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Abstract

This paper describes the theory and implementation of a
novel system for hardware synthesis from requirement spec-
ifications expressed in a graphical specification language
called Symbolic Timing Diagrams (STD). The system can
be used together with an existing formal–verification envi-
ronment for VHDL leading to a novel methodology based
on the combination of synthesis and formal verification. We
show the feasibility of the approach and experimental re-
sults obtained with the system on the well known example of
an industrial production cell, where both FPGA and ASIC
hardware implementations were successfully synthesized.

1. Introduction

The correct design of complex systems has become an
increasingly important issue. One major research topic in
this field is formal verification of system properties based
on a technique called (symbolic) model checking which re-
quires two independent levels of specification: (1) an oper-
ational specification, written e.g. inVHDL or Statecharts,
and (2) an abstract, typically declarative specification, writ-
ten e.g. as temporal–logic specification. The abstract spec-
ification is used to express criticalsystem requirements(re-
ferred to as requirement specification).

Within the FORMAT project [7] a research team at the
institute OFFIS has developed a collection of tools, which
allow to verify (independently developed) VHDL designs
against requirement specifications, written in a graphical
language called Symbolic Timing Diagrams (STD).

While this tool suite constitutes a powerful prover for
the a–posteriori verification of critical properties of exist-
ing VHDL designs, a companion project has been targeted
towards high–level synthesis of prototype–implementations
directly out of the graphical specification language STD
(interface controller synthesis and verification system,
ICOS). The first goal of the ICOS–project was to be able

to handle the special case of control–dominated specifica-
tions; a case where such specifications are exclusively used
is the well known example “production cell” [11].

The main theoretical results underlying the ICOS–
system have been reported in [9], and an evaluation report
about the application of ICOS on the “production cell” case
study appeared in [11].

This paper reports the main results of [4]. This work has
developed both the theoretical basis and the implementa-
tion for the synthesis of VHDL code in ICOS. From a given
STD requirement specification, VHDL code in a particular
style can be generated and synthesized by standard silicon
compilers (e.g. Synopsys).

Besides this achievement, the work of [4] bridges the gap
between ICOS and the VHDL prover described above: A
synthesized VHDL controller can be combined with man-
ually designed ones, and the combined result can be veri-
fied against STD–requirements. Furthermore, VHDL com-
ponents synthesized from STD–specifications can be trans-
formed (e.g. to obtain particular optimizations or general-
izations), and the transformation can be verified against the
initial specification of the synthesis process.

Related work. All known approaches to use timing di-
agrams in a formal sense ([1, 6, 12, 5]) differ from our ap-
proach in that they have built-in means to specify control
structures such as iteration and concatenation (sequencing),
while the declarative semantics of the STD language as-
sociates with each timing diagram aconstrainton the set
of admissible behaviors of a component. The main conse-
quence is that STD is ideally suited for requirement specifi-
cation and allows an incremental development of specifica-
tions.

The work done on synthesis from Propositional Tempo-
ral Logic usingω-automata [13] differs from our approach
in that we restrict ourselves to specifications expressible by
deterministicBüchi automata yielding a much better time
and space complexity of our algorithm. Moreover, we pro-
hibit outputs from being dependent from the actual inputs
which allows powerful partitioning techniques (see below).



The rest of the paper is organized as follows: Section 2
explains the requirement specification language STD. Sec-
tion 3 describes the complete synthesis–path from require-
ment specification down to VHDL code. Section 4 is a de-
tailed technical description of the semantic foundation and
the generation of optimized Moore–automata, which is the
intermediate format from which synthesizable VHDL code
is generated. Section 5 gives the experimental results ob-
tained for the case study “production cell”, which clearly
demonstrates the feasibility of our approach. Finally, sec-
tion 6 summarizes the achievements and identifies direc-
tions of future work.

2. Requirement Specification Language

We now briefly recall the case–study “production cell”
(PC) and the graphical specification language STD (the
reader familiar with [11] or [10] may skip the rest of this
section). The PC is composed of a feed belt that transports
metal blanks to an elevating rotary table which brings the
blanks into place for the first arm of a robot. The robot
picks up the blanks from the table and moves them to a
press where they are forged, put out by the robot's second
arm, and deposited from the PC by a deposit belt and a crane
(figure 1).
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Figure 1. Outline of the production cell.

The STD–specification describes the behaviour of adis-
tributed controllerof the PC. Given the natural decomposi-
tion of the PC into separate entities the specification can be
partitioned intoaccording sub-specifications (for the feed
belt, the table, etc.). This is possible since in our specifica-
tion style we are able to distinguish between constraints to
be guaranteed by the controller and assumptions made on
the behaviour of other components or the physical environ-
ment. The controllers have to react on signals from sensors

that observe the state of the PC and on internal signals from
the controllers of the other components.

An STD–specification consists of a collection of indi-
vidual (STD–)diagrams, interpreted as a collection of con-
straints with standard conjunctive interpretation (see [2] for
an in–depth introduction to the language STD and its for-
mal semantics).

Activation mode: Invariant

Figure 2. An example STD

An example diagram is given in figure 2. It states thatwhen-
ever the table is not in its bottom position (denoted by the
- negated - atomic propositionT bot pos, set by a sensor
attached to the table) and is moving down (denoted by the
atomic propositionT mv dn, which is an actuator–signal
controlling the vertical table movement) it should keep on
moving down until the sensor signals that the bottom posi-
tion is reached. Then the movement of the table must be
stopped, expecting that the sensor signalT bot pos persists
to hold until the movement stops.

Note that this specification style does not permit explicit
definition of real time constraints. The controller has to re-
act “fast enough” to stop the movement of the table before it
continues to move down too far (i.e. leave the range where
the sensor signalsT bot pos). In the hardware implementa-
tion we guarantee this behaviour by anas soon as possible
schedulingof pending reactions, which can be further ana-
lyzed to obtain rigid timing information (in this case about
the delay between recognition of the sensor–value and the
actuator–response).

3. Synthesis Path

The following steps are taken during synthesis (cf. figure
3; steps 1 to 5 (extended FSM) are discussed in [9] in de-
tail).
1. Each STD of the specification (STD1 : : :STDn) is com-
piled into anω-automatonAi that accepts the requirements
expressed in the STD. We use B¨uchi automata [14] for
internal representation of the STD. A B¨uchi automaton
A = (Q;ed;∆;q0;F) is a finite automaton on infinite words
over valuationsVed of the VHDL-alike entity declaration1

ed= (I ;O; typedecl). Q is a finite set of states andq0 the

1I andO are the in- and outports of the entity declaration;typedecl:
I [O! DOMVHDL maps each port to a finite type
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Figure 3. Synthesis path

start state of the automaton. Each transition from the tran-
sition relation∆ � Q�Ved�Q is labeled with a valuation
of the ports defined ined. The automaton accepts an word
α from (Ved)

ω (α 2 [[A ]]) if there exists a run forα that
reaches a state from the set of accepting statesF � Q in-
finitely often. Figure 4 shows the B¨uchi automaton that rep-
resents the STD of figure 2.
2. The specified component must satisfy the requirements
of all its STD. To overcome a state explosion problem
that would arise if we compute the conjunction of the au-
tomataAi directly we partition the automata into indepen-
dent groups. The outportsO of the component are parti-
tioned into groupsO1 : : :Ok such that each automaton from
A1 : : :An only restricts outports from one groupOi . The au-
tomata restricting the same set of outports are then grouped
together ([9] describes partitioning in detail).
3. Using the standard operation for thecross productof
Büchi automata we generate a group automatonAGi for
each groupGi such thatAGi =

T
A2Gi

A
4. This step checks for consistency and completeness of the
specification. The specification should be satisfiable, the
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Figure 4. The B üchi automaton compiled from
the STD depicted in figure 2

values assigned to the outports should not depend on the
values read from the inports at the same moment, and the
specification may not make assumptions on the future valu-
ation of the inports at any time. [9] gives the formal criteria
to check and shows that consistency of the overall specifi-
cation can be tested by examining the group automata.
5. In this last step the group automata are transformed into
different kinds of FSM, depending on the purpose of the
synthesis. These FSM are then executed in parallel.

(A) For simulation each group automaton is transformed
to an “extended FSM”. These are FSMFGi that may choose
between several possible outputs in every state and that re-
spects the acceptance condition of the group automatonAGi .

(B) For implementation each group automatonAGi =

(Q;ed;∆;q0;F) if reduced to a Moore automatonMGi =

(QM ;ed;δ;λ;q0) that implements anas soon as possible
schedulingof outport signals.

Again, QM is a finite set of states andq0 the start state
of the automaton. The transition relationδ � (QM �VI �

QM ) is labeled with values assigned to the inports of the
automaton. The output functionλ : QM ! VO maps every
state of the automaton to one outport valuation. There is no
acceptance condition; a wordα 2 (Ved)

ω is accepted by the
automaton (α2 [[M ]]) if there is a runr(0)r(1) � � �2 (QM )ω

of the automaton such that for alli in ω it holds:α(i) � VO=

λ(r(i)) and(r(i);α(i) � VI ; r(i +1))2 δ.
The Moore automata generated satisfy the following

properties:-

soundnessThe behaviour implemented is valid with re-
spect to the specification:

[[MGi ]]� [[AGi ]]

responsivenessDuring execution the Moore automaton
can react on any input value at any time:

8vi 2 VI : 8q2QM : 9q0 : (q;vi;q
0) 2 δ

(Note that these conditions ensure that a nontrivial subset of
the specification is implemented:[[AGi ]] 6= /0 =) [[MGi ]] 6=

/0.)

3



q 1q
2

q
2

T_bot_pos T_mv_dn

~T_bot_pos T_mv_dn

q 1

~T_bot_pos

T_bot_pos

T_mv_dn

Figure 5. Translation of q1

q
0

T_mv_dn
T_bot_pos

q
2

2

T_mv_dn
q 1

T_bot_pos 
~T_bot_pos 

q q
2

q
0

~T_mv_dn

~T_bot_pos T_mv_dn

q 1

~T_mv_dn

Figure 6. (Not) allowed translations of q2

The resulting FSMMGi are then coded in synthesizable
VHDL such that they execute in parallel. To this means
we add a clockclk to the entity declaration of the compo-
nent that synchronizes the controllers. In the next section
we present this last step of synthesis for implementation in
detail.

4. Synthesis of Moore automata

The idea underlying our approach for the Moore automa-
ton synthesis is to translate each stateqb of the Büchi au-
tomaton to one stateqm of the Moore automaton. The out-
ports are extracted from the transition relation and inserted
into the output functionλ of the Moore automaton. Thus
the translation of stateq1 in figure 4 is straightforward as
depicted in figure 5.

But translation is not always that easy, since we have to
guarantee soundness and responsiveness of the Moore au-
tomaton by construction. For example, in stateq2 there are
two possible valuations of the outports. We may either de-
assertT mv dn or keep it asserted (figure 6). But if we
keep the signal asserted we violate the soundness require-
ment, since the controller then implements behaviour that
is forbidden by the specification.2

Accordingly, we have to choose the outport valuation in a
way that guarantees reaching an accepting state of the B¨uchi
automaton after a finite number of transition steps for every
valuation of the inports.

2If we never deassertT mv dn the Büchi automaton does not leaveq2
which is a non-accepting state. Thus this run is not accepted.

4.1. Cost function

We formalize this criterion by a functionst cst : Q!

N[? on the states of the B¨uchi automaton. It measures the
maximal number of transition steps until we can guarantee
reaching an accepting state.st cst(q) = ? indicates that
we can' t warrant acceptance starting fromq. In this case,
no matter how we choose the outport valuationvo there is
always an input valuationvi that prevents us from reaching
an accepting state. This may either be the case if there is no
transition labeled withvivo leavingq (@q0 : (q;vivo;q0) 2 ∆;
this violates responsiveness) or if the transition reaches a
state that has undefined costs as well (8q0 : (q;vivo;q0) 2 ∆ :
st cst(q0) =?), violating soundness).

Function stcst is defined recursively as depicted in fig-
ure 7. First, we need to collect all the states already vis-
ited during computation to detect loops on non-accepting
states (such loops are not permitted and thus count as?).
This collection is done in the second parameter to func-
tion stc ext : Q� 2Q ! N[?. The cost of a state is cal-
culated as the minimum cost of all output values possible
(out cst : Q�VO�2Q!N[?). Finally, the cost in a state
q for a given outport valuationvo is defined as the maximum
of the costs of all transitions fromq that are labeled withvo

and any inport valuation (tr cst : Q�Ved�2Q !N�?).
The functionok outs: Q! 2VO gives the valuations of

the outports permitted to guarantee a minimal number of
steps until reaching an accepting state.

ok outs(q)
∆
=
�

vo 2 VO j out cst(q;vo;fqg) = st cst(q)
	

4.2. Synthesis function

The synthesis functionb2m that maps B¨uchi automata
to Moore automata is defined asb2m : (Q;ed;∆;q0;F) 7!

(Q0
;ed0;δ;λ;q0

0) with

� Neither set of states nor the entity declaration is modi-
fied: Q0 = Q, ed0 = ed, q0

0 = q0

� For the output function we choose a valuation from
ok outs: 8q2Q0 : λ(q) 2 ok outs(q)

� Only the transitions of the B¨uchi automaton that are la-
beled with the outport valuation chosen are translated:
(q;vi;q0) 2 δ,9(q;vivo;q0) 2 ∆ : λ(q) = vo

Provided all states of the B¨uchi automaton have finite cost
this translation guarantees soundness and responsiveness of
the Moore automaton generated:

THEOREM 1 (CORRECTNESS BY CONSTRUCTION)
Given a Büchi automatonA = (Q;ed;∆;q0;F) such that
8q 2 Q : st cst(q) 2 N. Thenb2m guarantees soundness
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st cst(q)
∆
= stc ext(q;fqg)

stc ext(q;Q1)
∆
= min?fn j n= out cst(q;vo;Q1);vo 2VOg

out cst(q;vo;Q1)
∆
=

8><
>:

maxftr cst(q;vivo;Q1) j vi 2VIg

8vi 2VI : tr cst(q;vivo;Q1) 2N

? otherwise

tr cst(q; l ;Q1)
∆
=

8>>><
>>>:

1 9q0 : (q; l ;q0)2 ∆;q0 2 F

n 9q0 : (q; l ;q0)2 ∆;q0 =2 F [Q1 :

stc ext(q0;Q1[fq0g) = n�1

? otherwise

where min? : 2N[?!N[? is defined as

min?(A) =

(
? A= ?

min(A �N) otherwise

Figure 7. Recursive definition of the cost
function

and responsiveness by construction:

[[(b2m(A)]]� [[A ]]

8q2 states(b2m(A)) : 8vi 2 VI : 9q0 : (q;vi;q
0) 2 δ

4.3. Coding in VHDL and execution

Before coding the Moore automata in VHDL they are
minimized using the standard operations on FSM to elimi-
nate equivalent states. This may cause an enormous reduc-
tion of states and transitions as shown below.

The coding of the Moore automata into VHDL is
straightforward. We use a coding of the FSM in three pro-
cesses. Both one-hot and binary encoding of the state reg-
ister is supported. The FSMMGi generated from the group
automataAGi are grouped into one VHDL model,each
FSM in one VHDL block statement, and executed in par-
allel. This parallel execution is sound with respect to the
overall specification.

THEOREM 2 (CORRECTNESS OF PARALLEL EXECUTION)
Given a requirement specification by a set STD1 : : :STDn

that is compiled to B¨uchi automataA1 : : :An and grouped
into AG1 : : :AGm by the synthesis steps 1 to 4 introduced
above. Then the parallel execution3 of the Moore automata
MGi = a2m(AGi ), i 2 1: : :m is correct with respect to the

3The parallel execution “par” of Moore automata is defined as obvious:
Each automaton starts in its start state, transitions are performed in parallel.
Cf. [4] for details.

library IEEE; end if;

use IEEE.Std_Logic_1164.all; when S3 =>

[...]

entity T_Vmove is end case;

port( clk, rst : in std_logic; end process;

T_load_loaded : in std_logic ;

T_pick_picked : in std_logic ; -- outputs

T_V_bot_pos : in std_logic ; process (state)

T_V_top_pos : in std_logic ; begin

R_A1_safe4T : in std_logic ; -- default values are '0'

R_A1M_On : in std_logic ; T_V_Dn <= '0';

T_V_Up : out std_logic := '0' ; T_V_Up <= '0';

T_V_Dn : out std_logic := '0' ); case state is

end T_Vmove ; when S4 =>

T_V_Up <= '1';

architecture behaviour of T_Vmove is when S3 =>

begin [...]

fsm_0 : block when others => -- no output is set to '1'

type states is (S0,S1,S2,S3,S4); end case;

signal state, next_state : states; end process;

begin -- sequential circuit: build flip flops

-- state machine: process (clk, rst)

process (state,R_A1M_On,R_A1_safe4T,T_V_bot_pos, begin

T_V_top_pos, T_load_loaded, T_pick_picked) if rst = '0' then

begin state <= S0;

-- default value prevents latch on state elsif clk ='1' and clk'event then

next_state <= state; state <= next_state;

end if;

case state is end process;

when S4 => end block fsm_0 ;

if (((( T_V_top_pos = '0')))) then

next_state <= S3 ; end behaviour;

Figure 8. Automatically synthesized con-
troller of the table (vertical movement)

specification.

[[ par
i21:::m

(MGi )]]� [[
\

j21:::n

A j ]]

[[
\

j21:::n

A j ]] 6= /0 =) [[ par
i21:::m

(MGi )]] 6= /0

The VHDL generated may be used with commercial RT
level synthesizers to generate hardware. Figure 8 shows an
(abridged) example VHDL model as created by the ICOS
tools, the controller for the vertical movement of the table,
with binary coded state register. The portsclk andrst are
added to the component's entity declaration to control the
state register.

5. Experimental results

The theory presented in the last section has been im-
plemented and integrated into ICOS. The tools have been
tested on different specifications. Using the partitioning
techniques described above the specification of the pro-
duction cell is partitioned into 26 sub-specifications. The
ICOS tools generate behavioural VHDL models from these
sub-specifications and a structural description that links the
components of the specified system.

The biggest group automaton (the vertical movement of
the press) is generated from 5 STD and has 27 states and
193 transitions. It is synthesized in 8 seconds to a Moore
automaton with 6 states and 26 transitions. The resulting
VHDL models were then synthesized using the Synopsys
tools and mapped to an Altera FLEX 800 FPGA using Al-
tera MAX+plus II. This controller of the production cell
runs at a clock speed of 14 MHz. Alternatively, we syn-
thesized and mapped the models with the Cadence tools on
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a 1,0µ ES2 library to generate an ASIC consisting of 599
standard cells.

To get a feeling on how the tools will perform on more
complex specifications we did a synthesis of the production
cell components without partitioning by skipping synthesis
step 2. Figure 9 shows the results of this synthesis. The
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Figure 9. Synthesis results for the production
cell specification (not partitioned)

reduction gained is enormous (over 99% of the transitions
are eliminated for the bigger components). This shows the
necessity to reduce the complexity of the specification be-
fore implementing it and the feasibility of out approach to
hardware synthesis from requirement specifications.

6. Conclusion and future work

The work reported in this paper has implemented a
generator for synthesizable VHDL code out of require-
ment specifications written in a graphical language (STD).
The result is a rapid–prototyping environment for control–
dominated applications, using a graphical language based
on timing diagrams, which is familiar to the hardware de-
signer. Furthermore, the work opens a new methodology,
since the approach can be combined with existing work
on the formal verification of VHDL designs against STD–
specifications.

The work also leads to a new line of research: While
the specification language STD makes only qualitative tim-
ing assertions, more rigid (quantitative) timing information
can be obtained using standard analysis techniques for the
synthesized controller. This allows to develop with this
method even prototype controllers which have to meet rigid
timing constraints, which is a topic of actual interest (cf.
[3]). A formal framework for the sound transition from
abstract (causality–based) specification to concrete (rigid–
timed) implementation is yet to be developed.

Acknowledgement.The ICOS–project was initiated by
F. Korf who also provided the implementation of the orig-
inal kernel of ICOS as reported in [8] and supported our
work through many discussions.
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