
EURO-DAC ’96 with EURO-VHDL ’96
0-89791-848-7/96 $4.00 1996 IEEE

A Re�nement Calculus for VHDL

Peter T. Breuer Carlos Delgado Kloos

Natividad Mart��nez Madrid Andr�es Mar��n Luis S�anchez

Departamento de Ingenier��a de Sistemas Telem�aticos, ETSI Telecomunicaci�on

Universidad Polit�ecnica de Madrid, Ciudad Universitaria, E{28040 Madrid, Spain

<ptb,cdk,nmadrid,amarin,lsanchez@dit.upm.es>

Abstract

A re�nement calculus for the speci�cation of real-time

systems and their re�nement to a VHDL behavioural

description is set out here. The speci�cation format is

a logical triple with the look of a Z or VDM schema.

Choices from a short menu of re�nement operations

gradually convert an initial speci�cation to VHDL code

through a series of mixed mode intermediates. The cal-

culus is complete in the sense that if there is a code

of the VHDL subset considered here (unit-delay waits

and signal assignments but no delta delays) satisfying

the speci�cation, then it can be obtained by applying

some sequence of the re�nement operations. The result

is ``correct by construction".

1. Introduction

This article describes a re�nement method for
VHDL. It is intended to produce behavioural code that
is ``correct by construction", departing from a non-
behavioural speci�cation. It is a formal method based
on a formal language and formal rules. It consists of a
speci�cation language L supporting a relation v (`re-
�nes to') plus a set of partial operations O � L 7! L.
The triple (L;v;O) is a re�nement calculus. This
means that the result of applying an operation op 2 O

to a speci�cation a is a re�ned speci�cation b = op(a):

op 2 O ^ a 2 domop ! a v op(a)

The re�nement relation is transitive, so a sequence of
such operations leads to a result that is still a re�ne-

1The work reported here has been partially supported by the
EuroForm project (2/ERB4050PL921826) sponsored by the Hu-
man Capital andMobility programmeof the CEC and the INTE-
GRAL project (TIC93{0515{C02{01) sponsored by the Spanish
``Comisi�on Interministerial de Ciencia y Tecnolog��a".

ment of the initial speci�cation:

a v op1(a) v op2(op1(a)) v : : : = b ! a v b

The usefulness of this system derives from the fact that
L contains speci�cations which range from the purely
logical through mixtures of predicates and code to pure
VHDL code. So speci�cations can be driven from the
abstract to the concrete by the sequence of operations.

The purely logical speci�cations consist of triples

[Pre j Dur j Post]

in which Pre is a pre-condition for the speci�cation to
become active, Dur is a condition that is to hold while
the speci�cation is active, and Post is a post-condition
that must hold when it ceases to be active.

As an example, the following speci�es a square wave
oscillator with half-period one on signal Q (with value
Q). T is the distinguished variable of time:

[8T = 0 j Q = bT mod 2c j false]

The backwards prime on the �rst T (and forward
primes on variables in the last compartment of the
speci�cation, if any) is a technicality: it allows vari-
able names for the pre-, post- and during- states to be
distinguished, as in Z [11] or VDM speci�cations. It
can be disregarded for the puspose of this informal dis-
cussion. The initial T = 0 makes the oscillator active
from system startup. The �nal false means that the
oscillator can never halt. The middle condition asserts
the value of the output signal in terms of the current
time whilst the oscillator is running.

The ``pure VHDL code" to which this speci�ca-
tion may be re�ned consists of a variant subset of be-
havioural VHDL in which both wait statements and
signal assignments are allowed, but not zero waits
or delta-delayed assignments. Note that the process
header names the output and input signals explicitly.
The full syntax is shown in Figure 1. An appropriate
code for the oscillator is:

1

L ::= Process [jj Process jj : : :]

Process ::= process [[Channels]] begin VHDL end

j Speci�cation

VHDL ::= Statement [; Statement ; : : :]

Statement ::= Channel <= transport Expression after Delay

j wait on Channels

j if Expression then VHDL else VHDL

j null

j Speci�cation

Expression ::= Channel

j Value

Speci�cation ::= [8Predicate j Predicate j Predicate' [where [Decls �] Predicate]]

Figure 1. The syntax ofL, the language of mixed specification and VHDL code hardware descriptions.
See text for additional semantic restrictions.

process [Q:out]

begin

Q <= transport not Q after 1;

wait on Q;

end

It should be emphasized that the process header in
this variant subset does not denote a standard VHDL
sensitivity list. The default time unit is 1ns.

The re�nement relationship a v b expresses the idea
that the behaviour of the code b satis�es the speci�ca-
tion a. These notions are formalized using a semantic
model of unit-delay VHDL set out in [2] and further
discussion of this aspect will be found in the following
paragraphs. In the foregoing example of the oscillator,
the �nal statement of re�nement is:

Oscillator

8T = 0 Q = bT mod 2c false

Q : ZZ

v
process [Q:out]

begin

Q <= transport not Q after 1;

wait on Q;

end

using the ``vertical" (``schema") format for the pure
logical speci�cation.

The re�nement calculus is relatively complete, in
that, for example, if there is a unit-delay VHDL coding
of a design that can be proved to satisfy a requirements
speci�cation, then it can be obtained constructively via
these re�nement operations. The relativeness is with
respect to the power of the underlying logic. We have
to allow all facts of the logic to be available as axioms,
without further proof.

Solid theoretical support for the practice of real-time
programming and hardware design has a much shorter
history than that of its cousins supporting the devel-
opment of software programs for non-time critical ap-
plications. The following are the major approaches.

With respect to formal methods for real-time pro-
gramming [6], an obvious ``upgrade path" from formal

methods for un-timed programs is to treat time as a
read-only shared variable, and then proceed as for un-
timed programs [10].

Speci�cations using temporal propositional logic

(that is, a modal logic of the time variable in
place of unconstrained �rst order quanti�cations) have
recorded signi�cant successes using model checking

techniques [4] over the last ten years, primarily due
to the e�ciency of the algorithms. For �nished �nite
state machines such as hardware microprocessors the
science is solid (although the complexity is daunting),
but a strategy for getting to a machine description
from a requirements speci�cation is not yet as clear
as the strategy for verifying a given machine. Never-
theless, hardware compilation and veri�cation may be
approaching a mature stage through this science [1].

Statecharts (timed state transition diagrams) [5]
typify another promising school. Time constraints on
transitions are speci�ed as intervals in which the tran-
sition must occur.

Timing diagrams are a real alternative to the style
of speci�cation presented here. Recent e�orts have re-
sulted in their proper formalization [9] and it may be
possible to tie the representation to the formal speci�-
cations used in this article. The signi�cant di�erence
lies with the underlying logic, which is of the ``strong"
kind there and is necessarily of the ``weak" kind here.

In our logic only safety properties of processes may
be proved, not liveness properties. The philosophy here
is that synthesising hardware from a VHDL code is
problematic. If the code is synthesizable, then the pro-
cesses in the code are automatically live, because hard-
ware cannot evaporate. If the code is not synthesizable,
then it is not of interest. Deciding whether the code is
synthesizable is a separate problem.

The idea of a formal re�nement calculus is not new

in the context of formal methods for software system
development (e.g. [8]), but the technique is new in the
hardware �eld. The approach here is related to at-
tempts to phrase the semantics of software programs
with interrupts [3] and a recent description of a re�ne-
ment calculus for programs with multiple exits in their
control ow graph [7].

The layout of this article is as follows: Section 2 and
3 introduce the speci�cation and re�nement technique
through worked examples.

2. Speci�cation

In this section, we consider the derivation of the os-
cillator code in the Introduction. As discussed there,
the appropriate pure speci�cation of the oscillator be-
haviour is encoded in the following schema:

Oscillator

`T = 0 Q = bT mod 2c false (s0)

Q : Z

Recall that the backwards prime on the T in the �rst
``compartment" indicates that it is a value of a variable
on entry to the process. That the process a implements
this speci�cation is written:

Oscillator v a

All constructions of code and speci�cations preserve
the re�nement order. That is, for codes or speci�ca-
tions a, b, c, and for any constructor f , such as while
true do : : : :

a v b ! f [a] v f [b]

The re�nement consists of a series of steps:

Oscillator = s0 v s1 v s2 v s3 = a

in which the stepping stones s1, s2, s3 are hybrids, each
consisting partly of a speci�cation and partly of code.
Rather than writing the re�nement operation in ques-
tion as the application of a guarded function, we justify
each operation below via a formal re�nement law.

2.1. Initialization and iteration

The process begins at time zero and the output sig-
nal Q will be reset to zero at that time, as a convenient
initialization before anything else happens. The reset
takes no time, and it is not possible to interrupt it,

but it does terminate. When it terminates, the process
will have set the output line to zero and will also have
scheduled the outputs to be zero forever, i.e.:

alwaysQ = 0

We suppose that the oscillator is to be implemented
as a single process. This is essentially a forever loop
preceded by the appropriate initialization. To specify
the process interior, a loop invariant, I , will be needed.

The invariant holds at the start of each process cy-
cle, at the end of each cycle, and during each cycle.
Moreover, it must be set up on entry to the loop:

T = 0 ^ alwaysQ = 0 ! I

and the invariant must be su�ciently strong to main-
tain the during-condition of the oscillator speci�cation
while the process body is executing:

I ! Q = bT mod 2c

Let us suppose that the n'th cycle starts at time tn ,
for some given sequence of times 0 = t0 < t1 < t2 <

: : :. Then we are looking for a process body with the
following speci�cation:

Oscillator body

`I ^
8T = tn I I 0 ^ T 0 = tn+1

The most sensible design is to let each iteration take
one unit of time:

tn = n

We can set the invariant I to assert that the output
Q should be planned to take the proper value for the
remainder of the current unit time interval. This is a
very minimal scheduling requirement. Here, p for � is
the temporal logic construction that asserts that a con-
dition p is currently holding and is planned to endure
for a time � :

I is Q = bT mod2c for (dT e �T)

The oscillator can then have the form:

process [Q : out]
begin

Oscillator body

end

(s1)

All that has to be checked is that this choice of in-
variant does indeed force the oscillator invariant Q =

bT mod 2c (it does, because p for � implies p), and
that it is forced by the oscillator process proper initial
condition T = 0 and alwaysQ = 0 (it is, because
alwaysQ = 0 implies Q = 0 in particular). The fol-
lowing is the general rule:

Law 1 (Process) Let 0 = t0 < t1 < : : : be a time

sequence increasing strictly to in�nity, and let I be

an invariant with

T = 0 ^ alwaysQ = 0 ! I

Then

[8T = 0 j I j false] v

process [Q]
begin

[T̀ = tn ^ Ì j I j T = tn ^ I 0]
end

This is an instance of a (more general) law concerning
while loops, but (for simplicity) while loops within a
process body are not allowed by the syntax here. There
is no theoretical objection to their inclusion.

2.2. Sequence

We can imagine that the process body does its work
in two parts. First it modi�es the scheduled output
values and then it shifts the current time point to allow
the change to take place:

Oscillator body is Schedule o
9 Wait

This is the re�nement rule:

Law 2 (Sequence)

[8pre j dur j post 0]

v [8pre j dur j mid 0] o9 [
8mid j dur j post 0]

And now the oscillator code has the form:

process [Q : out]
begin

Schedule;
Wait;

end

(s2)

The scheduling part can be designed to be non-
interruptible and to schedule a change in one unit of
time's time. Let q be a logical constant that captures
the initial value of the output Q . Suppose that Sched-
ule acts at a time when Q is already scheduled to keep
this value for at least one unit of time (Q = q for1).

Then it can schedule an inversion after that unit of
time has passed (using the temporal logic construc-
tion p then q to express ``q holds immediately after p
passes", Q = q for1 then alwaysQ = : q):

Schedule

`Q=q for1 false
Q 0=q for1 then

alwaysQ 0=: q

8T = T = T 0

The during-condition being false means that the op-
eration is not interruptible. We force the termination
time to be the same as the start time with 8T = T 0 = n

(for the n'th loop iteration).

The Wait part now begins (at time T = n) when a
change has already been scheduled in one unit of time.
It waits for the change to occur:

Wait

8Q = q for1 then

always 8Q=: q

Q = q for

(dT e � T)
always

Q 0=: q

`T � T � 8T + 1 = T 0

2.3. Atomic statements

In VHDL the above speci�cations are implementable
directly as:

Q(transport : Q after 1;
wait on Q

The transport assignment implements the schedule
part. The general law is as follows:

Law 3 (Transport) A transport assignment of ex-

pression X to Q after a delay � satis�es a speci�-

cation if the pre-condition implies the post-condition

when the current value x of X replaces the appear-

ance of any scheduled value of Q from � onwards.

That is, provided that

pre ! post [if T � t + � then x else Q)=Q]

then

[8pre j false j post 0] v Q (transportX after �

In this instance, the substitution in the post-
condition yields exactly:

Q=q for1 thenalways: q=: q

which is the same as the pre-condition Q=q for1, so

Schedule v Q(transport : Q after 1

The wait statement implements the remaining subspec-
i�cation. The rule is:

Law 4 (Wait) If pre forces the �rst change in Q to

occur at a time when post holds:

pre ! Q=q untilpost ^ dur until Q 6=q

then the speci�cation can be implemented by a wait

on Q statement:

[8pre j dur j post 0] v wait on Q

Here the pre-condition pre is

Q = q for1until alwaysQ=: q

and this implies both Q=q until alwaysQ=: q and
(because at the time of the pre-condition T is integer)
Q=q for(dT e�T) until Q 6=q . So the law applies and

Wait v wait on Q

This gives the oscillator the �nal shape

process [Q : out]
begin

Q(transport : Q after 1;
wait on Q;

end

(s3)

and this code is correct by construction. It satsi�es the
initial speci�cation (s0),

2.4. Miscellania

One extra rule of re�nement has been implicit in the
above reasoning. A speci�cation may be satis�ed by a
stronger speci�cation:

Law 5 (Weakening) A pre-condition can

be strengthened or a during- or post-condition can

be weakened or a side-condition can be strengthened

without a�ecting the validity of a re�nement step.

I.e., if:

(PRE ! pre)^(dur ! DUR) ^(post ! POST) ^
(ENV ! env)

then

[8pre j dur j post 0 where env] v a

[8PRE j DUR j POST 0 whereENV] v a

3. Further example

In this section a more substantial piece of hardware
design is considered: a single-element RS ip-op. It
is not straightforward to write a general asynchronous
speci�cation for this component so we will assume a
unit-time clock and write

: Q = tg(: S sinceR)

: Q = tg(: R sinceS)

for the speci�cation. I.e., the signal Q will be low so
long as there had been, up until one unit of time ago,
no set signal S received since the reset signalR was last
high. And vice versa for Q . The symbol `` tg" means
``one unit of time ago". The ``since" combinator has
its natural meaning. The subtleties of what happens if
the pior condition is never obtained are not of interest,
because we will straight away pass (via Weakening) to
a re�nement that we know gives the ``right" solution
in unit-time (under certain assumptions on the input
signals), viz:

FlipFlop

8T = 0
: Q = tg(R _ Q)

: Q = tg(S _ Q)
false

8T � T � T 0

The least solution to this mutual recursion is:

: Q = tgR _ tg2: S ^
tg3R _ : : :

: Q = tgS _ tg2: R ^
tg3S _ : : :

which satis�es the original speci�cation provided that
each set or reset command lasts at least through two

consecutive clock points. These are external conditions
on the environment, and they are acceptable. The
FlipFlop speci�cation can then be split into two con-
current parts (here the 8T � t � T 0 is suppressed for
legibility):

Flip
8T = 0 : Q = tg(R _ Q) false

always(: Q = tg(S _ Q)) sinceT = 0

Flop
8T = 0 : Q = tg(S _ Q) false

always: Q = tg(R _ Q) sinceT = 0

and in each of these, the others output signal appears
as an input and the other speci�cation appears as an
environmental condition. The appropriate formal law
appears below:

Law 6 (Parallel)

[8x j y1 j z
0 wherey2 sincex untilz] v a

[8x j y2 j z
0 wherey1 sincex untilz] v b

[8x j y1 ^ y2 j z
0] v a jj b

We strengthen the speci�cations again by allowing each
to hold in quite generic environments, not merely the
environment provided by the other (Weakening):

FLIP
8T = 0 : Q = tg(R _ Q) false

`T � T � T 0

FLOP
8T = 0 : Q = tg(S _ Q) false

8T � T � T 0

with
Flip v FLIP Flop v FLOP

and

FlipFlop v Flip jjFlop v FLIP jjFLOP

From here the speci�cations can be re�ned using the
laws set out in the previous section. We obtain (abbre-
viating the VHDL expression syntax):

FLIP v

process [Q:out,R:in]

begin

Q (transport : R^: Q after 1;

wait on (R, Q)

end

FLOP v

process [Q:out,S:in]

begin

Q (transport : S^: Q after 1;

wait on (S, Q)

end

which pair of codes, by construction, jointly satis�es
the FlipFlop speci�cation at the head of this section.

4. Conclusion

A formal speci�cation and re�nement calculus for
unit-delay behavioural VHDL has been set out here. A
speci�cation de�nes up an activation pre-condition, an
invariant and a post-condition. These hold true respec-
tively on entry to the speci�cation, while it is running,
and on exit from the process. Non-termination can be
expressed through a false post-condition. A set of six
formal rules governs re�nement of these speci�cations
to VHDL code through a series of mixed code-and-
speci�cation intermediates. The resulting VHDL code
is ``correct by construction".

In future it is hoped that graphical notations such
as timing diagrams can be appropriated for use as the
speci�cation format.

References

[1] J.P. Bowen, He Jifeng and I. Page. Hardware Compilation.
In J.P. Bowen (ed.),Towards Veri�ed Systems, Elsevier Sci-

ence, Real-Time Safety Critical Systems series, volume 2,
Chapter 10, pp 193{207, 1994.

[2] P.T. Breuer, L. S�anchez and C. Delgado Kloos. A Sim-

ple Denotational Semantics, Proof Theory and a Validation
ConditionGenerator for VHDL. Journal of Formal Methods

for System Design, 7(1&2):27{51, 1995.

[3] F. Christian. Correct and robust programs. IEEE Trans.

on Software Engineering, 10:163{174, March 1994.

[4] E.M. Clarke, E.A. Emerson and A.P. Sistla. Automatic Ver-
i�cation of Finite-stateConcurrent Systems using Temporal

Logic Speci�cations. ACM Transactions on Programming

Languages and Systems, 8(2):244{263, 1986.

[5] D. Harel, H. Lachover, A. Naamad, A. Pnueli, M. Politi, R.

Sherman and M. Trachtenbrot. Statemate: a working Envi-
ronment for the development of complex reactive systems.

IEEE Transactions of Software Engineering, 16:403{414,
1990.

[6] He Jifeng and J.P. Bowen. Time Interval Semantics and Im-
plementationof a Real-Time ProgrammingLanguage.Proc.
Fourth Euromicro Workshop on Real-Time Systems, IEEE
Computer Society Press, pp 110{115, 1992.

[7] S. King and C. Morgan. Exits in the re�nement calculus.
Formal Aspects of Computing, 7:54{76, 1995.

[8] Carroll Morgan. Programming from Speci�cations. Prentice
Hall International Series in Computer Science, 1994.

[9] R. Schl�or and W. Damm. Speci�cation and veri�cation of

system-level hardware designs using timing diagrams, The
European Conference on Design Automation with the Eu-

ropean Event in ASIC Design, pp 518{524, 1993.

[10] J.M. Spivey. Specifying a Real-Time Kernel, IEEE Soft-

ware, 7(5):21{28, September 1990.

[11] J.M. Spivey.The Z Notation: A reference manual, Prentice-
Hall International Series in Computer Science, 2nd edition,
1992.

	CDROM Home Page
	1996 Home Page
	EURO-DAC96 Home Page
	Front Matter
	Table of Contents
	Session Index
	Author Index

