
Synchronous Parallel Controller Synthesis from Behavioural

Multiple{process VHDL Description

Krzysztof Bilinskiy Jaroslaw Mirkowskiz Erik L. Daglessy

y Dept of Electrical & Electronic Eng. z Dept of Computer Engineering & Electronics
University of Bristol Higher College of Engineering

Bristol BS8 1TR, United Kingdom 65{246 Zielona Gora, Poland

Abstract

A uni�ed framework and associated algorithms for
a behavioural synthesis of parallel controllers from a
multiple{process VHDL speci�cation is presented. An
extension to FSMs, based on Petri nets, is used as an
internal representation of an concurrent system during
the synthesis. The VHDL simulation cycle implications
are explicitly implemented into the Petri net model. This
model is next decomposed into a set of well formed sub{
controllers and a state assignments is generated.

1 Introduction

A performance of digital systems can be increased by
applying e�cient tools which explore parallelism within
the design. VHDL supports process level parallelism.
However, some of its simulation{oriented characteristics
make VHDL di�cult to apply in synthesis, namely:

� Signals are updated only at the beginning of the
next simulation cycle. Thus, the postponement of
signals update has to be reected in the internal
representation.

� VHDL processes execute asynchronously and are
synchronized using wait statements.

As a result most of the high level synthesis systems
restrict themselves to single process and variables only
[2]. The system which follows the implication of the the
VHDL simulation cycle in compilation is CAMAD [2],
where the internal representation is realised in terms of
extended timed Petri net (ETPN). The solution applied
in CAMAD has a major drawback in case of signal as-
signment, namely the assignment is done implicitly (i.e.
is not represented in the control structure of the repre-
sentation) and is done at the end of the actual simulation
cycle instead of at the beginning of the next one.

The primary focus in the area of controller synthe-
sis has been in developing e�cient techniques for the
state assignment for �nite state machines (FSM). The
FSM techniques do not support any explicit represen-
tation of the multiple{process systems. An alternative
approach is to use Petri nets as a formal speci�cation
of the design. Behavioural analysis of the controller can
be performed, using well de�ned techniques from Petri
net theory based on a symbolic net execution. The Petri
net symbolic traversal techniques have originated from

the methods which are used in sequential circuit veri�-
cation [1]. The reported methods prove to be capable
of dealing with large nets, due to the e�cient data rep-
resentation provided by BDDs.

The decomposition of the controller speci�cation into
a set of linked sub{controllers may yield several advan-
tages [5]:

� The reduced critical path delay through the dis-
tributed controller and shorter control lines be-
tween each sub{controller and its data{path pro-
mote faster clocking.

� The smaller number of cells in each sub{controller
shortens the routing lines, thus may result in a de-
crease of the overall area of the controller, it also
assists with automatic layout.

The objectives of the work presented here can be for-
mulated as follows:

� Formulate a methodology for compilation a
multiple{process VHDL speci�cation into a Petri
net in such a way that the simulation cycle im-
plication are fully followed and represented in the
control and data ow representation of the speci�ed
system.

� De�ne the decomposition method for the Petri net
speci�cation of the controller. The method should
comply with the following constraints: (i) the com-
munication between sub{controllers should be min-
imised to improve routability of the entire design;
(ii) places should be grouped so as to promote an
optimum state assignment in each sub{controller.

2 Preliminaries

For a formal introduction to Petri nets refer to [4].
The use of a Petri net as a hardware description lan-
guage has resulted in the introduction of some dedi-
cated extensions to Petri net interpretation. A predi-
cate which is a Boolean function of the controller's input
signals may be attached to each transition. Thus, tran-
sition is enabled when all of its input places are marked,
and its predicate, if present, is asserted. Moore outputs
are associated with places, and they are asserted when-
ever the associated places have tokens. Mealy outputs
are associated with transitions, and they are asserted
whenever the associated transitions are enabled.

EURO-DAC ’96 with EURO-VHDL ’96
0-89791-848-7/96 $4.00 1996 IEEE

To model the systems with priority and shared re-
sources the modeling power of Petri nets has been in-
creased by introducing inhibitor and enabling arcs [4].
The enabling arc adds ability to test presents of tokens
in a place while the inhibitor arc adds ability to test the
absence of tokens in a place. Unlike ordinary arcs, no
tokens are moved through an inhibitor or enabling arc
when the transition �res. To model synchronous sys-
tems a new transition �ring rule has to be introduced.
All transitions are synchronized by a global clock, and
so all enabled transitions �re simultaneously. A Petri
net with above extensions is said to be a synchronous
interpreted Petri net (SIPN).

3 Synthesis methodology

The design ow of the proposed synthesis system is
show in Figure 1. The synthesis methodology consists
of the following steps:

� The synthesis starts from the behavioral VHDL
speci�cation of a controller. First, this speci�cation
is translated into an SIPN. The translation method
is described in detail in Section 4.

� Next, the SIPN is veri�ed and the BDD representa-
tion of the net state{space is generated using sym-
bolic traversal techniques [6]. Since the net analysis
and traversing methods are well described in liter-
ature, they will not be discussed here.

� The symbolic representation of the net state{space
is then used to behavioral decomposition of the
SIPN into a set well formed sub{nets (i.e. sub{
controllers). The net can be decomposed into a
set of purely sequential sub{nets or sub{nets with
limited concurrency. The method is presented in
Section 5.

� Finally, each component is encoded separately us-
ing a unique set of ip{ops and the logic level de-
scription of the controller is produced.

4 VHDL to SIPN transformation

The compilation process of a VHDL speci�cation into
an SIPN consists of three main steps, the last two are
consequences of the simulation cycle requirements.

� Transforming the operations of all processes into
their respective SIPN representation. At this stage
also parallelism extraction is being performed.

� Synchronisation of wait statements of all the pro-
cesses.

� Correct postponement of signal assignment (signal
update).

Each VHDL operation, noti�ed as Ni, is de�ned as
a 6-tuple: Ni = (Ini; Outi; Opi; P ri; Sui; Coni); where:
Ini is a set of input variables of Ni; Outi is a set of out-
put variables of Ni; Opi is a set of operands of Ni; Pri
is a set of predecessors of Ni; Sui is a set of successors
of Ni; Coni is a predicate of Ni. The transformation
procedure is performed as follows.

Sequential state assignment

Parallel components

Parallel state assignment

Logic synthesis

Sequential components

Behavioural decomposition

BDD representation of the net state space

Symbolic traversal & behavioural analysis

Synchronous interpreted Petri net

Graphical interface Compilation

Behavioural multiple-process VHDL

Figure 1: Design ow.

1. Determine all predicates;

2. Extract data and/or control dependencies and re-
move redundant dependencies;

3. De�ne type of a module for each operation, connect
modules to obtain a Petri Net and reduce the net.

Predicates, are logical conditions of executing opera-
tions. They are used to determine control dependencies,
but are also reected in the resulting SIPN. A predicate
of an operation is a logical product of conditions which
must be ful�lled to execute an operation.

To determine predicates the input speci�cation is
transformed in such a way, that comparisons from con-
ditional operations are extracted and changed into oper-
ations with a logical variable on an output, for example:

before:
if x > 0
then y := 2 � k;
else y := y � 1;

end if ;

after:
c1 := x > 0
if c1 then y := 2 � k; end if ;
if not c1 then y := y� 1; end if ;

An operation Nk is called dependent on Nj if Nj

prepares data for Nk (data dependency) or its execu-
tion must be completed before Nk's execution can be
started (control dependency), e.g. if Nj then Nk con-
struct. List of dependencies can be easily transformed
into set of predecessors and successors for each opera-
tion: if Nh is dependent on Ng, then Ng is a predecessor
of Nh and Nh is a successor of Ng . Removing redundant
dependencies prevents the net form unnecessary growth
as every such a dependency may result in additional
place and/or transition, e.g. considering the following
fragment of VHDL:

if x > 0 then
y := 2 � k;
y := y � 1;

endif ;

| 1
| 2
| 3

operation 3 in this example is dependent on 1 and 2.
Meanwhile, operation 2 is dependent on 1. Dependency
of operation 3 on operation 1 is therefore redundant.

While an operation is represented by a place, it is
additionally augmented with an input transition, start-
ing execution of the operation. However, such modules
cannot be directly connected because this would lead
to a dead and/or unsafe net. Thus, additional places
and/or transitions are added to the modules in order to
keep the safeness and liveness of the net, which is crucial
for proper functioning of designed system. Additions to
modules depend on predicates of predecessors and suc-
cessors of given operation. They can be divided into two
groups - relating to inputs and outputs:

Inputs:
A - one predecessor;
B - several predecessors, non-conict predicates;
C - several predecessors, conict predicates;
D - several predecessors, mixing B and C types.

Outputs:
A - one successor,
B - several successors, conict predicates;
C - several successors, non-conict predicates,
D - several successors, mixing B and C types.

This forms 16 possibilities, 16 di�erent modules of
SIPN, each denoted by two letters: �rst relating to in-
puts and second - to outputs, e.g. module type AB has
only one input to the enabling transition and more than
one successors with conict predicates. Predicates are
said to be in conict if they mutually exclude each other,
e.g. x and x. An example of modules of an operation
N with a predicate C is shown in Figure 2.

N

C

BB

N

C

BC

N

C

CB

Figure 2: An example of the operating modules.

4.1 VHDL simulation cycle

Considering the de�nition of a simulation cycle [9]
two conclusions, which are described in more details in
this section, can be drawn:

� No process can be resumed until all active processes
suspend.

� Signal assignment can be executed physically when
respective process is resumed but before execution
of any of its operations. Moreover, the process may
not be suspended by a signal assignment operation.

4.1.1 Synchronisation of processes

Any VHDL process is synchronized in such a way that
no process can resume its execution until all other active
processes suspend. Such a synchronisation is introduced
as a transition connecting all the wait statements [2].

NC

C

TW
Qn’Qn

C

TS

Figure 3: Synchronisation of a wait statement.

Figure 3 presents a synchronisation of a wait state-
ment, represented by the transition TW, in one pro-
cess. The synchronisation transition connecting all the
processes is denoted as TS; C is a predicate which is
true when any of the signals from the wait sensitivity
list changed during recent simulation cycle. The mark-
ing of the place NC denotes that next simulation cycle
is started and the process is resumed.

4.1.2 Signal update

A signal can be updated when two conditions are met:

� Respective operation has been selected during the
execution of the process.

� The process resumed for the next simulation cycle
(place NC from Figure 3 is marked).

The correct location of a place representing signal
assignment operation is determined by a parallelism ex-
traction step. Physical execution has to be postponed
until the next simulation cycle begins. Handling both
requirements can be done by substituting an original
place with a new subnet as illustrated in the following
example. Let OPk be a signal assignment operation, its
predicate is Cp and its direct predecessor is OPg, the di-
rect implementation is shown in Figure 4(a). Figure 4(b)
on the other hand illustrates the implementation which
results from the implications of the VHDL simulation
cycle. Place NC is the same as in the Figure 3.

4.1.3 Resuming the process

When the process has to be resumed �rst the signals
must be updated. It is not possible, however, to deter-
mine which of them will be updated in any particular
simulation cycle as this depends on external conditions.
Thus, the input transition enabling execution of the sig-
nal assignment has an enabling arc from the place de-
noting the beginning of next cycle. Furthermore, the
marking can be removed from this place only after all
necessary signals are updated. If none of the signals has
been updated, the marking is removed immediately. In
order to support such information a small subnet is con-
structed. It consists of two places and two transitions.
The marking of the place A1 denoted that no signal is
being updated and the A2 denotes updating of at least

NC
p

g

k

p

OP

C

next operation

OP

C

OP

gOP

k

next operation

beginning of the proces

g

k

p

beginning of the proces

next operation

OP

OP

C

b)a) c)
Cp

A1 A2

NC

Figure 4: Signal assignment: a) without simula-
tion cycle implementation; b) postponed accord-
ing to the simulation cycle requirements; c) post-
poned according to the simulation requirements
with correct signal updating.

one signal. Depending on this information the marking
of the place NC is removed in one of the above men-
tioned ways as it is illustrated on Figure 4(c), which is
an updated version of Figure 4(b).

5 Behavioural decomposition

Having an SIPN constructed and its properties veri-
�ed the behavioural decomposition of the SIPN is per-
formed. Let PN be a safe Petri net and
 the set of
all markings of PN . A set of markings of PN can be
represented as an vector M = fm1;m2; :::;mkg, where
mi = (�1 �2 ::: �n), and �i represents number of tokens
in the place pi, which can be 0 or 1. A set of all mark-
ings reachable from the initial marking M0 is denoted
[M0i. The characteristic function �M of a set of mark-
ings M �
 is a Boolean function: �M :
 ! f0; 1g,
that evaluates to 1 on the vertices belonging to M , oth-
erwise it is 0 [6]. The characteristic function can be
e�ciently represented using BDDs | Figure 5.

0

0

p4

0

0Mχ

0

0

10

0

0

0

0M = {
p1, , p9

001000100, 001010001
010010010, 010001001
010001010, 010010001

100010001, 100010010
100000100, 100001001

100001010

001010010, 010000100
001001001, 001001010
000100001, 000100010

}

0

p2

p6

p3

p5

p1

p8

p8

p7

p9

p5

p6

p7

p4

p3

p2

Figure 5: BDD representation of the set [M0i.

The Petri net decomposition algorithm operates on
the characteristic function �[M0i. To simplify the de-
composition process, the characteristic function �[M0i
is simpli�ed prior to the decomposition.

5.1 Characteristic function simpli�cation.

The simpli�cation algorithm consists of the following
steps. First, a pair pi and pj is identi�ed, such that

both pi and pj has the same marking relationship with
all other places, i.e: for all pk 2 P :�

�[M0i � pi � pk 6= 0 , �[M0i � pj � pk 6= 0
�[M0i � pi � pk = 0 , �[M0i � pj � pk = 0

(1)

Next, pi and pj are merged by forming their Boolean
product or sum and replaced by a new variable pi:

pi =

�
pi:pj if �[M0i � pi � pj = 0 (a)
pi + pj if �[M0i � pi � pj 6= 0 (b)

(2)

Finally, pj is removed from the characteristic func-
tion. The algorithm is reiterated until no further sim-
pli�cation can be achieved. Figure 6 shows the the sim-
pli�ed characteristic function �R of the function �[M0i
shown in Figure 5. For simplicity, the expressions repre-
senting Boolean product or sum will be explicitly used,
instead of using the variables by which they are replaced,
e.g. p5:p6 instead of p5.

0

0

0

0 1

χ
R

1

1

p4
p1.p2.p3

p5.p6

p4

p8.p9
p7

p5.p6

p7

Figure 6: The reduced characteristic function.

5.2 Decomposition algorithm.

Let G = (V;E) be a weighted relation graph, where:
V is a set of vertices, each of which represents a variable
of the �R; E is a set of arcs, where an arc connects two
vertices if the matching variables of �R comply with the
following criterion (i.e. two places are sequential related
to each other):

�R � pi � pj = 0 (3)

To each vertex a weight is assigned. If a variable of �R
represents a product or sum of other variables then the
weight equals the number of ip{ops needed to imple-
ment the variable, otherwise the weight is 0. An example
of the weighted relation graph is shown in Figure 7(a).

1

0 1

1

p7 p5.p6

p8.p9p8.p9

b) c)
2

1

0 1

0 p4

p5.p6p7

p1.p2.p3

p8.p9

a)

Figure 7: Weighted relation graphs.

A clique of a graph G is a subset of vertices C �

V such that if vertices ci; cj 2 C then there is an arc
ek 2 E which connect these two vertices. Each clique

in the graph de�nes one component (i.e. sub{net) of
the SIPN. The problem of �nding a maximum clique
is known to be a NP{complete [7]. Here, a heuristic
algorithm, which works in polynomial time to �nd out
the �rst good irredundant solution, with respect to the
decomposition constraints is presented:

1. Identify a vertex vi, such that for all vk 2 V :

wg(vk) + jvkj � wg(vi) + jvij (4)

where: wg(v) returns the vetrex's weight and jvj is
the number of arcs connected to the vertex.

2. Add the identi�ed vertex to the clique Cl.
3. Identify another vertex vj , which is not in the Cl,

satis�es the criterion (4) and the following condi-
tion:

8
vi 2Cl

9
e2E

vi
e
� vj (5)

if the vertex vj cannot be identi�ed then the con-
struction of the clique Cl is completed, otherwise
go to the Step 2.

Applying these steps to the graph in Figure 7(a),
the vertex p1:p2:p3 is selected �rst. Next the vertex
p4 is also identi�ed in Step 3. The �rst identi�ed
clique is denoted using thick circles in Figure 7(a).

4. Remove from the graph all vertices constituting the
clique Cl.

5. Repeat the above steps until all vertices have been
removed from the graph.

Employing the above algorithm to the graph shown
in Figure 7(a), the three cliques have been selected:
C1 = fp1:p2:p3; p4g; C2 = fp5:p6; p7g; C3 = fp8:p9g.
Elements of each clique are sequentially related to each
other. A clique (component) is said to be complete if its
elements comply with the following criterion:

�R �
X
vi2C

bdd variable(vi) = �R (6)

where: bdd variable(v) returns the bdd variable corre-
sponding to the vertex v. If elements of any clique do
not comply with criterion (6), an extra vertex must be
added to the clique, which represents an idle state of a
component (i.e. a state in which no places have a token).

In the presented example, the elements of C2 and C3

do not comply with criterion (6), thus extra elements
have been added to these cliques. The three components
are de�ned as follows:

C1 = fp1:p2:p3; p4g C2 = fp5:p6; p7; pidle1g
C3 = fp8:p9; pidle2g

The pidle places do not e�ect the operation of the
controller, since they do not have outputs attached to
them, but they may increase the number of ip{ops
required during a state assignment.

The algorithmic complexity of the graph generation
procedure is O(n2), while clique construction is done in
O(n2 + 2 � n) steps, where n is the number of variables
of characteristic function �R (i.e. the number of places
of the reduced SIPN).

5.3 State assignment

State assignment assigns a state code to each place
in the decomposed SIPN. Every component is encoded
using a separate set of ip{ops. Two encoding ap-
proaches have been implemented:

� If the SIPN is decomposed into a set of sequential
components, i.e. only criterion (2.a) was applied
then sequential state assignment techniques such as
one{hot{code, Gray or binary encoding are used.

� If the SIPN is decomposed into a set of well formed
concurrent components, i.e. both (2.a) and (2.b)
were applied. Then the places in each components
can share state variables to reduce the number of
ip{ops in the state register, subject to the follow-
ing constraint: the places which hold tokens simul-
taneously must have non{orthogonal codes. Two
codes are said to be non{orthogonal if they di�er
by at least one state variable.

The �nal state assignment for the current example is
shown in Table 1.

p1 p2 p3 p4 p5 p6 p7 p8 p9

Q1 1 1 0 0
Q2 1 0 1 0
Q3 1 1 0
Q4 1 0 1
Q5 1 1
Q6 1 0

Table 1: Final state assignment.

6 Experimental results

All presented algorithms have been implemented in
C and a CAD system for high{level synthesis of parallel
controller was created. In this section, the synthesis
results are described. All benchmarks were run on a Sun
SPARC{Station2 computer with 64 MByte of memory.

In Table 2 the translation results obtained using the
presented approach (SIPN) and those produced by the
use of the CAMAD system are shown. The cost function
(cf) of the parallelism extraction is de�ned as follows:

8
pi pj 2 supp(�[M0i

)
�[M0i � pi � pj 6= 0) par = par + 1;

cf = (jsupp(�[M0i)j
2
� par)=(jsupp(�[M0i)j

2) � 100;

where: supp(�[M0i) is a support of �[M0i.

The CAMAD system produces a slightly smaller nets
due to the lack of the correct signal assignment proce-
dure, e.i. signal assignment is done at the end of the

VHDL SIPN CAMAD
name ln pr wt pl tr cf pl tr cf
armstr 139 5 5 95 102 69 79 88 49
move mc 148 3 3 53 49 59 38 45 40
rs232 166 2 2 44 45 42 38 46 31
mark1 71 1 0 13 20 0 18 24 0
ln: number of lines; lr: number of processes;
wt: number of waits; pl/tr: places/transitions;

Table 2: Translation results.

BDD decomposition Place encoding
#� area delay Tcpu #� area delay Tcpu

name in out pl tr j[M0ij �[M0i { [�m2] [ns] [s] { [�m2] [ns] [s]
frcntr 15 21 62 64 21575805 8086 37 565001 7.82 9720 - - - -y
minctr 13 17 46 48 93242 2006 24 395930 7.22 658 - - - -y
armstr 12 1 91 102 54933 2603 46 487864 6.59 432 47 541360 9.23 5012
sm7 6 18 56 42 28516 879 38 478949 5.00 147 38 487784 6.13 2627
bar 9 12 30 31 18797 308 18 282246 4.29 135 18 283651 4.88 1351

rascas 8 4 28 28 1214 487 16 332678 4.10 171 19 379220 3.80 240
gf2 10 4 20 20 485 106 12 173036 4.39 65 12 157783 4.61 95
rs232 10 24 44 45 165 248 24 188699 7.06 132 23 215711 11.95 203
am2109 34 90 130 153 130 257 8 158791 6.28 102 8 166621 6.31 100
spool 4 19 28 24 77 64 16 250601 5.86 95 19 356621 7.57 91

yThe computation cannot be completed within 24 hour time limit.

in/out: number of inputs/outputs, �: number of ip{ops, area: area of the �nal implementation,
delay: max. critical path delay, Tcpu: synthesis cpu run{time.

Table 3: Synthesis results.

present simulation cycle instead of at the beginning of
the next one. Thus, di�erent result are produced by
VHDL simulator and CAMAD simulator. Further, the
SIPNs are signi�cantlymore parallel then their CAMAD
counterparts.

To evaluate the e�ciency of decomposition method
the synthesis results were compared with an alternative
parallel implementation based on a hierarchical place
encoding approach presented in [3]. Each of the exam-
ples, after the state assignment, was optimized using
the Berkeley synthesis system SIS ver.1.2 [8] and syn-
thesized using the Cadence Framework II design system
with the ES2 ECPD10 1�m cell libraries.

Table 3 shows the synthesis results. Summarizing
the experimental results we can observe, that for all the
examples the decomposition implementations produce
better results when compared to their encoding coun-
terparts | mainly because of the better grouping of
ip{ops during the state assignment and shorter rout-
ing lines. The presented method is also able to handle
the synthesis of much more complex controllers than the
alternative approaches.

7 Conclusion

A novel approach to high{level synthesis of paral-
lel controllers from VHDL speci�cations has been pre-
sented. Its novelty lies in direct implementation of all
implications of the VHDL simulation cycle into the in-
ternal Petri net representation of the controller. This
net is next decomposed into a set set of well formed
sub{controllers using a method based on symbolic ma-
nipulation of the controller state{space. The application
of the proposed methodology ensures a one-to-one cor-
respondence between the results of a VHDL simulator
(applied to the input speci�cation) and the results of
the synthesis. The experimental results clearly demon-
strate the advantages of the method over the alternative
methods.

References

[1] O. Coudert, J.C. Madre, and C. Berthet. Verifying Tem-
poral Properties of Sequential Machines without Build-
ing their State Diagrams. In E.M. Clarke and R.P. Kur-
shan, editors, Proceedings of Computer-Aided Veri�ca-
tion 2nd International Conference CAV'90, volume 531
of Lecture Notes in Computer Science, pages 23 { 32.
Springer-Verlag, June 1990.

[2] P. Eles, K. Kuchcinski, Z. Peng, and M. Minea. Syn-
thesis of VHDL Concurrent Processes. In Proceedings
of the European Design Automation Conference EURO{
DAC'94, pages 540 { 545, Grenoble, September 19{23,
1994.

[3] T. Kozlowski, E. Dagless, J. Saul, M. Adamski, and
J. Szajna. Parallel Controller Synthesis using Petri Nets.
IEE Proceedings { Computers and Digital Techniques,
142(4):263 { 271, July, 1995.

[4] T. Murata. Petri Nets: Properties, Analysis and Appli-
cations. Proceedings of the IEEE, 77(4):548 { 580, 1989.

[5] J. Pardey and M Bolton. Logic Synthesis of Synchronous
Parallel Controlers. In Proceedings of the IEEE Interna-

tional Conference on Computer Design, pages 454{457.
IEEE Computer Society Press, 1991.

[6] E. Pastor, O. Roig, J. Cortadella, and R. Badia. Petri
Net Analysis Using Boolean Manipulation. In R. Valette,
editor, Proceedings of 15th International Conference:
Application and Theory of Petri Nets, volume 815 of
Lecture Notes in Computer Science, pages 416 { 435.
Springer-Verlag, June 1994.

[7] E.M. Reingold, J. Nievergelt, and N. Deo. Combinatorial
Algorithms, Theory and Practice. Prentice Hall, 1977.

[8] E.M. Sentovich, K.J. Singh, L. Lavagno, C. Moon,
R. Murgai, A. Saldanha, H. Savoj, P.R. Stephan, R.K.
Brayton, and A. Sangiovanni-Vincentelli. SIS: A System
for Sequential Circuit Synthesis. University of Califor-
nia, Berkelay, May 1992. Memorandum No. UCB/ERL
M92/41.

[9] IEEE Standard VHDL Language Reference Manual.
IEEE, New York, 1988.

	CDROM Home Page
	1996 Home Page
	EURO-DAC96 Home Page
	Front Matter
	Table of Contents
	Session Index
	Author Index

