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Abstract

When synthesizing control-
ow dominated descrip-
tions based on VHDL, di�erent styles of semantically
equivalent descriptions may di�er signi�cantly in qual-
ity. This paper discusses the e�ect of the input descrip-
tion on High-Level Synthesis when using VHDL. In or-
der to show this e�ect, a high speed protocol based on
the ISO reference protocol Abracadabra is used. Five
VHDL descriptions styles of the same protocol have
been synthesized using AMICAL, a VHDL based behav-
ioral synthesis tool. Discussions of the di�erent results
leads to a VHDL based methodology for protocol mod-
elling in order to produce e�cient designs.

1. Introduction

The emergence of new technologies in VLSI, the high
e�ciency of nodes (commuters), the reduction of mem-
ory and processor costs and the development of optical
�bers allowed the development of networks of increas-
ing speed and reliability. The bottleneck in the hard-
ware development of complex distributed system is the
design of the communication protocols.

On the other side, High Level Synthesis (HLS) tools
(also called behavioral or architectural synthesis) are
maturing and may provide an issue to the design bot-
tleneck. These tools allow to produce complex designs
starting from a behavioral description.

Protocol design require speci�c HLS tools, generally
called control 
ow dominated behavioral compilers[13].
These tools are able to handle large control struc-
ture including sophisticated handshaking and non-
structured sequences. However most of these compilers

present an inescapable drawback, the compilation re-
sults depends on the quality of the input description.
This comes from the fact that the speci�cation may
include explicit synchronization points (e.g. a wait in
a VHDL description) which restricts the scope of the
transformation and optimization usually performed in
behavioral descriptions[1].

A communication protocol is a set of rules and pro-
cedures that allow the interaction between peers enti-
ties and, consequently, they are crucial to the function-
allity of the computers networks and of the distributed
systems. A communication protocol is structured on
such concepts as hierarchy, concurrence, distributive-
ness and communication.

A protocol can be described as a set of communicat-
ing processes where the behavior of each process can
be represented by one or more communicating FSMs.
Then, a communication protocol can be characterized
by multiple, hierarchical, concurrent and communicat-
ing FSM's.

The FSM model is traditionally used to describe
a communication protocol. Each FSM can be de-
scribed using standard programming language state-
ments, such as loops, if and case statements, and as-
signment statements. Unstructured statements such
as exceptions may also be used. Moreover, the normal
course of the actions can be disrupted at any point in
time by events signaling exceptions (resets, time-out,
error situations, etc.). Thus, an exception procedure is
treated immediately after the corresponding wait state-
ment. Reset conditions may be de�ned by adding an
outer loop to the process and including an exit outer
loop into the corresponding exception clause.

This paper discusses the e�ect of the input descrip-
tion on HLS when using VHDL[3]. We will use AM-



ICAL, a VHDL behavioral compiler for control 
ow
dominated machines[8].

In order to show this e�ect, a high speed proto-
col based on the ISO reference protocol Abracadabra
called Abracadabra HS was devised. This protocol
includes the parameters of most of the existing high
performance protocols such as the XTP[5] and the
DATAKIT[6].

Section 2 presents the preliminary concepts concern-
ing high level synthesis and AMICAL, a VHDL based
behavioral synthesis tool. This section also presents
the scheduling algorithmused in AMICAL. The knowl-
edge of this algorithm is crucial to the understanding
of the next sections. The di�erent styles that can be
used to describe a protocol in VHDL are discussed in
section 3 . In section 4 the proposed di�erent descrip-
tion styles are applied to the high performance protocol
Abracadabra HS and the results are compared. The
last section contains the conclusions and the results
obtained so far, are summarized.

2. High Level Synthesis and Scheduling

HLS is a procedure that maps a behavioral descrip-
tion into a structural RTL description. The main tasks
involved in HLS are scheduling and allocation. In this
section the scheduling step will be focused.

Designers can write a behavioral description in many
di�erent styles. As will seen in the next section, from
the HLS point of view, each di�erent style of seman-
tically equivalent descriptions, may di�er signi�cantly
in quality. This quality will depend on the type of the
constructs used in the description and on their order.
This is known as the problem of syntactic variance[7].

When dealing with real time applications where
the control sequence is based on external conditions
and the corresponding algorithmic description con-
tains few arithmetic operations, i.e., they are spec-
i�ed basically by control statements, the control de-
pendency may be conveniently represented by Control
Flow Graphs(CFG).

Starting from a CFG, scheduling assigns operations
to control steps. A control step corresponds to a basic
machine cycle in a controlling FSM.

2.1. Dynamic Loop Scheduling

Dynamic Loop Scheduling (DLS)[12] is a native
VHDL scheduling algorithm optimised for the treat-
ment of control-
ow dominated descriptions. It is
based on the principles of path-based scheduling[2] but
signi�cantly reduces the number of the generated paths

and hence, the computation cost. DLS has been im-
plemented and integrated with the AMCAL high-level
synthesis tool.

The main representation used by DLS is a control-

ow graph (CFG)[11]. This kind of representation is
well-suited to control-
ow dominated circuits. It pro-
vides a convenient means to represent inherent proper-
ties of these circuits that are described by nested loops,
unstructured control such as loop exits and synchro-
nization constructs such as wait statements. Perhaps
the most signi�cant characteristic of this CFG is the
introduction of the wait node. A wait node always
means that a change of state will take place. The
wait statements plays a fundamental role in describ-
ing control-
ow. Therefore, we allow the use of asyn-
chronous signals in these statements. As will be seen in
the next section, the use of multiple wait statements in
the input description will signi�cantly reduce the com-
plexity of the resulting FSM by reducing the number
of paths generated. To show how DLS works, consider
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Figure 1. Control-flow graph, VHDL process
outline and transition table representation for
a typical handshaking process.

any circuit that needs to perform handshaking opera-
tions with another circuit. Such functions are needed
in almost every controller-like circuit that synchronizes
with external devices. A classic example is outlined in
�gure 1. In this model one can distinguish three steps;
an initialisation phase, a calculation phase which con-
sists of a loop that waits for input data on each iter-
ation and performs some calculations on these data,
and a �nal handshaking phase to output the result and
perhaps receive an acknowledgement from processes re-
questing the result. The wait statements are used to



synchronize with one or more external processes. The
�rst step in the DLS, consists in computing the set of
possible execution paths from the CFG. A path con-
sists of a sequence of operations which may execute
in parallel. The paths are generated starting from the
�rst node in the CFG. The generation of the current
path is stopped and a new path begins when a Wait
statement is encountered or the new node encountered
is data dependent on one of the nodes already in the
path. The next step is to generate the corresponding
FSM. Each generated path corresponds to a transition
in the FSM. The And of all condition nodes will con-
stitute the condition for the corresponding transition.
All paths starting with the same node are bundled to-
gether in the same state. For this example, a total of
3 states and 8 transitions are extracted, as shown in
�gure 1.

3. Styles the description of protocols in

VHDL

A protocol can be described in VHDL in many dif-
ferent styles. To illustrate this fact, consider a protocol
model that has a state machine performing handshak-
ing operations with another state machine. This model
has two phases: the initialization phase and the proto-
col processing phase. This last one consists of a loop
that waits for an input signal on each interaction, pro-
cesses the input data and outputs the corresponding
result through a signal. Thus, the processing phase
has 3 steps: input, treatment and output. We assume
that there are no data dependencies in this model. The
initialization phase corresponds to node E1 and the
treatment steps to nodes E2,E3, respectively. The in-
put step is represented by the wait statement and the
output step by the assignment statement x <= value.
Each node in �gures 2, 3 and 4 may contain one
or more statements. This example will be used to il-
lustrate the several description styles and the conse-
quences on the HLS results. The analysis will be re-
stricted to the scheduling results since this gives the
complexity of the controller. In fact, all these styles
will result into nearly equivalent data paths. More-
over, in a protocol design the data-path is generally
smaller than the controller.

The First Description style associates wait until ...
statements to each branch of a case state statement.
Figure 2 shows the VHDL description of the �rst style
and the FSM resulting from the schedule of this de-
scription using the DLS algorithm. During the path
generation the DLS algorithm stops the generation of
the current path, for example the E1 Loop Case path,
when a Wait statement is found and a new path, for

process

begin
1 {E1
2 FSM loop
3 case state is

when state x =>

4 next <= '1';
5 wait until inputx = '1';
6 next <= '0';
7 {E2

8 outx <= '1';
9 wait until rising edge(clk);
10 outx <= '0';

when state y =>
11 next <= '1';

12 wait until inputy = '1';
13 next <= '0';
14 {E3
15 outy <= '1';
16 wait until rising edge(clk);

17 outy <= '0';
end case;

end loop;
end process;
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Figure 2. VHDL process model and FSM of the
First Description

example wait E2 out Loop Case path, begins. It is im-
portant to note that there are, at least, two possibil-
ities to begin a new path when there is a wait until
input condition statement in each case state statement
option.

The second description style for implementing a
state machine is a variation of the �rst one. In this
case, a wait until input condition statement is placed
outside the case statement. Figure 3 shows the VHDL
description of the second style and the FSM resulting
from the schedule of this description. In this style, it
is important to note that there is only one possibility
to begin a new path when there is only a wait until
input condition statement before the case state state-



process

begin
1 {E1
2 FSM loop
3 next <= '1';
4 wait until inputx = '1' or inputy = '1';

5 next <= '0';
6 case state is

when state x =>
7 if inputx = '1' then

8 {E2
9 outx <= '1';
10 wait until rising edge(clk);
11 outx <= '0';

end if;

when state y =>
12 if inputy = '1' then
13 {E3
14 outy <= '1';
15 wait until rising edge(clk);

16 outy <= '0';
end if;

end case;
end loop;

end process;
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not(C1) and C2 
and C3 // 3

not(C1) and not(C2)
C1 and not(C2) 
and not(C3) // 3

S3

C1 and C3 // 5,8,9

S4

C2 and not(C3) // 5,13,14True // 11,3 True // 16,3

C1 := inputx= ’1’
C2 := inputy = ’1’

 C3 := state = statex

Figure 3. VHDL process model and FSM of the
Second Description

ment.

The Third Description style employs an If ... then ...
elsif ... end if construct instead of a case state state-
ment into a process statement. This construct uses the
state as the outer variable. A wait until input condition
statement is placed outside the nested if clauses.

The fourth description style is a variation of the
third one. It also employs an if ... then ... elsif ...
end if structure but with the input as the outer signal.
The Fifth alternative to describe a state machine is
a variation of the Second Description style: the di�er-
ent output control signals are reseted immediately after
the case state statement. Figure 4 shows the VHDL de-
scription of the �fth style and the FSM resulting from
the schedule of this description.

If these di�erent descriptions are synthesized by
AMICAL, di�erent results will be produced by the Dy-
namic Loop Scheduling (DLS) algorithm, as will be
seen in the next section.

process

begin
1 {E1
2 FSM loop
3 next <= '1';
4 wait until inputx = '1' or inputy = '1';

5 next <= '0';
6 case state is

when state x =>
7 if inputx = '1' then

8 {E2
9 outx <= '1';

end if;
when state y =>

10 if inputy = '1' then

11 {E3
12 outy <= '1';

end if;
end case;

13 wait until rising edge(clk);

14 outx <= '0';
15 outy <= '0';

end loop;
end process;
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not(C1) and not(C2)
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C1 := inputx= ’1’
C2 := inputy = ’1’

 C3 := state = statex
 C4 := state = statey

Figure 4. VHDL process model and FSM of the
Fifth Description

4. A complex protocol speci�cation

The �ve alternative styles to describe a protocol in
VHDL discussed previously, will be applied to an ex-
ample, the Abracadabra HS protocol.

4.1. The High Performance Protocol :
Abracadabra HS

The Abracadabra HS protocol is a proposed
high speed version of the ISO reference protocol
Abracadabra[4]. Considerable attention was payed on
its design in order to shorten the length of the instruc-
tions, transmission path and reception of messages,
when no errors occurs. This agrees with the design
philosophy of minimizing the processing needs, even if
bandwidth is sacri�ed, optimizing the protocol process-
ing in the case of normal (error-free) communication,
and including more e�ective control-
ow algorithms.



4.2. Internal architecture of
Abracadabra HS

The Abracadabra HS protocol is structured into �ve
modules, as shown in Figure 5, namely the Signaling,
Data, Generation-ctrl, Critic Region and Rate-Control
module. Each module is represented by a �nite state
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Figure 5. Architecture of Abracadabra HS
provider

machine. The Signaling module (Data module) is re-
sponsible for the message Signaling (Data) manage-
ment. The Generation-Ctrl module (Rate Ctrl mod-
ule), when active, is responsible for the periodic genera-
tion of a signal to the Signaling module (Data module).
The Critic-Region module is responsible for assuring
the mutual exclusion in the access of the global vari-
able by the Signaling and Data modules. These mod-
ules are connected by internal channels as Sync data,
Sync ctrl, Syncbeg rate, Sync rate, Access signal, and
Access data. A channel is implemented by two FIFOs
queues, one in each channel side. Moreover, there are
two external channels, the UCEP and the MCEP, and
they connect the Abracadabra HS entity to the UP-
PER level and to the LOWER level, respectively. A
full speci�cation of the protocol Abracadabra HS can
be found in[9, 10].

4.3. Results

The example discussed in this section is the Signal-
ing state machine, the most complex module of the
Abracadabra HS protocol. All the di�erent styles of
description in VHDL were applied to this machine. The
scheduling results obtained by the DLS algorithm, for
each description, are displayed in table 1. In the �rst
two columns of this table the number of paths and
the number of states generated by each description are
shown. The next �ve columns contain the number of

operations, the number of loops, the number of waits,
the number of ifs and the number of cases, respectively.
In the last two columns the number of VHDL lines
of code in the input description and an estimation of
the area of the controller, in number of transistors, are
given.

Description Path States Operations Loops

First 614 88 400 12

Second 138 70 406 12

Third 136 69 413 12

Fourth 137 69 451 12

Fifth 104 36 325 12

Description Wait Ifs Case Lines Area

First 54 34 1 653 206.183

Second 45 42 1 622 46.473

Third 44 51 0 625 45.904

Fourth 44 52 1 616 46.237

Fifth 11 42 1 557 35.641

Table 1. DLS Results

The �ve descriptions have very complex control
structures including wait statements with several con-
ditionals, procedure calls, loops, nested ifs and nested
loops. All of them took less than one second to execute
on a SPARC II workstation. It can be observed from
table 1 that globally the Fifth Description presented
the best results. It signi�cantly reduces the number
of wait until input condition and the number of wait
until rising edge (clk). As a consequence, the number
of paths generated is reduced and, hence, the compu-
tation cost. This is due to the structure of DLS algo-
rithm. This algorithm, as dicussed earlier, generates a
new path each time a wait statement is found. It can
observed that the Second and Third Descriptions had
also good results, because they signi�cantly reduce the
number of waits until input condition reducing conse-
quently the number of paths generated. The Second
and Third Description produce similar results. This is
in agreement with the fact that the if ... then ...elsif ...
endif and case statement are similar constructs.

Another interesting point can be observed in the re-
sults of the Third and the Fourth Description styles.
In the Third Description style, the outer If ... then ...
elsif ... end if construct test the state variable and in
the Fourth description style, the outer If ... then ... el-
sif ... end if construct tests the input conditions. The
results show that the Third Description is better than
the Fourth description because in this example the pro-
cessing is more dependent on the state than the input.
In situations where the processing is more dependent
on the input than on the state one should expect a



better result from the Fourth Description style.
In the case of protocol design, in order to reduce

the controller complexity, the following rules should be
adopted;

� The FSM protocol and its signals are identi�ed.
The FSM model corresponds to a VHDL process.
The process is composed of two loops: an external
loop that models the restart of the process and an
internal that models the protocol FSM.

� The wait until ... statement is combined with
the INNER LOOP where the control signals are
checked.

� In order to avoid duplications in the code when
specifying exceptions, the exceptions signals (re-
set, error situations) should be created and added
to the sensitivity list of the wait statement. Thus,
the exceptions signals (reset, error situations) are
immediately checked after this wait statement.

� A state machine can be built using a case state-
ment or if ... then ... elsif ... end if constructs. In
both solutions, the choice between initially to test
the state or the input depend on if the processing
is more dependent on the state than the input or
vice-versa.

� After a case... or after an outer if ... then ... elsif
... end if statement, the output control signals
should be set to zero.

5. Final Considerations

Five di�erent styles that can be used to describe a
protocol in VHDL and the constraints that determine
the most appropriate to synthesis tools have been dis-
cussed. This analysis was done with the aid of an ex-
ample, the Abracadabra HS protocol. The main con-
tributions of this study are:

� the use of multiple input conditions in a single wait
statement in the input description allow us to sig-
ni�cantly reduce the complexity of the transition
table by reducing the number of paths generated
by the scheduling algorithm of AMICAL

� the choice of the state as the outer variable, in-
stead of the input, when the processing is state
dominated, allows us to reduce the number of
states generated by the scheduling

� the generation of exception signals in such a way
that the exceptions codes are treated immediately
after a wait statement, allow to avoid the duplica-
tion of exception codes.
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