
Abstract

Memories are an important component in ASIC
designs. With increasing design complexities, there is
need to model memory devices with a high level of accu-
racy and simulation efficiency. This paper describes the
functional/timing aspects of VHDL memory models, their
implementation, and various issues involved. The paper
also presents a generic interface package used in the
development of memory models.

1. Introduction

Modeling memories in VHDL can be a difficult task,
but it is important that they be modeled accurately with
regard to functional/timing aspects and efficiently to min-
imize initialization, accessing overhead and computing
resources. An ASIC foundry has to support multiple CAE
tools and hence developing and maintaining these models
can be a challenging task. This paper brings out the expe-
riences and findings of the authors while developing sim-
ulation models in VHDL, for memory architectures
available in LSI Logic’s array and cell based technologies.
The memories modeled are Static RAMs and ROMs.
But the same principles can be extended to complex mem-
ories as well.

The main objective of this paper is to present an
implementation strategy for VITAL compatible memory
models. This strategy is modular and generic in nature and
has evolved after prototyping few modeling solutions.
Some of the principles for VHDL memory implementa-
tion have been derived from the Verilog environment, as
the memory models in Verilog are already in use for
design sign-off.

2. LSI Logic Memories

LSI Logic memories are typically designed as addres-
sable latches. The memory latches are spread out on a
rectangular grid and have specific row and column
addresses. Under normal asynchronous operation, the
RAM always reads the contents of the currently addressed
memory location on the data output bus. Due to a address
change on the read address bus, the new address gets
decoded, and the data appears on the data output bus after
a hold time, referred to as Toh. After the memory access
time (Taa time), the data on the output bus is considered
to be valid corresponding to the new address.

Write operations are triggered by activating write
enable pins, which internally make the memory latches
transparent, allowing new data to be written into the mem-
ory location. If the read address bus is pointing to the
memory location that is being updated as a result of a
write operation, then the data that is written into the mem-
ory location appears on the data output bus as well. For a
write operation, the propagation time for the data to reach
the output bus depends on who initiated the write opera-
tion: either the write enable pin going active or the data
input bus changing while the write enable pin is active.

A synchronous RAM is much like an asynchronous
RAM with flip-flops attached to all the RAM inputs.
Proper clocking of data into the input flip-flops ensures
correct operation of the internal asynchronous part of the
RAM. The clock triggers all read and write operations for
synchronous RAMs, but internal operations after the flip-
flop stage are exactly the same for both synchronous and
asynchronous RAMs. One main difference between asyn-
chronous and synchronous RAMs is the ability to do con-
secutive read or write operations by keeping the write
enable pin at a constant high or low and applying a series
of clock pulses.

Modeling ASIC Memories in VHDL

Ekambaram Balaji, Design Engineer
Prabhu Krishnamurthy, Design Engineer

LSI Logic Corporation
1501, McCarthy Blvd, M/S E-192

Milpitas, CA, USA - 95035
ebalaji@lsil.com, prabhu@lsil.com

EURO-DAC ’96 with EURO-VHDL ’96
0-89791-848-7/96 $4.00 1996 IEEE

2.1 Multi-port Memory Architectures

Consider two different multi-port RAM architec-
tures and their behavior during read/write operations:

In the case of a 2-port (1 read, 1 write) memory,
the read port is totally asynchronous, and the contents
of the currently addressed memory location appear at
the data output bus. However, if a write operation is ini-
tiated by a write address port and both the read and
write ports address the same memory location, then the
current read operation to that address is disabled. Also,
the most recently updated data appears at the data out-
put bus after theCross Port Delay (twwd) instead of
Address Access time (taa).

In the case of a 2-port (2 read/write) memory, the
read/write operations proceed independently as long as
the A and B addresses do not match. When the A
address equals the B address and if port A writes to an
address being read by port B, then the new data appears
on the DOB bus after theCross Port Delay (twwd).
The data appears on DOA after theSame Port Delay
(twwds). Simultaneous write operations from two dif-
ferent ports onto the same location is illegal and causes
the RAM to issue a warning message, abort the current
read/write operations on both ports, and corrupt the
memory location.

2.2 Chip Select Controlled Memories

The chip-select signal is used to control the func-
tions of the RAM in certain architectures. The RAM
exhibits normal behavior when chip-select is high.
When chip-select is low, it disables all RAM functions,
except for retaining data and has the advantage of
reducing power consumption. Multiple bits of the chip-
select signal can control the higher- and lower-order
bytes of RAMs. In case of an odd bits word size, the
higher order byte consists of one bit more than the
lower-order byte. For memories with a chip-select con-
trol signal, a read operation could also be initiated by
the active edge of the chip-select signal. A write oper-
ation could be initiated/terminated by the chip-select
signal going active/inactive, if the write enable pin is
active.

2.3 Memory Compiler

The source of all memory models are memory tem-
plates. A template is a configuration independent repre-
sentation of a model in VHDL written in a template
language. This template language is a layer on top of
the VHDL description and specifies the rules for

expanding the various data, address and control functions.
The memory compiler takes the user specified inputs and
translates a memory template into a configured memory
model by a process of variable substitution and for loop
expansion. A single template is used to generate a bit or
byte or word write configuration of the memory. The
number of write enable and output enable pins are
decided by the number of bits per byte. Each of these
individual write enable pins then control the read and
write operations for the corresponding byte.

2.4 Timing Considerations for Memories

Memory functionality depends on satisfying timing
requirements. Any timing violation causes the output and/
or the memory location to be corrupted/cleared with
unknown values (that is, Xs). A subsequent valid opera-
tion causes the output to come out of the X state. The
actions taken for different timing violations at different
inputs and the state of the memory when some of the
inputs are unknown is discussed here.

• If the data is X and the address and control inputs are
valid, then the data is written into the addressed memory
location. Data setup/hold violations cause an X to be writ-
ten to the addressed memory location on a bit-by-bit
basis. That is, only the affected bits cause the correspond-
ing memory bit to be corrupted.

• If the address is unknown during a read operation,
then the outputs go to the X state. If the address is
unknown during a write operation, then the entire mem-
ory contents are corrupted (Xs written to the memory
locations). Address setup/hold violations corrupt the
entire memory. A change in address during a write oper-
ation results in the entire memory getting cleared (to Xs).

• If the write enable is unknown, then both the data
outputs and the currently addressed memory location are
corrupted. The memory location is corrupted only if the
data inputs are different from the contents of the memory
location. Minimum pulse width violations on write enable
causes X to be written on to the currently addressed mem-
ory location. The memory location is corrupted indepen-
dent of the state of the data inputs.

• If the chip-select signal is unknown, then data outputs
go to an X state. During a write operation, an unknown
chip-select signal causes the data word to be corrupted.
Chip-select setup/hold violations cause X to be written to
the currently addressed memory location during a write
operation.

3. VHDL Implementation

The VHDL implementation of memories is based
on the functional/timing aspects discussed earlier. In
addition, a modular approach, using user defined proce-
dures/functions is followed to model the memories.
These procedures are generic and are defined in a cen-
tralized VHDL package, so that they can be used across
all templates consistently. The following sections dis-
cuss some of the issues in modeling memories in
VHDL, followed functional/timing implementation, and
VITAL SDF back-annotation.

The proposed memory implementation has been
arrived at, after prototyping few modeling solutions for
efficiency and ease of development. In order to ensure
that models are developed consistently and in a way
that allows them to be easily maintained, certain key
objectives are set. They include complete modularity,
code reuse, VHDL specific efficiency considerations,
use of a generic strategy for all memory architectures
and principles from the existing sign-off quality Verilog
memory models.

4. Issues in Modeling Memories in VHDL

Memory models are behavioral in nature and it is
extremely difficult to use structural primitives exclu-
sively, to define the functionality. Additionally, the
functionality is typically delay dependent and the signal
updates constitute waveform editing. This often pre-
cludes the use of a pin-to-pin delay model for memo-
ries. The next section summarizes some of the issues
and findings as a result of prototyping a 2 PORT (1
READ, 1 WRITE) memory architecture in VHDL.

4.1 Representing Memories in VHDL (Signal
Array Vs. Variable Array)

According to VHDL-87, the usage of variables is
limited to the process in which they are declared. Glo-
bal variables are not permitted in 87 version of VHDL
language, however they are allowed in the 93 revision
of VHDL, which the current VITAL standard does not
support.In Verilog, memories are represented as global
"variables" or a collection of "register" elements which
are accessible globally. In VHDL, the only way to have
a similar access is to declare the memory as a signal
array. This however, has some serious implications.

Using signal arrays as the means of propagating
values is inefficient and has a significant overhead in
terms of scheduling and de-scheduling of events. This
is a critical factor, if higher memory densities are con-

sidered. Using signal objects for representing memories
would require the use of resolved signals, if multiple pro-
cesses were writing to memory. In light of the above facts
we adopted a strategy of using a variable array for declar-
ing memories.

4.2 Single Process Vs. Multiple Process Model

In order to use a variable array for memories, one
option is to have the memory modeled completely within
a single monolithic process. This is termed as a"Single
Process Model". Another alternative is to have a separate
memory access process and all accesses to the memory
(declared as a variable array within this process) are made
by passing the required parameters to this process. The
typical parameters to be passed are, the address to which
data is to be written or read, the operation function of the
memory, and a bi-directional data bus for data to go in or
come out. This is termed as a"Multiple Process Model".
The following paragraphs briefly describe the pros and
cons of using either process model.

4.2.1 Multiple Process Model

A multi process model supposedly exhibits true con-
currency. For example consider a multi-port RAM in
which all input signals do not affect all outputs. The use
of a multiple process model is efficient because it will
ensure that only the minimum of computation is done (for
the relevant part of the RAM) whenever an input changes.
One of the main drawbacks of this model is that it is very
difficult to specify the order of events to be executed. Due
to the semantics of VHDL language and definition of how
the simulation cycle proceeds, it is nearly impossible to
have a definite order of evaluation without causing syn-
chronization problems. The alternative to this would be to
introduce explicit delta cycles within the code. It is
observed that the introduction of delta cycles is of the
order N, where N is the number of processes.There is also
a problem in handling global communication signals for
inter-process communication. If multiple processes write
to these signals, then it is a case of driver conflict. Defin-
ing resolution functions for these signals is highly com-
plex and is expensive during simulation.

4.2.2 Single Process Model

In a single process model the flow is completely
sequential. It seems to have the desired concurrency when
the execution of all blocks happen in the same delta cycle
but it requires a topological order of source code. Consid-
ering all our requirements, a single unified process for the
entire memory has been found to be a better solution than
a multiple process model.

4.3 Access Types and Dynamic Allocation

Another one of our requirements was to have a
centralized VHDL package which consists of generic
reusable code. This package contains the procedures/
functions needed for generic read, write and corruption
operations on the memory. All of these procedures are
related to memory access and hence the memory ele-
ment needs to be passed to them as a parameter. This
could become a serious problem if we statically allocate
a two-dimensional variable array. The alternative is to
pass the memory as a reference pointer. In order to pass
memory to the various read/write procedures and other
functions, VHDL access types have been used. A mem-
ory type which is a set of access types pointing to a two
dimensional array has been defined. Dynamic allocation
is used to allocate the required number of words and
bits depending on the desired configuration.

5. Functional Implementation

The functional implementation of the memory
could be classified into several sections, such as the
declaration section, logic section, timing check viola-
tion handling section etc.Following figure shows an
architectural diagram for the memory implementation.

Figure.1 Architecture of Memory Model

Memory Architecture

 Output Enable Block

Violation ("X") Section

Functionality Section

Timing Check Section

VHDL Process

VITAL Level 0 Entity
Cell Input Ports

Sensitivity List

Cell Output Ports

The interface declaration consists of a VITAL Level-0
entity definition specifying input/output ports and timing
generics to hold the back-annotated delay information. All
ports are scalars and their type is std_ulogic. The timing
generics include tipd_*, tpd_* and timing check generics.
In addition, there are some control generics defined to
control the usage of the model. These are defined as fol-
lows:

MsgOn : BOOLEAN := DefTimingMsgOn;
XOn : BOOLEAN := DefTimingXOn;
TimingChecksOn : BOOLEAN := DefTimingChecksOn;
MemLoadFileName : STRING := "<mem_data_file>";
MemDumpFileName : STRING := "<mem_dump_file>";

In addition to these, the entity declaration contains
the VITAL Level0 compliance attribute.

ATTRIBUTE Vital_level0 OF RAM: ENTITY IS TRUE;

Thearchitecture declaration section consists of sig-
nal declarations for all internal buses.

5.1 Memory Type Declarations

The memory is defined as a two dimensional uncon-
strained array of UX01 logic values. A basic memory
record is created which holds the pointer to the memory
word types. The MemoryWordType forms a single mem-
ory word. A pointer to this record defines the actual mem-
ory type. These pointers are allocated using dynamic
a l loca t ion . Th is i s done us ing a ca l l to
PF_Declare_Memory () which returns a pointer to the
final memory array. This pointer is stored in a variable
and used throughout the model. The following type dec-
larations are used in the package:

TYPE MemoryWordType IS ARRAY (NATURAL RANGE <>) OF
UX01;
TYPE MemoryWordPtrTypeIS ACCESS MemoryWordType;

TYPE MemoryWordRecType IS
RECORD

MemoryWordPtr : MemoryWordPtrType;
END RECORD;

TYPE MemoryArrayTypeIS ARRAY (NATURAL RANGE <>) of
MemoryWordRecType;
TYPE MemoryArrayPtrTypeIS ACCESS MemoryArrayType;

TYPE MemoryArrayRecTypeIS
RECORD

NoOfBits : POSITIVE;
NoOfWords : POSITIVE;
MemoryArrayPtr : MemoryArrayPtrType;

END RECORD;

TYPE MemoryTypeIS ACCESS MemoryArrayRecType;

5.2 Memory Declaration Section

The memory array is declared by giving a call to
the function PF_Declare_Memory() which returns a
pointer to the memory and this is stored in a variable
called memoryArray. In short, a two dimensional
unconstrained array is defined and then a set of records
containing pointer to the array type have been defined.
Dynamic allocation is used to allocate the required
number of words and bits depending on the desired
configuration. Sample code for memory declaration is
shown below:

MEMORY_PROCESS : process
variable memoryArray : memoryType;
variable Address : NATURAL;
variable F_AddressUnknown : BOOLEAN := FALSE;
-- Timing violation flags and variables

begin
memoryArray := PF_Declare_Memory (

NoOfBits => 4,
NoOfWords => 8
);

5.3 Logic Function Section

As illustrated in the architectural diagram the logic
section consists of an output enable block and a single
monolithic process in which the complete memory
functionality/timing (except wire delay) are defined.
The output enable block is implemented using Vital-
BUFIF primitives. Memory declaration precedes any
statement in this process. After the memory declaration,
an infinite loop is introduced with a sensitivity list of
input signals. An explicit "wait on" statement is used to
define the sensitivity list of all input signals.This is
needed because the memoryArray pointer variable
(returned after a call to PF_Declare_Memory) is sup-
posed to exist for the complete simulation.

The first section after the wait statement are the
calls to VITAL timing check procedures to perform the
constraint checking. Separate logical blocks (not
VHDL block statement) are created within the same
process for read and write operations. The data appears
at the output, if the output enable buffers are active.

The read block performs an address-initiated read
operation, provided the address bits are not unknowns.
If the address bits are unknowns, then the output is
made X. In order to perform the read operation, the
PF_Read_Memory () procedure is called. As a result of
any memory access, the output data bus is scheduled to
obtain a data value at a future time. If a subsequent
memory access is triggered before the previous one is

completed, the new transaction scheduled for the output
data bus cancels all pending transactions and the previous
memory access is considered invalid. This is due to the
transport delay model used for scheduling the outputs.

A write operation is initiated by the active edge of the
write enable signal. A separate logical block is created for
each write enable signal in a byte-write configuration so
that appropriate bytes are written.The write operation is
performed using a call to PF_Write_Memory() procedure.
The scheduling is done by giving a call to the
PF_Schedule_Output() procedure.A write operation can
also be initiated by data input changes when write enable
is active (like a transparent latch); the data in the memory
is also reflected at the output after the Twdd time tran-
spires. Sample code of a memory ready cycle follows:

loop
wait on WEN_i, DIN_i, AADR_i;
-- Read Operation For AADR PORT
if (AADR_i'EVENT and now /= 0 ns) then

PF_Address_To_Int (AADR_i, Address,
F_AddressUnknown);

if (F_AddressUnknown = TRUE) then
 PF_Schedule_X (DOA_i);
else

PF_Read_Memory(memoryArray,DOA_i_var,
Address, 9, 0);

 PF_Schedule_Output (DOA_i,
DOA_i_var, tpd_AADR0_DOA0_posedge);

end if;
 end if;
end loop;

5.4 Timing Violation Handling Section

The functional portion is followed by the timing
check violation handling block. In case of a timing viola-
tion, the appropriate violation flag is set by the VITAL
timing check procedures. A check is made to see if these
flags are set and then appropriate action is taken to corrupt
the memory based on the X-handling rules specified ear-
lier. The PF_Corrupt_* routines are used to corrupt the
contents of the memory. The PF_Schedule_X routine is
used to schedule an "X" at the output immediately after
the timing violation. If there are no timing violations, the
final data that was updated in the memory gets latched.

6. Timing Implementation

VITAL Wire delay blocks are used for modeling wire
delays. The delayed signals are used in the functional and
timing check portions of the model. The tipd_* generics
of the type VitalDelayType01 are used to back-annotate
wire delay information.

An intrinsic delay value pair represents a combina-
tion of the rise and fall values of the hold time (like
Toh) and access time (like Taa). All the intrinsic pair
delay values are modeled using a transport delay model.
The de lay schedu l ing i s done us ing a
PF_Schedule_Output (). The tpd_* generics hold the
intrinsic delay value pairs. This is passed as a parameter
to the PF_Schedule_Output () procedure. This proce-
dure is used to schedule a data value onto the output
data bus which is also passed in as a parameter to the
procedure. It calculates the max time from the timing
generic passed and then schedules the X value after
OutputHoldTime and the valid value after the DataAc-
cessTime. The following VHDL code in the next page
illustrates this implementation:

PROCEDURE PF_Schedule_Output (
SIGNAL DataOut: OUT std_logic_vector;
CONSTANT DataIn: IN std_logic_vector;
CONSTANT IntrPairDelay: IN VitalDelayType01Z

) IS
VARIABLE OutputHoldTime : VitalDelayType := 0 ns;
VARIABLE DataAccessTime: VitalDelayType := 0 ns;
BEGIN

OutputHoldTime:= Max_Time(IntrPairDelay(tr0Z)
,IntrPairDelay(tr1Z));

DataAccessTime:= Max_Time(IntrPairDelay(trZ0)
,IntrPairDelay(trZ1));

DataOut <= transport (others => 'X') after
OutputHoldTime, DataIn after DataAccessTime;

END PF_Schedule_Output;

All the timing checks are implemented using
VITAL timing check procedures. The timing checks are
conditioned to reduce pessimism. The violation flags
are declared as variables and passed to the timing check
procedures. The timing checks are performed with
delayed input signals which occur after the wire delay
block. Following illustrates a typical call to the VITAL
setup/hold check procedure:

VitalSetupHoldCheck (
TestSignal => badr_i(1),
TestSignalName => "BADR1",
RefSignal => we_i(0),
RefSignalName => "WE0",
setupHigh =>

tsetup_BADR0_WE0_posedge_posedge,
setupLow =>

tsetup_BADR0_WE0_negedge_posedge,
RefTransition => 'R',
TimingData => marker1,
MsgOn => MsgOn,
XOn => XOn,
Violation => Viol_BADR_WE0
);

7. RAM Back Annotation using SDF

The timing information in the RAM model is intro-
duced by using the VITAL-SDF back-annotation scheme.
All the memory models are VITAL-Level0 compliant and
hence follow the VITAL naming conventions for naming
timing generics. Intrinsic delay pairs for all timing arcs in
memories are back-annotated usingSDF IOPATH state-
ments. In memories, there are multiple output transitions
corresponding to a single input transition. For example, an
address transition in an ADDRESS to DATAOUT path
will cause two serial events to occur on the data output.
First the data becomes invalid (DATAOUT goes to X
state) and then the data becomes valid (DATAOUT goes
from X to 1/0 state). The above is true for all propagation
delay paths in memories. Following is the list of typical
timing arcs for an asynchronous memory:

(i) ADDRESS => DATA OUTPUT
(ii) WRITE ENABLE => DATA OUTPUT
(iii) DATA IN => DATA OUTPUT
(iv) OUTPUT ENABLE => DATA OUTPUT (Disable

 and Enable Arcs)

In order to model the S-to-X and X-to-S transitions
(where S is either a 0 or a 1) the place holders for tri-state
delays in an SDF IOPATH statement are used. The fol-
lowing table shows the mapping of ’Z’ delays to ’X’
delays.

The SDF IOPATH statements are used for specifying the
memory intrinsic propagation delays. The generic type to
be used for all intrinsic pair values is restricted to
VitalDelayType01Z. Input edge specifiers are required in
generic names. Given below is the SDF construct and the
corresponding generics in the VITAL memory model for
the above timing arc specifications.

SDF CONSTRUCT:IOPATH <edge> <InputPort>
<OutputPort> <value>

GENERIC NAME: tpd_<InputPort>_
<OutputPort>_<edge>

GENERIC TYPE: VitalDelayType01Z

EXAMPLE:(IOPATH (posedge ADR0) DO0
()()(1:2:3)(4:5:6)(7:8:9)(10:11:12))

Table 1: Mapping of ’Z’ to ’X’ Delays

’Z’ Delays ’X’ Delays

 0->Z 0->X

 Z->1 X->1

 1->Z 1->X

 Z->0 X->0

8. LSI Memory Package

The LSI Memory Package has been developed with
the objective of code reuse across all VHDL memory
templates. This package contains the memory type dec-
larations which define a memory data type and proce-
dures/functions which operate on the memory. The
package also consists of some utility functions like cal-
culating the maximum time from two time values and
procedures for displaying messages. The usage of these
procedures will guarantee consistency across all mem-
ory models. All the functions involving memory access
take the pointer to the memory as a parameter. These
procedures should be called after a call to the
PF_Declare_Memory procedure which returns the
memoryId to be used for future references. The utility
procedures like PF_Memory_Print () is used to display
messages from the memory model consistently. Follow-
ing is a description of some functions and procedures
available in the LSI Memory Package:

1. Procedure: PROCEDURE PF_Write_Memory(
VARIABLE MemoryPtr :INOUT MemoryType;
CONSTANT DataIn : IN std_logic_vector;
CONSTANT Address : IN NATURAL;
CONSTANT HighBit : IN NATURAL;
CONSTANT LowBit : IN NATURAL
);

Synopsis: Procedure used to write to an addressed
memory location based on a bit/byte/word basis. The
high bit and low bit offsets are used for byte write oper-
ations.

2. Procedure : PROCEDURE PF_Read_Memory(
VARIABLE MemoryPtr : INOUT MemoryType;
VARIABLE DataOut: OUT std_logic_vector;
CONSTANT Address : IN NATURAL;
CONSTANT HighBit : IN NATURAL;
CONSTANT LowBit : IN NATURAL
);

Synopsis: Procedure used to read an addressed memory
location based on a bit/byte/word basis. The high bit
and low bit offsets are used for byte write operations.

3. Procedure: PROCEDURE PF_Load_Memory(
VARIABLE MemoryPtr : INOUT MemoryType;
CONSTANT FileName : IN STRING;
CONSTANT HighBit : IN NATURAL;
CONSTANT LowBit : IN NATURAL
);

Synopsis: Procedure used to load the contents of the
memory from the specified memory data file and it is
overloaded for byte and word write memoryoperations.

5.Procedure : PROCEDURE PF_Corrupt_Memory(
VARIABLE MemoryPtr : INOUT MemoryType;
CONSTANT BitPosition: IN NATURAL;
CONSTANT HighBit : IN NATURAL;
CONSTANT LowBit : IN NATURAL
);

Synopsis: Procedure used to corrupt (by writing ’X’) all
the locations of memory corresponding to the specified
bit/byte/word.

6.Procedure: PROCEDURE
PF_Corrupt_MemLoc_BasedOn_DataIn(

VARIABLE MemoryPtr : INOUT MemoryType;
CONSTANT AddrBus : IN std_logic_vector;
CONSTANT DataIn : IN std_logic_vector;
CONSTANT HighBit : IN NATURAL;
CONSTANT LowBit : IN NATURAL
);

Synopsis: Procedure used to corrupt (by writing ’X’) a
specific location of memory depending on the input data.
If the DataIn happens to be the same as the contents of
addressed memory location then the memory location is
not corrupted.

9. Conclusions

In conclusion, the paper summarizes the approach
taken by the authors in modeling LSI Logic’s ASIC mem-
ories in VHDL, using the capabilities provided by
VITAL. Using the techniques described in the paper, the
models are developed in a way that promote consistency
and maintainability across all memory architectures. The
same principles of modularity, and code reuse can be
extended to more complex memories like FIFOs, CAMs,
DRAMs in the future. Some of these memory modeling
techniques are being used as an initial proposal submitted
to VITAL-TAG for standardization.

References

[1] Sanjay Nayak and Arnob Roy, "Issues in Efficient
Modeling and Acceleration of VITAL Models", April-
1995, Spring VHDL-Forum for CAD in Europe.

[2] IEEE Standard VITAL ASIC Modeling Specification,
IEEE/ANSI Standard 1074.4

[2] IEEE Standard VHDL Language Reference Manual,
IEEE/ANSI Standard 1076-1987

	CDROM Home Pafe
	1996 Home Page
	EURO-DAC96 Home Page
	Front Matter
	Table of Contents
	Session Index
	Author Index

