
EURO-DAC ’96 with EURO-VHDL ’96
0-89791-848-7/96 $4.00  1996 IEEE

Specification and Management of Timing Constraints in Behavioral VHDL

Francesco Curatelli, Leonardo Mangeruca, Marco Chirico
DIBE – University of Genova

Microelectronics Lab
Via Opera Pia 11/A, 16145 Genova, Italy

franco@dibe.unige.it

Abstract

In this paper a suitable way to specify and manage timing
constraints in behavioral VHDL is described. The problem
of timing semantics coherency is addressed and a suitable
set of procedures is defined to add timing constraint spec-
ification in behavioral VHDL for system synthesis. Then,
a proper semantics is described which is able to provide a
powerful and flexible management of timing constraints.

1. Introduction

The use of VHDL as behavioral specification language
for system synthesis requires the definition of suitable
schemes for implementing the correct management of tim-
ing constraints.

In VHDL, this management is made difficult by the prob-
lem of ensuring the semantics coherency of the specification
between simulation and synthesis. So, it is necessary to add
specific predefined constructs that make it possible to insert
in the original VHDL program the set of real time constraints
needed.

To address this problem, in this paper a suitable way to
specify and manage timing constraints in behavioral VHDL
is described. In Section 2, the problem of timing constraints
definition, together with semantics coherency, is addressed.
In Section 3, a suitable set of procedures is defined to add
timing constraint specification in behavioral VHDL, while
in Section 4 a proper semantics is introduced which is able
to provide a powerful and flexible management of timing
constraints application. In Section 5, some conclusions are
outlined.

2. Timing Constraints Definition

The problem of providing timing constraints to a VHDL
input description is a fundamental one, because the imple-
mentation of any kind of real time system typically requires

the definition of minimum and maximum constraints on the
execution time of the system; this need is common to any
system implementation, either hardware, software, or both.
In any case, the presence of timing constraints implies that
the code generated during the synthesis task can be guaran-
teed to have a given execution profile. In this Section, the
problem related to the coherency of the timing semantics in
VHDL will be addressed. Then, an approach will be de-
scribed for defining, in a safe way, minimum and maximum
timing constraints in a VHDL input specification program.

2.1. Timing Definition Coherency

The general problem of checking the consistency of a
specification with timing constraints has been addressed,
for instance, in [3] [11] [13]. Instead, concerning the use of
VHDL as specification language for synthesis, the problem
of defining a synthesizable subset of the whole language has
been addressed in [12] [9] [4] [14] [7] [8]

In pure VHDL, the typical algorithmic constructs, com-
posed by high-level sequential statements, can be specified
using processes, functions and procedures, whereas the tim-
ing behavior of a process is determined by signals and wait
statements.

As the language simulation semantics states that all se-
quential statements of a process are executed in zero time
until a wait statement is reached [16], a strict interpretation
of the language timing semantics would prevent any correct
synthesis to be done. This is due to the fact that the zero time
execution cannot be really achieved. However, the timing
behavior of a process is relevant only for the signals which
are visible also outside the process, and not for the local
variables declared inside the process.

Therefore, the functionality of a process is not altered
provided that the signals are only read and/or updated at the
moments in time specified by the simulation semantics; all
other statements that operate on variables can be executed
at any time, given that the ordering imposed by the data
dependencies is mantained.

To ensure that the VHDL simulation timing semantics be
satisfied also by the synthesized system, several approaches
have been followed [1] [2] [10] [7] [15] [17]. In particular,
in [7] two methods are described for the synthesis of concur-
rent processes, which preserve a partial ordering relation of
operations on signals and ports during synthesis. In the first
method one is allowed to use freely signals and wait state-
ments in the specification (unrestricted model); semantics
coherency is achieved by adopting a strict control of process
synchronization for signal updating:

� processes update signal values only when all of them
are actually executing wait statements;

� synthesis produces systems controlled by either a single
FSM or several FSM’s working synchronously.

This strict control of process synchronization for sig-
nal updating is not needed in the second method (reduced-
synchronization model), where process interaction does oc-
cur only through signal assignment and wait statements, and
VHDL processes communicate only through a synchronous
message-passing mechanism, in which:

1) communications channels are provided by VHDL
signals, and signal assignment is only done with
send/receive commands;

2) send/receive commands have the syntax of subpro-
gram calls, and implement a blocking message-passing
mechanism, in which the process waits for the actual
activation of the exchange operation.

2.2. Timing Definition Problem

Aim of our work has been to define minimum, maximum,
and range timing constraints in the VHDL input behavioral
description. The input specification is constituted by VHDL
processes, communicating internally through a shared mem-
ory mechanism and externally through a message-passing
communication mechanism. Synchronization between pro-
cesses is achieved through a blocking communication chan-
nel. To meet the semantic coherency of the input description
a restriction is stated on the use of signals; i.e., within a
process, VHDL signals are only set and used by message-
passing procedures [6].

A useful specification requirement concerns the fact that
timing constraints should be actually defined with respect to
couples of specific points of the input description. This is
directly related to the typical approach to the definition of
timing constraints, which consists in defining minimum and
maximum latency times between two points of the specifi-
cation. Therefore, we have not chosen to use directly wait
statements for the definition of timing constraints. In fact,
in VHDL each wait statement states a waiting time with

respect to the previous wait statement in the execution se-
quence, which in case of branches in the flow of control is
unknown at compile time.

So, we have adopted another solution in which min/max
timing constraints can be specified between specific proce-
dure calls in the input specification program, always known
at compile time. Moreover, in this way timing constraints
may overlap, while in VHDL timing constraints can overlap
only as a result of branches in the flow of control.

This approach has been introduced by Eles et al. in
[8], where the main target is the specification of timing
constraints in behavioral VHDL for high-level synthesis so
that simulation to synthesis correspondence can be ensured
for a single process and across processes. This is obtained
through the definition of a set of specific procedures which
make it possible to assert exact, minimum, maximum and
range timing constraints between two points of the input
VHDL specification. In particular:

1) anchor (anchor lab): specifies the starting point of the
first following timing constraint that actually uses an-
chor label;

2) [exact/min/max/range] time (constr def, anchor lab):
an [exact/min/max/range] timing constraint of value
constr def is specified between this point of the pro-
gram and the point where anchor label was lastly used
as a parameter;

More specifically, simulation/synthesis correspondence
is automatically ensured for the model with reduced syn-
chronization [7], where process interaction does occur
only through signal assignments and wait statements, and
VHDL processes communicate only through a synchronous
message-passing mechanism.

3. Timing Constraints Procedures

In our work, the definition and use of a set of specific
procedures has made it possible to specify minimum, max-
imum, and range latency constraints, denoted by Tmi , TMi ,
T ri = (Tmi ; TMi), respectively. Each timing constraint is
defined with respect to a starting point P s

Ti
and an end point

P e
Ti

, so that during the execution, the execution times are
ordered, i.e.:

tex(P
s
Ti
) � tex(P

e
Ti
)

It is worth noting that an exact latency constraint is not
specifically provided, as it is possible to implement it as a
particular range constraint with Tmi = TMi .

The actual specification of the timing constraints is ob-
tained through the use of couples of specific procedure calls.
Each procedure defines one of the two points (starting, end)
in the VHDL input specification with respect to which each
timing constraints must be stated.

2

start_latency (..);

.....
if c1 then

else

 if c2 then

 else

 end if;
end if;

max_latency (..);
start_latency (..);

.....
if c3 then

else

end if;

.....

min_latency (..);

B 1

B 2

B 3

B 4

B 5

B 6

B 7

B8

B 9

B1

B2

B3

B4 B5

B6

B7 B8

B9

T2

T1

-10,-10

20,20

Figure 1. Timing constraints management

So, each timing constraint assertion involves two pro-
cedure executions: (�PsTi), associated to the starting point,
and (�PeTi), associated to the end point; only (�PeTi) actually
contains the information about the kind of timing constraint
(min/max/range) defined, while (�

PsTi) acts as an anchor
point for the definition. This definition makes it possible
to characterize situations in which more timing constraints
are expressed from different end points to the same starting
point; formally:

1) (�PeTi) = (�
PeTj) , P e

Ti
= P e

Tj
, Ti = Tj

2) (�PsTi) = (�
PsTj) , P s

Ti
= P s

Tj

=) Ti = Tj j Ti 6= Tj

In other words, it is not possible to define chains of timing
constraints starting from a single anchor and using the same
label. This restriction has the following advantages:

1) timing constraints are specified completely in the most
natural and simplest way (i.e., as a restriction stated
between two specific points of the input description);

2) it is possible to provide a more robust definition of
timing constraints, not subject to errors of definition
due to possible changes (addition and/or deletion) of
the timing constraints within the scope of the label.

The procedures used for defining timing constraints are
the following ones (Figure 1):

� (�PsTi) : start latency(label) defined at the point
P s
Ti

in the program from which the related latency con-
straints have to be considered (label 2N);

� (�
PeTi) : min latency(label; range) defined at the

point P e
Ti

in the program where the minimum latency
constraint has to be verified, and providing the range
of time values in which the latency must stay (range =
Lm, LM ; label, Lm, LM 2N);

� (�PeTi) : max latency(label; range) defined at the
point P e

Ti
in the program where the maximum latency

constraint has to be verified, and providing the range
of time values in which the latency must stay (range =
jUmj, jUM j; label,�Um, �UM 2N);

� (�
PeTi) : range latency(label; range) defined at the

point P e
Ti

in the program where the range latency con-
straint has to be verified, and providing the range of
time values in which the latency must stay (range =
Dm, DM ; label, Dm , DM 2N);

The VHDL input description is translated (in two steps)
into an internal form suitable for the execution of the syn-
thesis tasks (synthesis representation model). This internal

3

Figure 2. Min latency constraints

Figure 3. Max latency constraints

form of representation (which will be described in detail in
a further paper) is basicly constituted by control graphs in
which nodes correspond to deterministic computation enti-
ties, such as basic blocks, while edges define dependencies
between nodes, namely, each kind of dependency is related
to a different kind of edge: control edge, data edge, tim-
ing edge, the last one related to the definition of timing
constraints. The internal form contains at least one global
control-flow graph (G-CFG), in turn composed by a set of
partially disjoined behavioral control-flow graphs H-CFGs,
each one corresponding either to a VHDL process (P-CFG),
or to a subprogram (U-CFG) [5]. In terms of this graph
specification our representation scheme makes use of tim-
ing edges � , namely: forward edges, with positive weights,
for denoting minimum timing constraints (�Tm , Figure 2)
and backward edges, with negative weights, for denoting
maximum timing constraints (�TM , Figure 3); a couple of
forward and backward edges can be suitably used for de-
noting range timing constraints (� fTm , � b

TM
). This means

that:

� for a minimum timing constraint Tmi :
head (�Tm

i
)$ P e

Tm
i
; tail (�Tm

i
)$ P s

Tm
i

� for a maximum timing constraint TMj :
head (�TM

j
)$ P s

TM
j

; tail (�TM
j
)$ P e

TM
j

� for a range timing constraint T rk :
head (�

f
Tr
k

)$ P e
Tr
k

; tail (�
f
Tr
k

)$ P s
Tr
k

head (� bTr
k
)$ P s

Tr
k
; tail (� bTr

k
)$ P e

Tr
k

A worth noting characteristic of our approach is that a
timing constraint can be defined with respect to the entry

or exit points of the nodes, which are in turn put into cor-
respondence with the enabling and termination condition of
the nodes (Figures 2,3). This makes it possible to define
timing constraints in a very powerful and flexible way.

The following restrictions have been posed to the defi-
nition of timing constraints between different points of the
VHDL input specification, concerning the points where the
starting and end points of the timing constraint can be actu-
ally placed.

1) The definition of a timing constraint is only allowed
between a couple of points strictly belonging to the
same VHDL process or to the same subprogram; in the
internal form used in our work, this means that both
points must belong to the same H-CFG and at the same
hierarchical level (intra-graph constraint).

2) The definition of a timing constraint is not allowed
between the then and else scopes of a conditional state-
ment, and crossing the body of a whichever loop.

4. Timing Constraints Semantics

A main problem consists in defining a proper semantics
concerning the use of the above procedures to define timing
constraints. In particular, we have to decide which basic
block at the synthesis level the starting and end point of a
given timing constraint specified at VHDL level must be
bound to; the problem is complicated by the freedom to
define at the synthesis level timing edges with respect to
entry or exit point of the basic block [5].

The trivial approach would simply require that each
timing constraint put a strict constraint on the execution
of VHDL statements; namely: if an operation Oi is de-
fined, in the VHDL input specification, before a timing con-
straint procedure P ejs

Tj
, this would automatically require that

tex(Oi) � tex(P
ejs
Tj

). This simple choice is likely to pro-
duce bad results, since only communication through signals
and the presence of data dependencies really put constraints
on the execution of the system.

Instead, our approach is based on the definition of an
inclusive semantics; the name derives from the way the
timing constraints procedures are bound to entry or exit
points of nodes at the synthesis level.

Two basic situations will be treated: 1) a purely opera-
tional description, in which no inter-graph communication
or synchronization does occur, and 2) a mixed description,
in which at least one communication procedure with syn-
chronization is contained in the VHDL description.

In the first case the timing constraint is added to the de-
scription only to provide a suitable control on the execution
of different parts of the input specification. In this sense
no real constraint would really avoid assignment operations

4

Π

Figure 4. Inclusive semantics
without communication

σ(2)

Π

Π

Π
σ

σ σ(1)

(a) (b) (c)

Figure 5. Inclusive semantics with commu-
nication

on variables to be freely moved across the points where the
timing constraint procedures have been inserted. This is
directly related to the semantics of VHDL, which states that
operations on variables do not really contribute to the timing
of the process, and to the elimination of the use of signals
except inside the communication procedures.

The consequence is that the basic block management can
potentially perform any kind of code optimization and move-
ment suitable for the improvement of the synthesis task, and
in this sense the timing constraint itself is meaningful only
at the synthesis level, where, in case of code optimization,
the operational composition of the nodes has been changed
with respect to that provided as input. So, a timing con-
straint specification will at this point operates on the actual
configuration of the nodes constituting the graph (this will
obviously hold only for the system configuration we are
considering as a possible solution).

In this case the application of the inclusive semantics can
be summarized as follows (see Figure 4).

Let AV and BV be two sets of statements at VHDL level
suitable to be mapped directly to basic blocksA andB at the
synthesis level, and letPT the starting (or end) point where a
timing constraint procedure call has been inserted, provided
that the statement calling �PT be the only one separating
AV and BV , i.e.:

tex(AV) � tex(PT) � tex(BV)

Moreover, let A0 and B0 be the basic blocks actually man-
aged at the block level, after code optimization of A and B,
A0 being executed beforeB0 (A! B); the timingconstraint
given by �T will then refer to one of these blocks according
to the following rules:

1) PT = P s
T ; A

0 ! B0 =) PT $ entryB0

2) PT = P e
T ; A

0 ! B0 =) PT $ exitA0

In other words, according to the inclusive semantics a
timing constraint is considered as a condition embracing the
set of node operations contained within.

In the second case the timing constraint will actually
influence the timing characteristics of the process, since
communication procedures are actually constrained not to
cross timing constraint procedures.

So, also in this case the basic block management can po-
tentially perform code optimization and movement suitable
for the improvement of the synthesis task, provided that after
the transformations:

1) the operational semantics is maintained with respect to
the data-flow information (including the data depen-
dencies deriving from the presence of receive proce-
dures);

2) the send/receive communication operations do main-
tain the original relative positions in the control-flow,
and do not cross timing constraints specifications.

In this case the application of the inclusive semantics can
be summarized as follows.

Let AV and BV be two sets of statements at VHDL level
suitable to be mapped directly to basic blocks A and B at
the synthesis level, let �V be a blocking communication
operation, and let PT be the point (starting or end) where a
timing constraint procedure call has been inserted, provided
that the statement calling �PT and �V be the only ones
separating AV and BV , i.e.:

tex(AV) � tex(PT j �V) � tex(BV)

Moreover, let A0 and B0 be the basic blocks actually man-
aged at the block level, after code optimization of A and
B, A0 being executed before B0 (A! B), and let � be the
event or emit node related to �V in the G-CFG. The timing
constraint given by �T will then refer to one of these � nodes
according to the following rules (Figure 5(a-b)):

1) PT = P s
T ; A

0 ! � ! B0;

tex(PT) � tex(�V) =) PT $ entry�

2) PT = P s
T ; A

0 ! � ! B0;

tex(PT) � tex(�V) =) PT $ exit�

5

3) PT = P e
T ; A

0 ! � ! B0;

tex(PT) � tex(�V) =) PT $ entry�

4) PT = P e
T ; A

0 ! � ! B0;

tex(PT) � tex(�V) =) PT $ exit�

In other words, according to the inclusive semantics,
when a synchronization node is close to a timing constraint
specification the related point is anyway bound to that node.

The same scheme is adopted to choose the right bound
when the timing specification is placed between two syn-
chronization operations. In this case the application of
the inclusive semantics can be summarized as follows (Fig-
ure 5(c)).

Let �(1)
V and �

(2)
V be two blocking communication op-

erations close to each other and let PT the point (starting
or end) where a timing constraint procedure call has been
inserted, provided that tex(�

(1)
V) � tex(�

(2)
V). The timing

constraint given by �T will then refer to one of these nodes
according to the following rules:

1) PT = P s
T ; A

0 ! �(1) ! �(2) ! B0;

tex(�
(1)
V) � tex(PT) � tex(�

(2)
V)

=) PT $ entry�(2)

2) PT = P e
T ; A

0 ! �(1) ! �(2) ! B0;

tex(�
(1)
V) � tex(PT) � tex(�

(2)
V)

=) PT $ exit�(1)

5. Conclusions

In this paper we have addressed the problems concerning
the specification and management of timing constraints in
behavioral VHDL. This has been done by first discussing in
detail the need for semantics coherency in the input descrip-
tion, and then introducinga set of procedures able to define a
timing constraint specification in behavioral VHDL for sys-
tem synthesis. The management of each timing constraint
is done, within a process, through a couple of procedures
which make it possible to set minimum, maximum, and
range latency constraints between two points of the VHDL
input specification. Finally, a proper semantics has been
introduced which is able to provide a powerful and flexible
management of timing constraints application; in particular,
the adoption of this interpretation of the timing constraints
specification makes it possible to explore the potential so-
lution space being constrained only by the communication
and data dependencies contained in the input specification.

The approach has been described with a direct reference
to the internal form of representation used at the synthe-
sis level. The input specification is supposed to be con-
stituted by a set of processes, communicating internally
through a shared memory mechanism and externally through
a point-to-point,blocking or non-blocking,message-passing

communication mechanism. Synchronization between pro-
cesses is achieved through a blocking communication chan-
nel. A restriction is stated on the use of signals to meet the
semantic coherency of the input description.

Acknowledgements

This work has been partially supported by Esprit BRA
Project 9138 (CHIPS).

References

[1] R. A. Bergamaschi, A. Kuelhlmann, “A System for Produc-
tion Use of High-Level Synthesis”, IEEE Proceedings on
VLSI Systems, Vol. 1, No. 3, September 1993.

[2] J. Biesenack et al., “The Siemens High-Level Synthesis
System CALLAS”, IEEE Transactions on VLSI Systems,
Vol. 1, No. 3, September 1993.

[3] R. Camposano, A. Kunzmann, “Considering Timing Con-
straints in Synthesis from a Behavioral Description”, Pro-
ceedings of ICCD, October 1986.

[4] R. Camposano, L. F. Saunders, R. M. Tabet, “VHDL as
Input for High- Level Synthesis”, IEEE Design and Test of
Computers, March 1991.

[5] F. Curatelli, L. Mangeruca, M. Chirico, “Specification of a
Two-Level Intermediate Form for System Synthesis”, DIBE
Technical Report, June 1996.

[6] F. Curatelli, L. Mangeruca, M. Chirico, “Specification of
Data Communication and Timing Constraints in Behavioral
VHDL”, DIBE Technical Report, June 1996.

[7] P. Eles et al., “Synthesis of VHDL Concurrent Processes”,
Proceedings of EURO-VHDL, September 1994.

[8] P. Eles et al., “Timing Constraint Specification and Syn-
thesis in Behavioral VHDL”, Proceedings of EURO-VHDL,
September 1995.

[9] W. Glunz, G. Umbreit, “VHDL for High-Level Synthesis
of Digital Systems”, Proceedings of the 1st EURO-VHDL,
1990.

[10] A. A. Jerraya, I. Park, K. O’Brien, “AMICAL: An Interactive
High Level Synthesis Environment”, Proceedings of EDAC,
1993.

[11] D. Ku, G. De Micheli, “Relative Scheduling under Timing
Constraints”, Proceedings of the 27th DAC, June 1990.

[12] J. Lis, D. Gajski, “Synthesis from VHDL”, Proceedings of
ICCD, October 1988.

[13] J. Nestor, G. Krishnamoorthy, “SALSA: a New Approach
to Scheduling with Timing Constraints”, IEEE Transactions
on Computer-Aided Design, Vol. 12, No. 8, August 1993.

[14] A. Postula, “VHDL Specific Issues in High Level Synthesis”,
Proceedings of EURO-VHDL 91, September 1991.

[15] F. Vahid et al., “A Transformation for Integrating VHDL
Behavioral Specification with Synthesis and Software Gen-
eration”, Proceedings of EURO-VHDL, September 1994.

[16] “IEEE Standard VHDL LanguageReference Manual - IEEE
Std 1076-1987”, IEEE, 1987.

[17] N. Wehn et al., “Scheduling of Behavioral VHDL by Retim-
ing Techniques”, Proceedings of EURO-VHDL, September
1994.

6

	CDROM Home Page
	1996 Home Page
	EURO-DAC96 Home Page
	Front Matter
	Table of Contents
	Session Index
	Author Index

