• faults in the memory
• faults in the internal registers of the processor
• faults on busses.
In all the cases, the fault model consists of flipping

the value of a single bit at a given time (fault
injection time): for memory and register bits, the
corresponding error perfectly matches the
characteristics of errors produced by alpha particles.

3.1.2 Activation Patterns
During the experiment, the 68302 processor

executes a program which is functionally similar to
the one which will run on the real system, excluding
higher-level software-implemented fault-tolerant
mechanisms. The program performs different actions,
according to the requests the 68040 processor makes
by writing a suitable code in the IP module memory.
The actions to be performed, as well as data received
through the serial channels, and data to be sent
through the same channels are randomly generated.

The main program running on the 68302
processor is composed of a simple polling cycle on the

memory variable where the 68040 processor writes
the code of the requested actions for the IP module.
As soon as a request code is written, the module starts
its execution, and then returns to the polling cycle.

3.1.3 Readout
We defined several observation techniques aimed

mainly at defining which data have to be gathered
during each experiment:

• CPU status observation: the status of the CPU
(especially in terms of generated exceptions) is
recorded; the occurrence of any exception
stops the execution of the experiment

• bus observation: the values on the IP modules
internal busses are continuously monitored

• serial output observation: the values sent on
the serial channels are recorded

• memory observation: the contents of the
memory elements (memory cells and CPU
registers) are observed at the end of the Fault
Injection experiment.

According to the adopted observation technique,
relevant data are gathered during the Fault Injection
experiment. Recorded data are then compared with
the ones produced by the fault-free system.

3.1.4 Measures
On the basis of the gathered data we classified the

injected faults according to the corresponding system
behavior. A first class of faults does not produce any
error in the system: on the other side, faults which
produce errors can be grouped in the following
classes:

• hardware detected: an exception is generated
by the 68302, due either to a bus error (an
address appeared on the bus, which does not
correspond to any legal memory word) or to
an illegal instruction (an instruction code
which does not correspond to any legal
instruction appeared on the data bus during
the fetch operation)

• latent: the fault does not cause the occurrence
of any exception, but at the end of the
experiment is still active, i.e., a difference
exists in the value of at least one memory
element (memory cell or CPU register) with
respect to the fault free system

• bus active: the fault causes at least one
difference to appear on the bus.

When a fault is hardware detected, its detection
time is recorded and its latency (e.g., the difference

between the detection and fault injection time)
computed.

4. Exploiting VHDL

4.1 Modeling the system

One of the most critical problems to be faced with
when simulation-based Fault Injection is adopted is
the need for suitable models of the system under
consideration. As it often happens, in our case the
models of the system components were not available,
and we had to develop them in house. Note that pre-
compiled models sold by third parties can not be of
any help, as the Fault Injection procedure described
below requires the modification of the source code.
The models have been developed using VHDL
language as defined by the 1987 IEEE Standard 1076.

In general, the abstraction level of the description
must be detailed enough to accurately model the real
system as far as the fault effects are considered; on
the other hand, the description could not be too
detailed, due to both the lack of structural
information, and to cost in term of modeling effort
and simulation time.

As a consequence, we developed a model with the
following characteristics:

• the abstraction level is the one of Bus
Operations: the main loop processes one bus
operation per iteration; details about RT-level
timing, internal temporary registers, and
instruction microcoding are not represented

• delay information are not taken into any
account.

The IP module description is composed of three
main processes: the 68302 processor, the SRAM
memory, and the Xilinx interface.

4.2 Injecting Faults

The experiments have been performed by
simulating the execution of a simple but real program
by the 68302 processor. Therefore, each experiment
corresponds to reading an action code, sending or
receiving data through a serial channel, and repeating
for a while the polling cycle on the memory variable
used by the 68040 processor to transmit the action
code to the IP module.

To make the Fault Injection experiment possible,
we made two kinds of modifications to the system

description (Fig. 2). First, we added a Bus Fault
Injector module, which is in charge of injecting faults
at that level. Similarly, we inserted Memory and CPU
Fault Injectors in the corresponding Memory and
CPU modules to allow the injection of faults in the
storing elements. The added parts are activated by a
Fault Injection Activator, which can be programmed
to inject one fault type (bus, memory, CPU), and
randomly generates the specific location and time for
the fault. Since no delay information is present in the
model, the time for the injection is specified in terms
of bus cycles.

During each experiment, all the readout data are
gathered. A C program processes these data and
computes the statistics on fault behavior.

Fig. 2: Fault Injection Environment.

5. Experimental Results

All the experiments have been performed on a Sun
SPARCstation 20/50 with a 64MByte memory. The
Synopsis VHDL Simulator has been used.

Table 1 reports the data concerning the program
described above: this program simply reads the action
code sent by the 68040, and executes the
corresponding send or receive operation. The code
requires about 1,000 bus cycles to be executed.
Writing and validating the system description
required about two months for a skilled VHDL
programmer; the resulting code amounts to about
4,000 statements.

The average time for injecting one fault and
simulating the corresponding behavior of the system
is about 20 msec.

In order to understand how results depend on the
program characteristics, we developed a slightly
different version of the same program, which

Dual Port
SRAM

Xilinx

Data

Address

Control
68302

Processor

SCC SCC SCC

M
V

M
E

16
2

Ch1 Ch2 Ch3 IP module

CPU Fault
Injector

Bus Fault
Injector Memory Fault

Injector

Fault
Injection
Activator

additionally performs a very simple sorting operation
on the data to be sent or received, and requires about
2,000 bus cycles to reach completion. Table 2 reports
the results concerning this modified version.

The following considerations can be pointed out:
• the effects of changing the program

significantly affect the distribution of faults
among the different classes: in general, the
higher the program activity, the larger is the
number of faults producing an exception, or at
least one difference on the bus values

• the most critical faults appear to be the ones
injected in the memory, as a significant
percentage of them remains latent without
producing any visible error

• the results seem to contradict the assumption
made in [KKAb93], that a significant
percentage of the injected faults inside a
processor are manifested as bus errors.

In Table 3 we report the average latency for the
faults which generate an exception. The first program
has been used for these experiments. There is
evidence that for the faults injected in the bus the
possible exception occurs very soon (e.g., due to an
Illegal Instruction), while the occurrence is often
much more delayed for faults injected in the memory.

Our current activity is aiming at gathering
additional data, concerning in particular the analysis
of the data transmitted on the serial channels.

6. Conclusions

The performance and versatility of commercial
VHDL simulators allow their exploitation for the
evaluation of the effectiveness of the fault-detection
mechanisms of microprocessor systems. A state-of-
the-art technique in this area is simulated Fault
Injection: with this approach, it is possible to identify
the faults able to escape to any existing detection
mechanism, thus evaluating the system dependability,
and possibly modifying the software to increase it.

The paper describes how we performed a set of
Fault Injection experiments aimed at evaluating the
dependability of a simple microprocessor-based
system used in a railway control system.

The results show that a significant percentage of
the injected faults trigger the intrinsic fault detection
mechanisms of the microprocessor, although this
ratio significantly changes according to the location
where faults are injected (CPU, memory, bus).

The differences found in the results obtained
through the two versions of the program push us to
look for rules to be followed by software programmers
in order to increase the system dependability.

Interestingly, our experiments showed that about
one half of the injected faults never causes any
difference to appear on the system bus, i.e., they
either disappear very quickly after the injection, or
remain latent in the memory elements. The latter
class of faults is the most dangerous one from the
point of view of system reliability, as they can cause
further errors at latter time. Work is in progress to
experimentaly assess the system higher-level fault-
tolerance mechanisms. The results of the described
experiments will be exploited during the subsequent
phases in the design and validation of the system, as
they will allow to focus on the malicious faults
[SJPB95] only.

7. References

[AAAC90] J. Arlat, M. Aguera, L. Amat, Y.
Crouzet, J.C. Fabre, J.C. Laprie, E.
Martins, D. Powell, Fault Injection for
Dependability Validation: A
Methodology and Some Applications,
IEEE Transactions on Software
Engineering, Vol. 16, No. 2, Feb. 1990,
pp. 166-182

[ClPr93] J.A. Clark, D.K. Pradhan, REACT: A
Synthesis and Evaluation Tool for Fault-
Tolerant Multiprocessor Architectures,
Proc. Annual Reliability and
Maintainability Symp., 1993, pp. 428-
435

[DSYB90] A. Dupuy, J. Schwartz, Y. Yemini, D.
Bacon, NEST: A Network SImulation and
Prototyping Testbed, Comm. of the
ACM, Vol. 33, No. 10, Oct. 1990, pp.
64-74

[GKTo89] U. Gunneflo, J. Karlsson, J. Torin,
Evaluation of Error Detection Schemes
Using Fault injection by Heavy-ion
Radiation, Proc. FTCS-19, Chicago,
USA, June 1989, pp. 340-347

[GoIy93] K. Goswami, R. Iyer, Simulation of
Software Behavior Under Hardware
Faults, Proc. FTCS-23, Toulouse, F, June
1993, pp. 218-227

[Gree94] GreenSpring Computers Inc., User
Manual IP-COMM302, 1994

[JARO94] E. Jenn, J. Arlat, M. Rimen, J. Ohlsson,
J. Karlsson, Fault injection into VHDL
Models: the MEFISTO Tool, Proc.
FTCS-24, June 1994, pp. 66-75.

[KKAb95] G.A. Kanawati, N.A. Kanawati, J.A.
Abraham, FERRARI: A Flexible
Software-Based Fault and Error
Injection System, IEEE Trans. on
Computers, Vol 44, N. 2, February 1995,
pp. 248-260.

[KKAb93] G. Kanawati, N. Kanawati, J. Abraham,
EMACS: An Automatic Extractor of
High-Level Error Models, AIAA
Computing in Aerospace Conference,
San Diego, CA, October1993, pp. 1297-
1306

[KKAJ94] S. Kumar, R.H. Klenke, J.H. Aylor, B.W.
Johnson, R.D. Williams, R. Waxman,
ADEPT: A Unified System Level

Modeling Design Environment, Proc.
RASSP’94, Arlington (VA), August
1994, pp. 114-123

[Moto94] Motorola Inc., MVME162 Embedded
Controller User’s Manual -
MVME162/D1, 1994

[SJPB95] D.T. Smith, B.W. Johnson, J.A. Profeta
III, D. G. Bozzolo, A Fault-List
Generation Algorithm for the Evaluation
of System Coverage, IEEE Annual
Reliability and Maintainability
Symposium, 1995, pp. 425-432

[SVSY90] Z. Segall, D.Vrsalovic, D. Siewiorek,
D.Yaskin, J.Kownacki, J. Barton, R.
Dancey, A. Robinson, T. Lin, FIAT:
Fault injection Based Automated Testing
Environment, Proc. FTCS-18, June 1988,
Tokyo, pp. 102-107.

Fault
Location

Injected
Faults

Error Activated

Exceptions Latent Bus Active

Bus Error Illegal
Instr.

in the
memory

in the CPU

Bus 1,000 250 47 120 97 607
CPU Reg. 1,000 109 18 227 537 364
Memory 1,000 8 6 885 64 94

Tab. 1: experimental results with the first program.

Fault
Location

Injected
Faults

Error Activated

Exceptions Latent Bus Active

Bus Error Illegal
Instr.

in the
memory

in the CPU

Bus 1,000 276 36 28 28 552
CPU Reg. 1,000 100 33 133 545 335
Memory 1,000 5 5 870 75 120

Tab. 2: experimental results with the second program.

Fault Location Ave. Latency
(#bus cycles)

Bus 14
CPU Registers 68
Memory 178

Tab. 3: average latency for the first program.

	CDROM Home Page
	1996 Home Page
	EURO-DAC96 Home Page
	Front Matter
	Table of Contents
	Session Index
	Author Index

