
Abstract
We present a new method of behavioral modeling consist-
ing of separation of synchronization and functionality. In
this way incomplete specification and incremental refine-
ment can be performed to reduce the modeling effort in
early design stages. Compared to known methods our
approach allows early cycle based analysis to select appro-
priate architectures and to perform parallel/serial trade-
off. Due to the separation of synchronization and function-
ality the datapath can be developed independently of the
controller and thus enables concurrent engineering.
Another important characteristic is the reuse friendly
architecture proposed in this paper.

1 Introduction
Top down design methodology is used world-wide to cope
with design complexity. So called specifications document
interim results of design stages in a natural language. These
specifications increase more and more. Currently they are
replaced by executable specifications, to make verification,
validation, and analysis of design steps and their results
possible. Different approaches to abstraction are used to
reduce the model expense of executable specifications:

• Explicitly described freedom like don’t care (‘-’).
• Abstraction in time, value and description style
• Application of super symbols like records, subroutines

or classes as known from software design.
• Incompleteness by omitting partial behavior like error

cases or initialization by reset.

1.1 Related work
A classification of design levels related to abstraction in
time, value and description style was presented in
[RAM91]. The design cube [EcHo92] models these
abstraction levels independently and associates an axis in a
three dimensional design space with each of them. Time
abstraction namely propagation delay, clock relation and
causality is seen as the most important factor in this model.
A comparative study of different description or specifica-
tion languages according to their abstraction mechanisms
can be found in [NaGa93]. An extended VHDL-subset for
time abstraction is described in [BeSt91] and a pure VHDL
based approach can be found in [EcMa93]. The paper
[HuDi95] reports on an industrial application of causality
as time abstraction. Its benefits are early functional integra-
tion. The disadvantage however is that cycle based analy-

sis, which is important for architecture selection and
parallel/serial trade-off, can not be performed in early pure
causal specification stages.

Special abstract modeling approaches, such as the use of
Petri Nets [AbCo90, FRBC91, MüKr93, Ram93] or sto-
chastic system models [HuTo90] are also used for early sys-
tem evaluation. These approaches do not allow cycle based
analysis, either.

The application of software techniques like structured
analysis for early real time system modeling is described in
[LSK91] and [SKS91]. An application specific approach for
architecture evaluation, considering full functionality and
timing for analysis, can be found in [PSL91]. Here timing
and functionality are modelled in one run and a lot of mod-
eling effort must be spent.

Another approach to reduce modeling effort is the appli-
cation of incomplete specification and incremental design as
proposed in [Hoh91]. Here again, abstraction approaches as
described in [Ram91] are used and thus no investigations
based on cycle analysis can be performed. We show in this
paper a new approach of incremental design enabling early
cycle based analysis: Separation of synchronization, repre-
senting clock related timing, and functionality.

1.2 Overview
The paper is organized as follows: First our approach of
separation of timing and functionality is described in gen-
eral. Afterwards different modeling alternatives are dis-
cussed in relation to this approach. The presentation and
discussion of a special modeling style follows subsequent.
A verification method and an application example conclude
the paper.

2 General Approach and Design Flow
Our approach consists of separation of synchronization and
functionality through all design steps including modeling,
verification, validation and analysis. Timing is modelled by
synchronous controllers and functionality by synchronous
or combinational datapaths. Designs with data inherent syn-
chronization can be modelled by a decoder in the datapath
that extracts control from the data flow.

Our approach starts with modeling timing by designing
and composing controllers. These controllers are either
responsible for synchronization or time related control of
data operations. Based on this approach a first cycle based
timing analysis can be performed. The network of control-
lers is then extended by dummy datapath operations and

Stepwise Refinement of Behavioral VHDL Specifications
by Separation of Synchronization and Functionality

Claus Schneider, Wolfgang Ecker

Siemens AG, Corporate Research and Development, ZFE T SE 5
D-81730 Munich

E-Mail: Claus.Schneider | Wolfgang.Ecker@zfe.siemens.de

EURO-DAC ’96 with EURO-VHDL ’96
0-89791-848-7/96 $4.00 1996 IEEE

data buffers. This architecture allows additional dataflow
analysis. A trade-off between buffer size, processing time
and parallelism can now be evaluated. The modeling effort
to achieve the timing and dataflow model is relatively
small, compared with a full functional model.

Figure 1: Design Flow

In a second step, functionality is modelled timing inde-
pendent i.e. all computations are performed in zero time.
This second step can be done completely independent of
the timing and dataflow modeling and thus enables concur-
rent engineering.

Finally timing and functionality are integrated. Now a
detailed and exhaustive verification considering also data
dependent processing time can be performed.

3 Modeling Alternatives
Different modeling approaches were candidates for our
approach. We used and extended the architecture taxonomy
(SISD, SIMD, MIMD) presented in [GVNG94] for evalua-
tion of the best modeling style.

We distinguished the number of datapaths and control-
lers, which are used to model one unit. Using controllers is
only useful if synchronization but no data processing is
required. The number of controllers thereby is determined
by the nature of the synchronization problem. The other
extreme, using datapaths only can be depicted to pure soft-
ware, and shall not be further discussed in this paper.

An entity consisting of one controller and one datapath
only relates to a typical von Neumann architecture (SISD).
This architecture can also be described in one VHDL unit
using multiple wait statements for the specification of the
control steps. The structured programming approach inher-
ent in this description is in most cases not suitable to
express all required transactions in the control flow.
Another objection to this description style is, that a new
model must be generated for each of our design steps due to
the fact that VHDL does not support different subroutine
bodies. We detected moreover, that a separated single con-
troller is in most cases not suitable due to the fact that con-
trol and synchronization problems are in most cases not
sequential. Thus single controller single datapath and single

CTRL

DUMMY DATAPATH

CTRL

CTRL

OP

CTRL

DATAPATH

CTRL

CTRL

1a

1b

2

3

controller multiple datapath (SIMD) modeling is not useful
for our approach.

Multiple controller multiple datapath architectures can
be partitioned into two classes: A net of single controller
single datapath architectures as known from multiple pro-
cessor computers (MIMD) or a glue of controllers and data-
paths. Shared controllers are useful but a set of datapaths is
seen as an overhead, which only reduces simulation perfor-
mance.

For our approach we selected a multiple controller sin-
gle datapath (MISD) model. This partition makes incremen-
tal extensions, using VHDL structural and configuration
description capabilities, very easy to model. The concurrent
control flow can be modelled in a very natural way and a
single datapath ensures high simulation speed.

4 Modeling Issues
Before we present our modeling approach in detail, some
general remarks about behavioral modeling shall be made:

• Correctness and Readability are the most important
issues in behavioral modeling. An error in the specifica-
tion due to an incorrect behavioral model, that is
detected in the RTL model for the first time, causes a
long iteration loop back to the specification which
increases the development time. Besides, behavioral
models are part of the specification and because of that
they should be easy to read.

• Simulation Performance is due to the huge amount of
testcases important and therefore should be considered.
But it has only second priority to correctness and read-
ability.

• TheLevel of Abstraction is a trade-off between devel-
opment time and meaningfulness. On the one hand the
behavioral model must abstract from the later imple-
mentation to reduce modeling effort and simulation
time, to get a stable specification as soon as possible. On
the other hand the model must be precise enough to get
clear statements about the system behavior.

4.1 Overall Architecture
To achieve both correctness and readability, behavioral
models should be described in a natural (problem specific)
way. This means the modeling style (sequential - concur-
rent) should be as close as possible to the problem.

A client-server handshake for example has a concurrent
and a matrix-multiplication a sequential character. Each of
these problems should be described in the given way. In
addition to that the client-server synchronization belongs to
the controller and the matrix-multiplication to the datapath.
In fact we detected this concurrent character of the control-
ler and the sequential (algorithmic) character of datapath
operations in a lot of our applications.

The datapath is completely separated from the controller
to allow a stepwise refinement of the model as described in
the previous chapter and to separate the mainly concurrent
controller domain from the mainly sequential datapath
domain. Therefore the controller consists of several concur-
rent processes, but for the datapath a single process model is
worth striving for.

4.1.1 Controller: concurrent vs. sequential
The controller model is a trade-off between the number of

concurrent control processes on the one hand and the com-
plexity (number of states and transitions i.e. lines of VHDL
code) of each process on the other hand. The level of con-
currence that should be chosen for the behavioral model
depends heavily on the character of the control problem.

A serialized one process model of a concurrent control
problem for example minimizes the communication effort
(number of control signals), but it drastically increases the
complexity, because the number of states of the resulting
controller is the cross-product of all states of the concurrent
controllers. Moreover the use of variables for communica-
tion between concurrent controllers inside a single process,
would lead to the need to re-model the delayed signal
assignment and update characteristics for the communica-
tion variables.

On the other hand it makes no sense to partition an
already sequential control problem into several concurrent
controllers, because the one process sequential solution is
closer to the (trained) human thinking and thus easier to
understand. The sequential solution also increases the sim-
ulation performance.

Therefore the controller should be as concurrent and as
sequential respectively, as the control problem itself. This
approach leads to a higher model quality, because no error-
prone transformations, from concurrent to sequential and
vice versa, are needed. In addition the readability of the
code is improved, because the problem specific modeling
style in many cases is the most compact one.

4.1.2 Single Process Datapath
Due to separation of control and data, the datapath has the
task to store and process data. Data processing reaches
from simple data transfers between two memory locations
to complex operations like a matrix-multiplication. To
facilitate parallel work of complex operations, queuing
memories are often inserted between operations. Compared
with RTL at the behavioral level complex operations are
not divided into single steps. They are executed within one
processing cycle. Therefore a queuing memory must supply
all data for the complete operation in parallel instead of sin-
gle data words in a sequential order. The higher the level of
abstraction, the wider the memory interfaces must be. In
case of the matrix-multiplication, at RTL the operation is
performed one matrix element after another and therefore
the memory interface must only deliver single matrix ele-
ments. In comparison to that, at behavioral level the com-
plete operation is done in one step and the queuing memory
must supply a complete matrix in parallel. In addition to the
wide interfaces, for system simulation a huge amount of
data must be processed and therefore a high simulation per-
formance is needed.

Because of these facts the datapath should be modelled
in one process whenever possible. The higher simulation
performance is achieved by using variables instead of sig-
nals inside the datapath process and sequential statements
to model the operations. Only the interface to the controller
must be modelled using signals even if this decreases the
simulation performance. Another benefit of the single data-
path process is the reduced modeling effort, because inside
the datapath process each operation has random access to
all data memories without any modeling overhead for data
busses. Finally, interfacing with variables instead of signals
demands the algorithmic thinking.

4.2 Datapath Modeling
The single process datapath is divided in memories (MEM)
for data storage and operations (OP) for data processing as
shown in Figure 2. Complex operations are encapsulated
using subprograms to structure the code and to facilitate
separate verification. In comparison to the operations the
memories (modelled as variables) are structured by the data-
type and not by a new level of hierarchy (dashed boxes).

Figure 2: Datapath Model

Both, memories and operations, are controlled by the sepa-
rated controller part. The memories (e.g. queuing memo-
ries) are controlled by READ and WRITE addresses. The
operations for example receive a START signal and, if the
processing time is not constant but data dependent, they
return the required processing time back to the controller. If
the data flow includes control information a special decoder
operation is modelled to generate control signals for the
controller part.

All operations are described in a sequential order and
executed in zero simulation time. To facilitate a quasi-con-
current execution of all operations no wait statements are
allowed inside the single datapath process and inside the
subprograms called from there. The process sensitivity list
includes all asynchronous signals (e.g. reset, (macro)-
clocks, START-signals) but no data signals. The order of the
operations inside the single datapath process is determined
by the data flow. Only feedback loops inside the datapath
require special handling (e.g. signals instead of variables for
the communication). For operations that communicate
through a memory, the controller guarantees that a memory
cell has been written before it is read.

4.3 Reuse
The separation of control and data and the encapsulation of
complex datapath operations eases reuse. For example,
since VHDL supports no generic datatypes it is very diffi-
cult or even impossible to model a queue unit consisting of
controller and memory for performance and for reuse (vari-
able datatype). This is no problem by separating the control-
ler from the datapath as shown below.

The same as to the controller applies to the datapath as
well. Reuse is made easier by separating the functional
model of a datapath operation from the scheduling control-
ler and by encapsulating the model using subprograms, too.
In addition to that the usage of subprograms to encapsulate
complex datapath operations (algorithms) is very close to
software. Therefore the conversion of algorithms from soft-
ware to VHDL subprograms is a straight forward task.

DATAPATH

OPMEM

CONTROL

In the following chapters two useful controllers (reuse
candidates) are presented: A queue model and an operation
scheduler.

4.3.1 Queue Model
The queue model is divided into two parts: The queue con-
troller (QC) and the queue memory (QM). The only inter-
faces between both parts are the read and the write address
from the controller. At control level the queue controller
uses data strobe and data request signals to interface with
other control blocks, Figure 3.

Figure 3: Queue Model

At datapath level the queue memory, implemented as a
one dimensional array of any datatype, is accessed by using
addresses from the controller as an index. Because of this
separation the controller is completely datatype indepen-
dent and therefore can be reused easily. To cover a wide
range of applications the queue discipline (FIFO, LIFO),
the queue depth and thresholds for input and output data
request are parameterizable. The depth value is also used to
define the size of the queue memory in the datapath. A
VHDL code example for a reusable queue controller is
shown in Figure 4.
A detailed discussion of the VHDL code would exceed the
paper. Thus we highlight some modeling specials only:

• The queue model is parameterizable by the discipline,
depth and thresholds for the request signals and there-
fore can be used in a wide range of applications. For
architectural trade-off the depth is an important parame-
ter, because it has a big influence on system perfor-
mance. In some cases a queue has to be disabled
completely to connect two operations directly. This can
be achieved easily by setting the depth value to zero.
Therefore in behavioral models these unusual (from an
RTL point of view) border values require special atten-
tion.

• Another important issue of behavioral models are built-
in checks as for example the over-/underflow check,
which is modelled by an assertion statement.

• The concurrent procedure call mechanism is a method
to encapsulate a process for reuse. The queue controller
procedure has to be called concurrent (as a concurrent
statement) and thus is a process. In comparison to a
sequential procedure call the concurrent procedure is
never left (LOOP) and therefore the variables inside the
procedure retain their values.

• The above VHDL model has a synchronous reset. An

REQ_IN REQ_OUT

STB_IN STB_OUT

RD_ADDRWR_ADDR

QC

QM

CONTROL

DATAPATH

DATA_IN DATA_OUT

DISCIPLINE, DEPTH, TH_IN, TH_OUT

asynchronous reset can easily be obtained by adding the
reset signal to the sensitivity list of the wait statement.

PROCEDURE queue_ctrl (
 CONSTANT Depth, ThIn, ThOut: IN natural;
 CONSTANT Discipline: IN queue_discipline;
 SIGNAL Clock, Reset, StbIn, StbOut: IN bit;
 SIGNAL AddrIn, AddrOut: OUT integer;

SIGNAL ReqIn, ReqOut: OUT bit) IS
 VARIABLE FillCnt_v: integer:= 0;
 VARIABLE AddrIn_v,AddrOut_v: integer RANGE 0 TO Depth-1;
 VARIABLE AddrEnable: boolean:= (Depth>1) AND (Disci-
pline=FIFO);
BEGIN
 IF Depth = 0 THEN
 LOOP
 ReqIn <= StbOut; ReqOut <= StbIn;
 WAIT ON StbIn, StbOut;
 END LOOP;
 END IF;
 LOOP
 IF Reset = '1' THEN
 AddrIn_v:=0; AddrOut_v:=0; FillCnt_v:=0;
 ELSE
 IF StbIn = '1' THEN
 IF AddrEnable THEN
 AddrIn_v:= (AddrIn_v+1) MOD Depth; END IF;
 FillCnt_v:= FillCnt_v+1; END IF;
 IF StbOut = '1' THEN
 IF AddrEnable THEN
 AddrOut_v:= (AddrOut_v+1) MOD Depth; END IF;
 FillCnt_v:= FillCnt_v-1; END IF;
 END IF;
 ASSERT (FillCnt_v<=Depth) AND (FillCnt_v>=0)
 REPORT "Queue over-/underflow" SEVERITY ERROR;
 FillCnt <= FillCnt_v;
 IF Discipline = FIFO THEN
 AddrIn <= AddrIn_v; AddrOut <= AddrOut_v;
 ELSE -- LIFO
 AddrIn <= FillCnt_v;
 IF FillCnt_v > 0 THEN AddrOut <= FillCnt_v-1;
 ELSE AddrOut <= FillCnt_v; END IF;
 END IF;
 IF FillCnt_v < ThIn THEN ReqIn <= '1';
 ELSE ReqIn <= '0'; END IF;
 IF FillCnt_v > ThOut THEN ReqOut <= '1';
 ELSE ReqOut <= '0'; END IF;
 WAIT ON Clock UNTIL Clock = ’1’;
 END LOOP;
END queue_ctrl;

Figure 4: VHDL listing of the queue controller

4.3.2 Operation Scheduler
Like the queue controller, the operation scheduler is another
useful controller of our approach to model the timing behav-
ior of a datapath operation. Let’s take a complex datapath
operation like a matrix-multiplication, that is performed in
two steps. In the first step a source matrix is read, processed
and stored in an intermediate memory. In the second step
the intermediate matrix is processed and the results are writ-
ten to the output, as shown in Figure 5.

Figure 5: Schedule of a two step operation

The datapath operation model abstracts from this sched-
ule (timing behavior) and performs the complete operation
in one subprogram call. It is now the task of the operation
scheduler to model the timing behavior in the controller
part. In Figure 6 the operation scheduler (OS) is embedded
between two queue controllers (QC).

(step 1)

(step 2)

first source data read
first interm. data written
last source data read
last interm. data written

first interm. data read
first result written
last interm. data read
last result written

Figure 6: Operation Scheduler

The operation can only be executed if both - the source
and the result queue - signal a strobe request to the opera-
tion scheduler. After the scheduler has received an
ENABLE, which is the logical AND of both strobe requests
the operation is executed (START). If the processing time
is not constant but data dependent the operation returns a
schedule back to the controller. Otherwise a constant sched-
ule, which is a parameter of the controller, is taken to gen-
erate READY-signals. In our example one READY-signal
would strobe the source queue (source matrix completely
read) after the first processing step and another READY-
signal would strobe the result queue (result matrix com-
pletely written) after the second step.

5 Verification
Like the modeling process, the verification is performed in
three main steps i.e. the verification environment (test-
bench) is growing together with the model.

5.1 Verification Steps
In the first step only the controllers and the handshake
between them are modelled and verified. In many cases the
standard controllers (queue, scheduler) of the behavioral
model can be used in the testbench as well. In case of data
independent processing time, no datapath model is needed
for performance analysis and therefore the controller out-
puts leading to the datapath can be left open. But in prepa-
ration for the final step and for debugging purposes a
dummy datapath with all memories (variables) and dummy
operations, that only pass data from the input to the output
without processing, is added to the controller. Together
with stimuli generators, that generate special test data (e.g.
serial numbers), the dataflow can be analyzed and
debugged easily.

Figure 7: Verification Steps 1 and 2

ENABLE

START

OS

OP

SCHEDULE

QC

MEM

READY

QC
STB_INSTB_OUT

REQ_INREQ_OUT

SCHEDULE

READY

ADR ADR

MEM

DUMMY

CTRL

DATA

Testbench

STIM

Testbench

OP CHK
CTRL

STIM CHK
PATH

CTRL

21

In the second step, complex datapath operations are
modelled and encapsulated by subprograms. The subpro-
gram bodies are not placed inside the single datapath pro-
cess but in a package to facilitate separate verification and
reuse. The stimuli generators and the data checkers are
encapsulated in subprograms inside a package, as well. For
each complex operation a testbench consisting of operation,
data generator and data checker is assembled and a separate
functional verification is performed.

The second step can be performed in parallel to the first
one and therefore this approach enables concurrent engi-
neering, not only for the design, but also for the verification.
As an example, the operations can be derived from a soft-
ware model by the systems team, having the functional
requirement specification in mind. The controllers can be
composed by members of the ASIC team, considering
scheduling and time budgeting.

In the final step the parts of the previous steps are inte-
grated. For that, in the dummy datapath of the first step, the
dummy operations are replaced by the corresponding sub-
program calls to build the final model. In the testbench the
dummy data generators and checkers are replaced with the
ones from the separate functional testbenches of the second
step.

Figure 8: Verification: Final Step

5.2 Benefits
The benefits of this modeling and verification approach can
be summarized as follows:

• Reduced verification effort and easy debugging at each
step due to lower complexity (divide and conquer).

• The encapsulation of complex operations by subpro-
grams inside a package increases the readability of the
single datapath process.

• The integration of controller and datapath and the verifi-
cation of the complete system model is much easier,
because all parts are already verified separately.

• Due to separation of control and datapath the granularity
(complexity) of building blocks is lower, the modeling
of flexible reusable blocks (e.g. queue) is easier and the
reuse frequency is higher.

6 Application
Our approach is demonstrated with an industrial applica-
tion. A system consisting of a DMA controller and several
DMA devices is chosen to show the usage of a queue con-
troller not only for the behavioral model, but in particular to

DATAPATH

CTRL

Testbench

STIM

CTRLCTRL

STIM CHK

CHKREP

model data source and sink in the testbench. For perfor-
mance analysis only the controllers are modelled.

The DMA controller has the task to transfer data
between host and device bus. At device bus side the con-
troller (DC) selects one DMA channel for the transfer
according to the request signals (DREQ) from the DMA
devices and the internal priority mechanism by activating
the corresponding acknowledge signal (DACK). Data is
transferred with strobe and ready signals (DADS, DRDY).
A similar control mechanism applies to the host side (HC).
The DMA channels are modelled using the queue controller
(QC) configured as a FIFO, Figure 9.

Figure 9: Structure of the DMA controller

In the testbench the DMA devices stimulate the DMA
controller acting as data source or sink. The model of a
source is shown in Figure 10. A sink model has the same
structure, but ‘_IN’ and ‘_OUT’ signals are swapped.

Figure 10: DMA device model (data source)

A DMA device is characterized by a buffer DEPTH and
thresholds that control the request for a transfer. These
characteristics are modelled by a queue controller config-
ured as a FIFO (QC). An interface controller (IC) generates
the request (DREQ), the strobe (STB_OUT) and the ready
signal (DRDY) according to the wait-states (WS) of the
device. In performance analysis another characteristic is the
average transfer rate of the device, which is modelled by an
operation scheduler (OS). The schedule for the OS (period
between two strobe pulses of STB_IN) can be calculated
using the following formula: SP = 1 / (CP * DR * DW)

The schedule period SP is the reciprocal value of the
product of clock period CP (in seconds), average data rate
DR (in Bytes/sec) and data bus width (in Bytes).

7 Conclusion
We presented a new behavioral modeling approach consist-
ing of separation of synchronization and functionality
based on a multiple controller single datapath architecture.
The proposed problem specific modeling style of the con-
troller doesn’t need error-prone transformations (concur-
rent/sequential) between thinking and model, in many cases
is the most compact one and therefore improves correctness
and readability. On the datapath side the readability is
increased by structuring the memories by the datatype and
by encapsulation of operations using subprograms. Simula-

QC
HCDC

HREQ
HACK
HADS
HRDY

DREQ
DACK
DADS
DRDY

QC REQ_IN

REQ_OUT

STB_OUT

DREQ

DACK

DADS

DRDY

OS
STB_IN

DEPTH, TH_IN, TH_OUT

SCHEDULE

IC

WS

tion performance is achieved using variables instead of sig-
nals inside the single process datapath. Another benefit of
the separation of controller and datapath is the good trade-
off for the level of abstraction: One the one hand the model
is abstract like software (datapath) and on the other hand its
synchronization (controller) is close to a cycle accurate RTL
model. In addition, the productivity can be increased be
deriving datapath operations from an existing software
model and by reusing standard controllers (e.g. queue,
scheduler). The proposed architecture facilitates not only
stepwise refinement of specifications, but also incremental
verification. Due to the separation of controller and data-
path, concurrent engineering for both the modeling and the
verification process is made possible.

8 Bibliography
[AbCo90] Aboulhamid, M.; Cordeau, M.:System Level Modeling

in VHDL using Timed Petri Nets. Proceedings of the
EURO-VHDL’90.

[BeSt91] Benders, L.; Stevens, M.:Petri Net Modeling of Task
Level Behavioral VHDL for VLSI. Proceedings of the
EURO-VHDL’91.

[EcHo92] Ecker, W.; Hofmeister, M.:The Design Cube - A
Model for VHDL Designflow Representation. Proceed-
ings of the EURO-VHDL’92.

[EcMä93] Ecker, W.; März, S.:System level design using VHDL:
A case study. Proceedings of the CHDL’93.

[FRBC91] Fermy, A.; Rossignol, B.; Bakowski, P.; Calvez, J.:
Tools to Design at a Functional Scheme Level using
VHDL. Proceedings of the EURO-VHDL’91.

[GVNG94] Gajski, D.; Vahid, F.; Narayan, S.; Gong, J.:Specifica-
tion and Design of Embedded Systems.Prentice Hall,
1994.

[HaBr95] Hashmi, K.; Bruce, A.:Design and Use of a System-
Level Specification and Verification methodology. Pro-
ceedings of the EURO-VHDL’95.

[Hoh91] Hohl, A.: Incremental Design - Application of a Soft-
ware-Based Method for High-Level Hardware Design
with VHDL. Proceedings of the EURO-VHDL’91.

[HuDi95] van den Hurk, J.; Dilling, E.:System Level design, a
VHDL Based Approach. Proceedings of the EURO-
VHDL’95.

[HuTo90] Hubbard, P.; Torres, J.:Using VHDL for High-Level
and stochastic System Modeling. Proceedings of the
EURO-VHDL’90.

[LSK91] Lahti, J.; Sipola, M.; Kivelä, J.:Behavioral System
Modeling with structured Analysis and VHDL. Pro-
ceedings of the EURO-VHDL’91.

[MüKr93] Müller, J.; Krämer, H.: Analysis of Multi-Process
VHDL Specifications with a Petri net Model. Proceed-
ings of the EURO-VHDL’93.

[NaGa93] Narayan, S.; Gajski, D.:Features Supporting System-
Level Specification in HDLs. Proceedings of the
EURO-VHDL’93.

[PSL91] PitKänen, P.; Skyttä, J.; Laakso, T.:Comparison of
Digital Filter Architectures Using VHDL. Proceedings
of the EURO-VHDL’91.

[RAM91] Rammig, F.: Approaching System Level Design. Pro-
ceedings of the EURO-VHDL’91. Proceedings of the
EURO-VHDL’91.

[Ram93] Rammig, F.: Modeling Aspects of System Level
Design. Proceedings of the EURO-VHDL’93.

[SKS91] Sipols, M.; Kivalä, J. Soininen, J.: System Real Time
Analysis with VHDL from Graphical SA_VHDL. Pro-
ceedings of the EURO-VHDL’91.

	CDROM Home Page
	1996 Home Page
	EURO-DAC96 Home Page
	Front Matter
	Table of Contents
	Session Index
	Author Index

