
Towards Maximising the use of Structural VHDL for Synthesis

Kevin O'Brien, Anne Robert, Serge Maginot
LEDA S.A.

35, av du Granier, 38042 Meylan, France
tel: (+33) 76 41 92 43 fax: (+33) 76 41 92 44

e-mail: kevin@leda.fr, anne @leda.fr, serge@leda.fr

Abstract
In this paper we show that by performing some VHDL
elaboration transformations before synthesis we can extend
the synthesis subset to include complex structural and
hierarchical statements. This in turn means that:

• Design, debug and simulation times are reduced

• Designs are more accessible (readable, modifiable,
 portable, reusable)

• Design prototyping can be speeded up

All of this can be achieved without the need to modify
existing synthesis tools.

1. Introduction
VHDL has for some time been accepted as one of the more
popular description languages for high-level and register
transfer level synthesis. This is the case even though no
standardised synthesis semantics exist for the language.
Unfortunately, the lack of a true standard means that many
different de facto standards have been developed, especially
at the register transfer level. This implies that there is no
guarantee that a VHDL description will generate the same
hardware on (or even be accepted by) two different
synthesis tools. Thus, one of the advantages of using
VHDL - the fact that it is a standard - has been lost.

With a few exceptions [1,2,10], it seems that almost
everyone is content with the status quo. Circuit designers at
the register transfer level adapt their writing styles to the
particular tool they are using. This may be at the expense of
hardware efficiency. Tool manufacturers also seem quite
happy to ignore the front end of their products because
changes at this level may have serious repercussions
throughout the product.

In high level synthesis, the acceptable VHDL subset has
increased but only in specific areas such as describing
control flow and synchronisation.

In the rest of this paper, we describe HELIOS, a tool that
extends the structural VHDL that can be used for synthesis.
By doing so, we can:
• Reduce the time required to write, debug and synthesise
 VHDL descriptions of complex circuits

• Improve the readability, portability and reusability of the
 resulting description

• Speed up prototyping

These improvements apply equally to high level and
register transfer level tools. We also show that, through
partial elaboration of the description, the model can be
transformed into one accepted by existing synthesis tools.
This means that the VHDL subset accepted by such tools
can immediately be increased without the need to modify
the tools themselves.

2. VHDL Subsets for Synthesis
Figure 1 presents some of the more common behavioural
and structural limitations imposed by commercial logic
synthesis tools. For each VHDL construct shown, a given
VHDL subset will either reject it completely or impose
limitations on its use.

Some constructs are rejected because they simply have no
synthesis semantics. These include file types or access
types, after clauses, wait for clauses and disconnect
statements.

Other constructs are rejected or limited due to tool
limitations, not because there is no hardware equivalent.
For example, real types are usually not allowed due to
encoding problems. Multi-dimensional arrays are normally
rejected because of the addressing problems they introduce.
Loops must have static bounds and processes must also
adhere to certain restrictions.

In the structural VHDL world, other restrictions are
imposed such as limiting configurations to default
configurations, limiting the types of generic parameters,
insisting that generate statements only have locally static
bounds or conditions, rejecting deferred constants and so
on.

With the advent of VHDL-based high-level synthesis tools
[5,6,7] and their gradual acceptance by the design
community, the length of time required to write and debug

EURO-DAC ’96 with EURO-VHDL ’96
0-89791-848-7/96 $4.00 1996 IEEE

 VHDL
 construct

Status No synthesis
 semantics

 Tool
Limitation

 Comments

Real types Rejected X Encoding problems
File types Rejected X May be used in declarative part
Access types Rejected X
N-dim arrays Rejected X Addressing problems
Resolved signals Limited X Catered for by HLS tools
/, mod rem Limited X RHS must be power of 2
exponentiation Limited X LHS must be 2
after/reject clause Rejected X
wait for clause Rejected X
Assert Ignored X Passive
Loops Limited X Limited to locally static bounds
Process Limited X 1 synchronisation expression

Deferred constants Rejected X Removed at elaboration
Config decl Limited X Resolved at elaboration
Config spec Limited X Resolved at elaboration
generic Limited X Propagated at elaboration
generate Limited X Unrolled at elaboration

Figure 1: VHDL constructs generally limited by RTL synthesis tools

complex circuits has fallen considerably [8,9]. This is due
to the expansion of the VHDL subset for describing circuit
behaviour. Most of these tools overcome the behavioural
limitations shown in figure 1. In other words, they accept
several wait statements per process, loops with dynamic
bounds, exit and next statements and so on.

In our work we extend the VHDL structural subset. That
is, we allow models to contain full configurations, generic
parameters of any type, generate statements with globally
static bounds, constant declarations initialised by complex
and impure expressions etc.

Elaboration transformations are performed on this model
to remove the complex structure thereby making the model
synthesisable without modifying the synthesis tool.

3. Adding Complex Structure to the
VHDL Synthesis Subset
The main transformations that can be carried out by
HELIOS are:

• Elaboration of declarative part of a VHDL
 system

• Execution of configuration specifications

• Propagation of generic parameter values

• Execution of generate statements

• Generation of elaborated VHDL source code

The elaboration of the declarative part consists of verifying
typing, assigning an initial value to every object and so on.
As such it is more relevant to simulation than to synthesis.

However, we shall see that this part of the elaboration
process enables us to take advantage of other powerful but
non-synthesisable features such as the TEXTIO package to
initialise constant declarations.

In the rest of this paper we will concentrate on showing the
benefit of the last three transformations.

3.1 Configurations

Most synthesis tools allow some form of configuration.
Indeed, they have to so as components can be bound to
entities. However, most tools impose constraints on their
use such as only allowing default configurations. In other
words, configurations where the component must have the
same name and interface as the entity it is instantiating.
There is absolutely no reason, from a synthesis point of
view, why these constraints should be imposed. In our
proposed subset, configurations are fully accepted. Before
synthesis, the elaboration performed by HELIOS will
flatten the hierarchical configuration maintaining the
compatibility with existing synthesis tools.

3.2 Generics and Generates

Configurations themselves are of limited value from the
synthesis point of view unless we can combine them with
other structural features such as the use of generic
parameters and generate statements. Generate statements

are usually accepted with the restriction that the bounds of
a for-generate statement or the value of the condition of
an if-generate statement must be locally static (known at
compile time). Generics are partially accepted also.
Usually their types are quite restricted.

These restrictions are unfortunate because the use of such
statements greatly improves the reusability of a VHDL
description. What makes these restrictions harder to accept
is the fact that both generic parameters and generate
statements disappear at elaboration time. Generate
statements are flattened (unrolled) and the values of
generic parameters are propagated. This in turn means that,
rather than restricting the types of generic parameters, why
not allow all types, even those that are non-synthesisable.
These will be replaced by static values before the start of
synthesis.

For example, when describing a ROM for synthesis, the
contents normally have to be declared as a constant value
within the architecture. This is very cumbersome if the
ROM is large, as shown in figure 2. It is also prone to error
and difficult and time consuming to modify.

entity ROM is
port (ADD : in BIT_VECTOR(0 to 15);

CS : in BIT;
DATA : out STD_LOGIC_VECTOR(0 to 7));

end ROM;
architecture BEHAVIOUR of ROM is

type DATA_ELEMENT is BIT_VECTOR(0 to 7);
type ROM_MATRIX is array(0 to 2**15-1) of

DATA_ELEMENT;
constant CONTENTS : ROM_MATRIX :=

("01010101", "00110011"… --and so on

Figure 2: Describing a ROM using
synthesisable VHDL

A more convenient way of doing this would be to write the
ROM contents to a file (this could even be automatically
generated and use a generic parameter to load the file. This
not only removes the need to modify the code each time
new data are to be stored in the ROM, it also makes the
description cleaner and easier to read. The VHDL for
doing this is shown in figure 3.

There are a few things worth noting in this example. The
first is the use of a string type as a generic parameter.
Register transfer level synthesis tools usually only accept
integer and enumerated types as generic parameters. This
means that we cannot pass commonly-used objects such as
BIT_VECTORs without performing type transformation
functions.

Although not blocking, this type of unnecessary restriction
is nevertheless frustrating and only adds to the complexity
of the design.

use STD.TEXTIO.all;
package ROM_FUNCTIONS is

type DATA_ELEMENT is BIT_VECTOR(0 to 7);
type ROM_MATRIX is array(0 to 2**15-1) of

DATA_ELEMENT;
impure function ReadFile(FileName : STRING)

return ROM_MATRIX;
end ROM_FUNCTIONS;
package body ROM_FUNCTIONS is

impure function ReadFile(FileName : STRING)
return ROM_MATRIX is

file ROMFILE : TEXT is FileName;
variable NEXTLINE : LINE;
variable RESULT : ROM_MATRIX;

begin
for I in 0 to 2**15-1 loop

READLINE(ROMFILE , NEXTLINE);
READ(NEXTLINE, RESULT[I]);

end loop;
return RESULT;

end ReadFile;
end ROM_FUNCTIONS;

use WORK.ROM_FUNCTIONS.all;
entity ROM is

generic (FileName : STRING);
port (ADD : in BIT_VECTOR(0 to 15);

CS : in BIT;
DATA : out STD_LOGIC_VECTOR(0 to 7));

end ROM;
architecture BEHAVIOUR of ROM is

constant CONTENTS : ROM_MATRIX :=
ReadFile(FileName);

Figure 3: Using generics to simplify, generalise
and speed up the ROM model description

Another point of interest in this example is the use of
TEXTIO functions to initialise the ROM. Normally, this
package is completely rejected by synthesis tools at all
levels. However, as we can see here, by permitting its use
in the declarative region of a design, large improvements
can be made in the legibility and generalisation of a
design. When HELIOS elaborates the description, the
function call used to assign the constant CONTENTS will
be executed and the call itself will be replaced by the
return value. Thus, the synthesis tool will not even be
aware that TEXTIO or an impure function were used.

After elaboration, the description will be similar to that in
figure 2.

4. Example
To show the benefit of these statements, suppose we wish
to synthesise a system that contains a ROM. To model our
ROM, we have a limited library of cells. The only memory
cell we have access to is one with a 32K addresses of 8 bit
data configuration. We also have other cells capable of
representing the address decoding logic.

Our wish is to optimise the ROM, trading off speed and
area. The quickest way to do this is by prototyping the
system with different address and data sizes and
comparing the results. For simplicity, we assume that the
data are automatically loaded into whatever ROM
configuration we specify.

Using the usual VHDL synthesis subset would mean
modifying the ROM description for each new prototype.
This would be the case even if the ROM is buried deep in
the design's hierarchy (implies a lot of recompilation). For
example, suppose our first prototype uses a 64Kx8
configuration. Using our library of functional units, the
resulting model would have the structure shown in figure
4.

CS

ADD[15]

15

ADD[0]-
ADD[14]

mem_0_0

mem_1_0

inv_cell

and2_cell

and2_cell

rom_cell

rom_cell

address decode logic

memory block

Figure 4: ROM Configuration

The ROM element of our system will have the VHDL
description shown in figure 5.

entity ROM is
port (ADD : in BIT_VECTOR(0 to 15);

CS : in BIT;
DATA : out STD_LOGIC_VECTOR(0 to 7));

end ROM;
use COMP_LIB.CELL_COMPONENTS.all;
architecture STRUCTURE of ROM is

for all : inv_cell use entity LIB.INVERTER(BEH);
for all : and2_cell use entity LIB.AND2(BEH);
for all : rom_cell use entity LIB.ROM_32K(BEH);
signal NOT_ADD15 , CS_1, CS_2 : BIT;

begin
INV1 : inv_cell port map (ADD[15], NOT_ADD15);
AND2_1 : and2_cell port map (ADD[15],CS, CS_1);
AND2_2 : and2_cell

port map(NOT_ADD15,CS, CS_2);
MEM1 : rom_cell

port map (ADD[0 to 14], CS_1, DATA);
MEM2 : rom_cell

port map (ADD[0 to 14], CS_2, DATA);
end STRUCTURE;

Figure 5: VHDL structural description
corresponding to the sub-system of figure 2

This is quite straightforward and more or less what would
be performed using today's synthesis tools.

Now we want to try another configuration with a 16 bit
data bus. This will necessitate the addition of two more
memory cells. Data are split into two cells and the
addressing of each pair of cells is identical. This process
continues for every prototype tried, an extremely costly
approach in terms of time and effort.

If we were only interested in simulating each
configuration, we would write a generic model of the
ROM, configure it in the top-level unit and simply change
the generic parameters for each prototype. This is both
faster and cleaner.

With HELIOS, the same approach can now be taken for
synthesis. Because of our limited cell library, the structural
architecture of our generic model is quite complicated. As
we do not know the number of memory cells that will be
instantiated at compile time, we must use generate
statements to:

• Instantiate a new memory cell for every 32K of
 memory required

• Instantiate miscellaneous address decoding
 logic cells

• Instantiate a new memory cell for every 8 bits
 of data required

The generic model is outlined in figure 6.

entity GENERIC_ROM is
 generic (ADDRESS_BUS_WIDTH : INTEGER;

DATA_BUS_WIDTH : INTEGER);
port (ADD : in BIT_VECTOR(0 to

ADDRESS_BUS_WIDTH - 1);
CS : in BIT;
DATA :out STD_LOGIC_VECTOR(0 to

DATA_BUS_WIDTH - 1);
end GENERIC_ROM;
use COMP_LIB.CELL_COMPONENTS.all;
architecture STRUCTURE of GENERIC_ROM is

constant INSTS_FOR_ADDRESS : INTEGER :=
(ADDRESS_BUS_WIDTH / 15) + 1;

constant TRAILING_ADD_BITS : INTEGER :=
ADDRESS_BUS_WIDTH mod 15;

constant INSTS_FOR_DATA : INTEGER :=
(DATA_BUS_WIDTH / 8) + 1;

 signal DATA_OVERFLOW:BIT_VECTOR(0 to 7) :=
(others=>'0');

 signal ADD_OVERFLOW:BIT_VECTOR(0 to 14) :=
(others=>'0');

begin
--When instantiating memory cells we have to cater for the
--fact that there may be address bus widths that are not a
--multiple of 32K. We store these trailing values in an
--array for each bus and when instantiating memory
--cells for these extra values, we'll map these arrays to the
--ports. If the port is not used, it will have the value '0',
--otherwise it will have the corresponding input value.

 L1 : if TRAILING_ADD_BITS > 0 generate
L2 : for I in 0 to 14 generate

L3 : if TRAILING_ADD_BITS < I generate
ADD_OVERFLOW(I) <=
ADD(((INSTS_FOR_ADDRESS-1)*15)+I);

end generate L3;
end generate L2;

end generate L1;
--Begin generating memory cells.

FullADD : for I in 0 to INSTS_FOR_ADDRESS-1
 generate

FullDATA : for J in 0 to INSTS_FOR_DATA-1
generate

--Instantiate memory cells and required decoding logic.
end generate FullDATA;

end generate FullADD;
end STRUCTURE;

Figure 6: Outline of generic ROM model

As can be seen from figure 6, the generic model associates
generic parameter values with generate statements (albeit
indirectly through constants). This means that the generate
bounds or conditional expressions cannot be evaluated at
compile time. However, if we elaborate the entire model,
starting with the top level configuration, no generics or
generate statements will remain. For example, if the
configuration shown in figure 7(a) is elaborated with
HELIOS, the ROM description passed to the synthesis or
hardware emulation tool will be that shown in figure 7(b).

configuration PROTOTYPE_64Kx8 of TOP_ENTITY is
for TOP_STRUCTURE

for all : GENERIC_ROM_MODEL use entity
WORK.GENERIC_ROM(STRUCTURE)
generic map (

ADDRESS_BUS_WIDTH => 16;
DATA_BUS_WIDTH => 8)

port map (ADD => ADDRESS_BUS;
 CS => CHIP_SELECT;
 DATA => DATA_BUS);

end for;
…

end for;
end PROTOTYPE_64Kx8;

(a)
entity GENERIC_ROM is

port (ADD : in BIT_VECTOR(0 to 15);
CS : in BIT;
DATA : out STD_LOGIC_VECTOR(0 to 7);

end GENERIC_ROM;
use COMP_LIB.CELL_COMPONENTS.all;
architecture STRUCTURE of GENERIC_ROM is

constant INSTS_FOR_ADDRESS : INTEGER := 2;
constant TRAILING_ADD_BITS : INTEGER := 1;
constant INSTS_FOR_DATA : INTEGER := 1;
signal DATA_OVERFLOW : BIT_VECTOR(0 to 7)

:= (others=>'0');
 signal ADD_OVERFLOW : BIT_VECTOR(0 to 14)

:= (others=>'0');

--Signals declared in the generate statements executed
signal NOT_ADD15 : BIT;
signal CS_1 : BIT;
signal CS_2 : BIT;

begin
ADDRESS_OVERFLOW(0) <= ADD(15);

--Instantiate memory cells and decoding logic for I=0.
AND2_1 : and2_cell port map(

ADDRESS_OVERFLOW(0),CS, CS_1);
MEM1 : rom_cell port map (

ADD[0 to 14], CS_1, DATA);

--Instantiate memory cells and decoding logic for I=1.
INV1 : inv_cell port map(

 ADDRESS_OVERFLOW(0), NOT_ADD15);
AND2_2 : and2_cell port map (

NOT_ADD15 ,CS, CS_2);
MEM2 : rom_cell port map (

ADD[0 to 14], CS_2, DATA);
end STRUCTURE;

(b)

Figure 7: (a) Example of top level configuration,
 (b) ROM description of figure 6 after
 elaboration of top level configuration.

Figure 7(b) is very similar to the hand-built architecture
shown in figure 5. The main difference lies in the fact that
this result was generated by elaborating a generic
description and is now acceptable by most commercial
logic synthesis tools. The use of a generic model means
that we can build different ROM models faster and safer.

In summary, using VHDL elaboration as well as other,
synthesis-oriented transformations enables us to make full
use of the VHDL language when designing large, complex
circuits. The design time is reduced as the number of lines
of code needed is decreased. The description itself is more
readable as the detail concerning a particular configuration
is added at elaboration time. The subset extensions shown
also vastly improve the prototyping time as it becomes
trivial to change a system's configuration. Finally, by using
HELIOS the designer no longer needs to maintain different
models for simulation and synthesis.

5. Conclusions

We have presented HELIOS, a tool that elaborates VHDL
descriptions for synthesis. By performing these
transformations, we have shown that system level models
can be written clearly in VHDL speeding up design,
simulation, debug and prototyping time. In addition, the
transformations executed by HELIOS ensure that the
resulting model is acceptable to current synthesis tools.

References

[1] IEEE, "IEEE Draft Standard VHDL
Synthesis Packages"
IEEE P1076.3-199X, 1995

[2] Villar E, "The Level 0 VHDL Synthesis
and Semantics, Parts 1 and 2", VHDL
Newsletter #19 and #20, 1995.

[3] Airiau R, Bergé J-M, Olive V,
"Circuit Synthesis with VHDL",
Kluwer Academic Publishers, 1994.

[4] Postula A, "VHDL Specific Issues in
High Level Synthesis", in Mermet J (ed),
VHDL for Simulation, Synthesis and
Formal Proofs of Hardware,
Kluwer Academic Publishers, 1992.

[5] Kission P, Ding H, Jerraya A,
"Structured Design Methodology for
High-Level Design", Proc. 31st DAC,
pp466-471, San Francisco, June 1994.

[6] Synthesia "The Synthesis VHDL Design
System - SYNT 1.5 User's Guide",
Synthesia AB, 1995.

[7] Gajski D, Dutt N, Wu A, Lin S, "High-
Level Synthesis: Introduction to Chip and
System Design", Kluwer Academic
Publishers, 1991.

[8] Bourbon B, "On System-Level Design",
Computer Design, December 1990.

[9] O'Brien K, "Compilation de Silicium : du
Circuit au Système", Ph.D dissertation,
INPG, Grenoble, France, March 1993.

[10] IEEE, "IEEE Draft Standard VITAL
ASIC Modeling Specification" IEEE
P1076.4-199X, 1995

	CDROM Home Page
	1996 Home Page
	EURO-DAC96 Home Page
	Front Matter
	Table of Contents
	Session Index
	Author Index

