
EURO-DAC ’96 with EURO-VHDL ’96
0-89791-848-7/96 $4.00 1996 IEEE

Automatic Diagnosis may Replace Simulation for Correcting Simple Design
Errors

Ayman M. Wahba Dominique Borrione
Laboratoire TIMA - UJF, BP 53, 38041 Grenoble Cedex 9, France

Abstract

An automated tool for diagnosing simple design errors in
VHDL descriptions is presented. The tool is tested on bench-
mark circuits, and the results show that the error is local-
ized precisely, after the applicationof a small number of spe-
cially generated test patterns. This tool is now integrated
within the PREVAILTM system, and is being tested on in-
dustrial circuits.

1. Introduction
Design fault diagnosis plays an essential role in provid-

ing correct circuits. Although automated synthesis tools are
used to provide correct by construction products, manual
changes are made to achieve some critical design aspects
such as speed and area requirements, or to carry out small
specification changes. Industrial experience shows that a
phase of design correction is always necessary, and many
examples can be cited. For instance, in the EWSD-CCS7E
processor developed by SIEMENS, a total of 320 errors
were discovered during the simulation phase [3].

The place of the diagnosis in the design process is shown
in Figure 1. We assume that a specification is given and val-
idated using simulation and/or formal techniques. After a
synthesis step (whether automatic or manual, or a combi-
nation of both), a description of the implementation is pro-
duced. A suitable verifier is then used to check the correct-
ness of the implementation with respect to the specification.
If an error is detected, counter examples are generated; the
diagnosis and the correction are carried out, and the verifi-
cation is done again. This diagnosis-correction-verification
cycle is repeated until a correct implementation is obtained.

Existing verification tools can discover the existence of
design errors, but provide no information about their na-
ture or how to correct them. In the best case, verifiers issue
counter examples in the form of input patterns that witness a
difference between the behavior of the implementation and
the specification. The task of finding and correcting the error
is then left for the designer who uses the counter examples
to reason about the type and the location of the error. This
manual diagnosis takes a very long time, that can exceed the
design time itself. It is thus necessary to mechanize it.

In this paper we present an automated diagnostic system
for simple design errors, in both combinational and sequen-

Return Correct VHDL
description of IMPL

IMPL
description of
Initial VHDL

VHDL description

of IMPL of SPEC

VHDL description

Verifier

Generate

No

YesEquivalent

Counter-Examples

Changes

Diagnosis

Designer

Figure 1. Diagnosis in the design process.

tial circuits. The system is based on the close cooperation
of three basic modules: a test pattern generator, a simula-
tor and a diagnoser. The pattern generator generates special,
diagnosis-oriented test patterns. The simulator simulates the
implementation and the specification under the application
of these patterns, and gives the simulation result to the diag-
noser which, in turn, uses this result to limit the suspected
area of the circuit. This information is passed to the pat-
tern generator to guide it in generating new patterns, and the
same operation is repeated until the error is found. Figure 2
shows the information flow among these three modules.

The diagnosis system was implemented in PROLOG,
and it accepts circuit descriptions in a special PROLOG for-
mat. To integrate this system with the existing CAD tools, a
translator was built to transform a subset of VHDL into the
required PROLOG format. The translated format keeps in-
formation about the original VHDL descriptions, so that the
diagnostic system can determine exactly the line number of
the VHDL source file where the error exists.

Section 2 introduces the basic definitions and terminol-
ogy used through out the paper. Section 3 describes the con-
cept and the main rules of the diagnostic system. The results
are given in Section 4, and our conclusions are finally pre-
sented in section 5.

2. Definitions and Terminology
Throughout this paper we consider a circuit specification

SPEC, and its implementation IMPL. The specification out-

SPECIMPL

Special Test Patterns

Pattern Generator

DiagnoserError
Candidates

Results Simulator

Figure 2. The overall diagnosis system.

put is denoted W = fw1; w2; :::wmg, and the implemen-
tation output is denoted Y = fy1; y2; :::ymg, where m is
the number of outputs. The implementation is described as
a gate network, while the description style for the specifica-
tion is not restricted. In the following, whenever we refer to
a gate, it is a gate in the implementation (since the specifi-
cation may be described functionally).

Definition 2.1 : Test Patterns.
For a circuit with n inputs, a test pattern is an n-bit vector
over the ternary domain T n, where T = f0; 1; Xg .

T = f0; 1; Xg - The Ternary Domain.
X is an unspecified value, with the semantics that the out-
puts shouln’t depend on it.

Definition 2.2 : The cone of influence of a gate G, COI(G),
is the set of all the gates and primary inputs that lie on any
signal path directed from the primary inputs to G. �

Definition 2.3 : Boundary of a set of gates
A gate G2 is called a successor of a gate G1, (G1 6= G2),
if the output of G1 is connected to at least one input of G2.
The boundary B(R) of a set of gates R, under the applica-
tion of a test pattern, is the subset of gates ofR that have no
successors in R, and whose output value is ’0’ or ’1’. �

Error Model and Basic Assumptions
The error model for our diagnosis algorithms is based

on the study presented in [2] about simple design errors,
and the problems addressed to us by the design engineers at
Thomson-TCS. Two main categories of errors are covered:
gate errors, and connection errors (see Figure 3). Gate er-
rors include missing or extra inverters, the replacement of a
gate by another one of a different type, and extra gate errors.
Connection errors include missing or extra connections at
the input of a gate, the replacement of a connection by an-
other one, and bad connections to ’1’ or ’0’.

The following assumptions are made concerning the im-
plementation to be diagnosed:

1. Only one error, at most, is assumed to occur in the cone
of influence of each primary output.

2. The error is one of the above mentioned ones.
3. The gate types used are AND, NAND, OR, NOR,

XOR, XNOR, BUFfer, and NOT.
4. The error does not introduce loops in the design.

The Principle of Diagnosis by Error Hypothesis
If we consider a circuit of n gates, and assume that one

of m possible errors can occur at any gate, then under the
assumption of a single error the number of possible errors

Connection
Missing

A

B
C

G

G1
A

B

A

B
G2

A

B
C

G

G1

Missing
Inverter

Extra
Inverter

Bad Gate
Type

Extra
Gate

Extra
Connection

Connection
Bad

G
B

A

A
B G
C

A
G

B

A
B G
C

G
B

A

A
G

C

Error Type Wrong Circuit Correct Circuit

C
on

ne
ct

io
n

E
rr

or
s

G
at

e
E

rr
or

s

Figure 3. The design errors model

is m � n. If we consider only one error type at a time, this
number is reduced to n and the analysis is easier.

For this reason we adopted the methodology of diagno-
sis by error hypothesis: an error type is assumed, and the
diagnosis is made. If the error is not found, another type is
chosen, and a (possibly) different diagnosis procedure is ap-
plied, and so on until the error is found. The error hypothe-
ses are selected in this order (decreasing probability of oc-
currence, according to [1]):
� HYP-0: An extra/missing inverter.
� HYP-1: A gate replacement of type 1. (OR $ AND,

NOR $ NAND).
� HYP-2: A gate replacement of type 2. (OR$NAND,

NOR $ AND).
� HYP-3: An extra wire error.
� HYP-4: A missing wire error.
� HYP-5: A bad connection error.
The replacements (AND $ NAND) and (OR $ NOR)

are covered by HYP-0. It was shown in [11] that HYP-
0, HYP-1 and HYP-2 also cover extra gate errors, and the
replacement of XOR/XNOR gates by other gates, if each
XOR/XNOR gate is replaced by an equivalent network of
AND, OR, NOR, NAND and NOT gates.

Definition 2.4 : Suspected and Correct gate sets.
Let P and P’ be test patterns, P witnesses the error, and P’
not necessarily. The suspected-gate set SG(P) contains any
gate G such that Y = W under the application of P , if a
correction is made at G according to the assumed error hy-
pothesis. If under the application of P’, yi = wi for some
i 2 f1; 2; :::mg, then the correct-gate set CG(P’) contains
any gates G such that wi 6= yi if G is changed according to
the assumed error hypothesis. �

Definition 2.5 : CV (G;P) is the current value at the out-
put of a gate G, when the pattern P is applied to the imple-
mentation primary inputs. �

RV (G;P)

Hypothesis Gate CV (G;P)
0
0
0 0

1
0 0

X
0

0
0
0 Not Suspected Not Suspected

OR 0
1
0 9e j v(e) =0

0
0 8e;v(e) 6=0

0
0^ 9e j v(e) =0

X
0

HYP-1 0
0
0 9e j v(e) =0

1
0 8e;v(e) 6=0

1
0^ 9e j v(e) =0

X
0

AND 0
1
0 Not Suspected Not Suspected

0
0
0 Suspected Not Suspected

OR 0
1
0 8e;v(e) =0

1
0 8e;v(e) 6=0

0
0^ 9e j v(e) =0

X
0

HYP-2 0
0
0 8e;v(e) =0

0
0 8e;v(e) 6=0

1
0^ 9e j v(e) =0

X
0

AND 0
1
0 Suspected Not Suspected

0
0
0 Not Suspected Not Suspected

OR 0
1
0 9e j v(e) =0

1
0^ 9e; j j v(e) =0

1
0 ^ v(j) =0

X
0^

8i 6= e; v(i) =
0
0
0 8i =2 fe; jg; v(i) 6=0

1
0

HYP-3 0
0
0 9e j v(e) =0

0
0^ 9e; j j v(e) =0

0
0 ^ v(j) =0

X
0^

AND 8i 6= e; v(i) =0
1
0 8i =2 fe; jg; v(i) 6=0

0
0

0
1
0 Not Suspected Not Suspected

0
0
0 Suspected Suspected

OR 0
1
0 Not Suspected Not Suspected

HYP-4 0
0
0 Not Suspected Not Suspected

AND 0
1
0 Suspected Suspected

0
0
0 Suspected Suspected

OR 0
1
0 9e j v(e) =0

1
0^ 9e j v(e) =0

1
0^

8i 6= e; v(i) =
0
0
0 8i 6= e; v(i) 6=0

1
0

0
0
0 9e j v(e) =0

0
0^ 9e j v(e) =0

0
0^

HYP-5 AND 8i 6= e; v(i) =
0
1
0 8i 6= e; v(i) 6=0

0
0

0
1
0 Suspected Suspected

0
0
0 Suspected Suspected

NOT 0
1
0 Suspected Suspected

Table 1. Rules for determining SG (HYP-1 to HYP-5)

RV (G;P)

Type CV (G;P)
0
0
0 0

1
0 0

X
0

0
0
0 CI = fe j e 2 inputs(G)g CI = �

if 9ejv(e) =0 X0 then

OR 0
1
0 CI = B

�T
v(e)6=0

COI(e)

�
CI = B

�T
v(e)=010

COI(e)

�

else CI = �

if 9ejv(e) =0 X0 then

0
0
0 CI = B

�T
v(e)6=1

COI(e)

�
CI = B

�T
v(e)=000

COI(e)

�

AND else CI = �
0
1
0 CI = fe j e 2 inputs(G)g CI = �

NOT 0
0
0

CI = fe j e 2 inputs(G)g CI = �
0
1
0

CI = fe j e 2 inputs(G)g CI = �

Table 2. Rules for determining changeable inputs

Definition 2.6 : Required value at a gate output
Let Ym(G; V; P) denote the value obtained at the output of
the implementation, under the application of an input pattern
P , if the current value at the output of a gateG, CV (G;P),
is replaced by another value V .
The required value at the output of a gate G, RV (G;P),
under the application of an error detecting pattern P , is the
value which satisfies Ym(G;RV (G;P); P) = W (P). �

Definition 2.7 : A changeable input of a gate, under the ap-
plication of an input patternP , is an input which, if its value
is complemented, forces the output ofG to take the required
value RV (G;P). �

Definition 2.8 : A fixed input of a gate, under the applica-
tion of an input pattern P , is an input which, if its value is
complemented, forces the output of G to take a new value
V , V 6= CV (G;P). �

3. Diagnosis by Backward-Propagation
Diagnosis by backward-propagation is based on simulat-

ing the specification and the implementation under the appli-
cation of ternary test patterns. Depending on the simulation

result, each test pattern is classified as an Error-Detecting
pattern, EDP, or a Non-Detecting Pattern, NDP, and the im-
plementation is then analyzed to extract the Suspected-Gate
sets and Correct-Gate sets. A basic principle is that the test
patterns used in our method always produce a definite value
(000 or 010) at the implementation outputs.

If under the application of a pattern P , the error is de-
tected at one output yi, then two possibilities may arise: ei-
ther wi(P) = yi(P), or wi(P) = 0X0.
First case: wi(P) = yi(P)

The diagnosis starts at the gate G whose output is yi. If
the correction at G according to the assumed error hypoth-
esis makes yi(P) = wi(P) then G is put in the suspected
gate set SG(P). But the value ofwi(P) may also be obtained
by making no correction at G and complementing the value
of one of its inputs e (e is a changeable input). If this is
possible, the diagnosis algorithm investigates also the gate
from which e originates, and checks whether the correction
at this gate results in complementing the value of e, and con-
sequently makes yi(P) = wi(P). The operation is repeated
recursively until the primary inputs are reached.

Second case: wi(P) = ’X’
The same procedure is applied but the investigation

begins at the inputs of the gates that inhibit the propagation
of the value ’X’, (i.e. those gates that have ’X’ at their
inputs but not at their outputs). This greatly reduces the
search area.

Rules that determine if a gate is suspected
These rules are defined for any gateG of the implemen-

tation under the application of a test pattern P , and for each
error hypothesis.
Hypothesis HYP-0: If for a gate G in the implementation,
CV (G;P) = RV (G;P), then G is suspected, and an in-
verter may be placed at its output to correct the implementa-
tion. Fictitiousgates of type buffer are created at the primary
inputs to include the case of a missing inverter at some input.
Hypotheses HYP-1 to HYP-5: The rules for determining
whether a gate G is suspected or not, under these error hy-
potheses, are listed in Table 1. The entries of this table rep-
resent the conditions on the inputs of G under which G is
considered a suspected gate. In this table e, i, j represent
any inputs of the gate G, and v(e), v(i), v(j) are their cur-
rent values. The entries marked Not Suspected mean that the
gate G is not suspected, and the entries marked Suspected
mean that the gate G is suspected with no conditions on the
values of its inputs.

For instance, the second line of the table reads as follows.
Column 4: if the current value of an OR gateG is ’1’, and the
required value is ’0’, thenG is suspected according to HYP-
1 if at least one of its inputs has the value ’0’. Column 6:
if the current value of an OR gate G is ’1’, and the required
value is ’X’, thenG is suspected according to HYP-1 if none
of its inputs is ’0’, and at least one input is ’X’.

In tables 1 to 4, we only give the rules for OR and AND
gates, plus NOT when applicable. Rules for NAND and
OR gates (resp. for NOR and AND) are the same, if you
interchange the occurences of ’0’ and ’1’ in the rules.

Rules that determine the changeable inputs of a gate
The required value at the output of one gate may be ob-

tained by complementing the value of one of its inputs.
However, only certain inputs, called changeable inputs, (see
definition 2.7), can achieve this goal. The rules for deter-
mining the set of changeable inputs (CI set) of a gate G un-
der the application of a test pattern P are shown in Table 2.
These rules are valid under all error hypotheses, since the
CI sets depend only on the current value of the gate inputs,
the value of the gate output, and the gate type. In this table
e represents any input of the gate G, v(e) its current value,
COI(e) the cone of influence of the gate from which e orig-
inates, and � denotes the empty set.

If the error is not detected on some output yi under the ap-
plication of a pattern P , then yi(P) must not be changed af-
ter the correction of the circuit. The circuit is scanned from
this correct output backward to the primary inputs, but in this
case we extract a set of correct gatesCG(P). The rules used
to get CG(P) vary according to the error hypothesis:

Gate Output
Hypothesis Type 0

0
0 0

1
0

OR Not Correct 9e j v(e) 6=0
1
0

HYP-1 AND 9e j v(e) 6=0
0
0 Not Correct

OR Correct 8e;v(e) =0
1
0

HYP-2 AND 8e; v(e) =0
0
0 Correct

Table 3. Rules for getting CG (HYP-1, HYP-2)

HYP-0: Any inverter under investigation belongs to CG, if
its output value is 000 or 010.
HYP-1 and HYP-2: Table 3 contains the necessary con-
ditions on the inputs of a gate G, for G to be correct. In
this table, the entries marked Not Correct mean that the gate
G cannot be put in the correct-gate set CG(P). The entries
marked Correct mean that G is a correct gate without con-
ditions on its inputs.
HYP-3, HYP-4 and HYP-5: Here we can’t determine cor-
rect gate sets due to the nature of the connection errors.

When a gate is found to be correct, its inputs are also in-
vestigated to extract the fixed inputs (see definition 2.8). The
rules used to determine the fixed-inputs set, FI, of a gate G
under the application of a test patternP are listed in Table 4.
In this table, e and i are any inputs of the gate G, and v(e)
and v(i) are their current values.

In the case of connection errors, it is not sufficient to de-
termine the suspected gate, but also which connection is the
erroneous one. For extra-connection errors, the extra in-
put of the gate must be specified. For missing connection
errors, the node from which the missing connection orig-
inates must be determined, and for bad-connection errors,
the bad and the good connections must be specified. The al-
gorithms for determining the erroneous connections may be
found in [13], as there is no place to detail them here.

3.1. The Diagnosis Algorithm

Given a test pattern TP and assuming a certain error hy-
pothesis HYP, the algorithm scans the circuit from the pri-
mary outputs backward to the primary inputs. This is made
by the recursive function scan-circuit described below. Be-
fore calling the algorithm for the first time, the suspected
gate set SG contains all the circuit gates, and then it is re-
duced with the repeated application of the algorithm with
different test patterns. The operation stops if the size of SG
is reduced to zero, which means that the HYP is a wrong hy-
pothesis and another one must be tried, or when no more test
patterns are supplied by the test pattern generator.

algorithm diagnose-circuit(TP, HYP);
begin

apply TP to the inputs of the implementation IMPL;
simulate IMPL;
for every gateGy

i
driving a primary output yi 6= X do

New SG = �;
CG = �;
if yi 6= wi then Pat-Type := EDP else Pat-Type := NDP;
scan-circuit(Pat-Type,Gy

i
,HYP);

if Pat-Type = EDP then
SG = New SG;

else
SG = SG - CG;

endif;
endfor;

end.

Gate Output
Type 0

0
0 0

1
0

if 9e j v(e) =0
1

0^
OR FI = fe j e 2 inputs(G)g 8i 6= e; v(i) 6=0

1
0

then FI = feg, else FI = �

if 9e j v(e) =0
0
0^

AND 8i 6= e; v(i) 6=0
0
0 FI = fe j e 2 inputs(G)g

then FI = feg, else FI = �

NOT FI = fe j e 2 inputs(G)g FI = fe j e 2 inputs(G)g

Table 4. Rules for determining FI

procedure scan-circuit(Pat-Type,G,HYP);
begin

if G is a primary input then
exit;

endif;
if Pat-Type = EDP then

if (G 2 SG) ^ (G is suspected) then
New SG = New SG [fGg;

endif;
for every input i 2 Changeable-Inputs(G) do

scan-circuit(Pat-Type,i,HYP);
endfor;

else
if (G 2 SG) ^ (G is correct)^ HYP = HYP-0, HYP-1 or HYP-2 then

CG = CG [fGg;
endif;
for every input i 2 Fixed-Inputs(G) do

scan-circuit(Pat-Type,i,HYP);
endfor;

endif;
end.

3.2. Test Pattern Generation

The diagnosis algorithmpresented in the previous section
can analyze the circuit under the application of any test pat-
tern. However, to accelerate the diagnosis process, it is bet-
ter to use test patterns specially generated for the diagnosis.
The method is as follows: a gate G is selected from the sus-
pected gate set, and two patterns are generated for it. One
pattern can detect the error ifGwas the erroneous one, while
the other one does not activate the error and thus does not de-
tect it, ifGwas the erroneous one. It was proven in [11] that
this method allows to reduce very rapidly the suspected gate
set. In favorable cases, the error can be exactly located after
the application of only one pair of these patterns.

The complete diagnosis algorithm is thus given below:

algorithm diagnose(Error Hypothesis);
begin

SG = All the circuit gates;
Tested �;
while (j SG j> 1) and (SG 6� Tested) do

Let G be a gate in SG andG =2 Tested
Tested Tested [fGg;
TP1 = Pattern that detects the error if G is erroneous.
TP2 = Pattern that does not detect the error if G is erroneous.
diagnose-circuit(TP1,Error Hypothesis);
diagnose-circuit(TP2,Error Hypothesis);

enddo
write(Error Hypothesis, SG);

end

3.3. Diagnosis of Sequential Circuits

We extended this diagnosis algorithm to synchronous se-
quential circuits under HYP-0, HYP-1 and HYP-2. The im-
plementation and the specification may have different num-
ber of states and state encoding. The specification is re-
garded as a black box on which only the primary inputs and
the primary outputs are observable, and which can be initial-

ized in an initial state corresponding to the initial state of the
implementation.

We introduced the new concept of Possible Next States.
They are the set of states reachable from a given initial state,
or a given set of initial states, due to the existence of several
possible locations of the error. The implementation is repre-
sented by its iterative logic array model [5], and simulated in
each time frame separately. It is then diagnosed by applying
combinational diagnosis rules, where the present-state lines
are treated as primary inputs, and the next-state lines as pri-
mary outputs. Before proceeding to the next time frame, the
set of possible next states is computed, and then the analysis
is done in the next time frame under each one of these pos-
sible next states. This operation is repeated until the error is
found. The method is fully described in [12].

4. Results
A prototype diagnosis system implements the above al-

gorithms in PROLOG, including the test pattern generator
and the logic simulator. The software was applied to circuits
taken from the ISCAS’85 and ISCAS’89 benchmarks [7, 6].

The results obtained on a SPARC-10 workstation with
10 Megabytes of memory are shown in Table 5 for combi-
national circuits , and Table 6 for sequential circuits. The
columns titled “No. of Exp.” give, for each circuit, the
number of diagnosis experiments made. Each experiment
is made on a randomly inserted error of a random type
according to the six error hypotheses HYP-(0-5). The
columns titled ”Pat. Used” gives the average number of test
vectors applied before the diagnosis report is generated.
The average CPU time is given in seconds. This time
includes pattern generation, simulation and diagnosis times.
The average number of suspected gates returned as result is
given in the columns titled ”Cand.”

Result Analysis:
In 100% of the experiments, the actual error was among

the final suspected gates. The error is always found with a
fine diagnostic resolution: in almost all of the cases only one
error candidate is proposed. In the case of combinational
circuits the number of test patterns applied before finding
the error is small compared with other methods [8, 10, 14],
thanks to the mixed use of error detecting and non-detecting
patterns [11]. The execution time grows almost linearlywith
the product of the number of gates and the applied test pat-
terns. The number of applied test patterns, before a diagnos-
tic report is made, depends highly on the topology of the cir-
cuit under test: for the circuits with large number of inputs
and outputs (c2670, c5315, and c7552), the average num-
ber of applied test patterns is relatively small with respect to
other circuits. This is due to the fact that if the error shows
on a large number of outputs, then the erroneous gate must
reside within the common cone of influence of all these out-
puts, which reduces the search area of the circuit.

Some sequential circuits require a large number of test
vectors because they are difficult to control, and a long
sequence of vectors is needed to witnesses the error (e.g.

Name Number of No. of Average of
In Out Gates Exp. Pat. used CPU time Cand.

c17 5 2 6 35 4.09 0.14 1.00
c432 36 7 160 686 18.11 58.62 1.16
c499 41 32 202 929 18.70 101.69 1.36
c1355 41 32 546 2728 28.08 411.97 1.16
c1908 33 25 880 2556 22.67 602.92 1.19
c2670 233 140 1193 1785 15.29 461.17 1.03
c3540 50 22 1669 1255 26.48 2187.08 1.17
c5315 178 123 2307 931 17.17 1681.16 1.15
c6288 32 32 2416 698 22.01 2102.75 1.65
c7552 207 108 3512 177 14.36 2993.50 1.02

Table 5. Results for ISCAS’85 benchmarks

s208, s382, s838, and s1423). Many factors may affect the
length of the test sequences, such as the number of loops per
flip/flop and the number of state controlling inputs [9].

The CPU times mentioned here are based on our experi-
mental implementation of the algorithms. We didn’t devote
a large effort to program optimization, as our main interest
was to show the applicability of our approach. We believe
that these time performances can be significantly improved
by rewriting the software using faster languages like C.

Name Number of No. of Average of
In Out Gates f/f Exp. Pat. CPU time Cand.

s27 4 1 10 3 14 2.43 0.61 1.64
s208 11 1 96 8 114 132.79 251.05 3.44
s298 3 6 119 14 126 17.62 59.89 2.09
s344 9 11 160 15 174 6.55 64.88 1.16
s349 9 11 150 15 177 6.53 69.55 1.26
s382 3 6 158 21 104 125.21 1298.99 2.37
s386 7 7 159 6 222 18.10 49.18 3.26
s400 3 6 148 21 90 69.59 1009.89 2.22
s420 19 1 196 16 95 79.18 775.13 4.02
s510 19 7 211 6 209 18.07 127.75 2.32
s641 35 24 379 19 174 4.07 306.79 1.06
s820 18 19 289 5 111 8.41 199.52 2.31
s838 35 1 390 32 10 129.70 8427.23 3.60
s953 16 23 395 29 61 20.61 1360.41 3.95
s1196 14 14 529 18 378 2.69 167.37 1.91
s1423 17 5 657 74 10 211.00 14245.10 3.60
s5378 35 49 2779 179 10 20.30 14445.42 6.30

Table 6. Results for ISCAS’89 benchmarks

5. Conclusion

In this paper an original automatic diagnosis tool is pre-
sented. This tool finds precisely the type and location of
simple design errors in VHDL descriptions of combina-
tional and sequential circuits. The specification may be
given at any level of abstraction, and the implementation is
given at the RTL level. This means that in the case of se-
quential circuits, the implementation and the specification
may have different number of states and state encodings.

We are now working on several extensions: first, we
try to include other error hypotheses, in particular complex
component replacements instead of the simple gate types
considered here. A longer term research concerns multiple
errors, for which no satisfactory method exists currently.

Finally, we believe that automatic diagnosis is an essen-
tial element in any CAD environment. Our prototype diag-
nosis system is now integrated within the PREVAILTM en-
vironment [4], and has been used successfully to find errors
in industrial circuits supplied by Thomson-TCS.

6. Acknowledgments

This work is partially supported by the EUREKA
”JESSI-AC3” project, and the ESPRIT Basic Research
Action CHARME Working Group #6018.

References
[1] E. J. Aas, K. A. Klingsheim, and T. Steen. Quantifying de-

sign quality: A model and design experiments. In Proc.
EURO-ASIC’92, pages 172–177. IEEE Computer Society
Press, 1992.

[2] M. S. Abadir, J. Ferguson, and T. E. Kirkland. Logic de-
sign verification via test generation. IEEE Trans on CAD,
7(1):138–148, Jan. 1988.

[3] T. W. Albrecht. Concurrent design methodology and config-
uration management of the SIEMENS EWSD-CCS7E pro-
cessor system simulation. In Proc. DAC’95, pages 222–227,
1995.

[4] D. Borrione, L. Pierre, and A. Salem. Formal verification of
vhdl descriptions in the PREVAIL environment. IEEE De-
sign & Test of Computers, 9(2):42–56, June 1992.

[5] M. A. Breuer and A. D. Friedman. Diagnosis and Reliable
Design of Digital Systems. Computer Science Press, New
York, 1976.

[6] F. Brglez, D. Bryan, and K. Kozminski. Combinational pro-
files of sequential benchmark circuits. In Proc. IEEE Int.
Symp. Circuits and Systems, Portland, OR, May 1989.

[7] F. Brglez and H. Fujiwara. A neutral netlist of 10 combinato-
rial benchmark circuits and a target translator in FORTRAN.
In Proc. IEEE Int. Symp. Circuits and Systems, pages 663–
698, June 1985.

[8] A. Kuehlmann, D. I. Cheng, A. Srinivasan, and D. P.
LaPotin. Error diagnosis for transistor-level verification. In
Proc. DAC’94, pages 218–224, 1994.

[9] A. Lioy, P. L. Montessoro, and S. Gai. A complexity analysis
of sequential ATPG. In Proc. IEEE Int. Symp. Circuits and
Systems, pages 1946–1949, May 1989.

[10] M. Tomita, T. Yamamoto, F. Sumikawa, and K. Hirano. Rec-
tification of multiple logic design errors in multiple output
circuits. In Proc. DAC’94, pages 212–217, 1994.

[11] A. Wahba and D. Borrione. Design error diagnosis in logic
circuits using diagnosis-oriented test patterns. Research Re-
port RR-940-I, ARTEMIS-IMAG, Grenoble, France, June
1994.

[12] A. Wahba and D. Borrione. Design error diagnosis in sequen-
tial circuits. In Proc. Correct Hardware Design and Verifi-
cation Methods, CHARME’95, number 987 in Lecture Notes
in Computer Science, pages 171–188. Springer Verlag, Oc-
tober 1995.

[13] A. Wahba and D. Borrione. Connection errors location and
correction in combinational circuits. Research Report 96.1.I,
TIMA-INPG, Grenoble, France, Feb 1996.

[14] Q. Zhang. Logic Verification and Design ErrorDiagnosis for
Combinational Circuits. Ph.D. thesis, Université Catholique
de Louvain, Belgium, Feb. 1995.

	CDROM Home Page
	1996 Home Page
	EURO-DAC96 Home Page
	Front Matter
	Table of Contents
	Session Index
	Author Index

