Automatic Diagnosis may Replace Simulation for Correcting Simple Design
Errors

Ayman M. Wahba

Dominique Borrione

Laboratoire TIMA - UJF, BP 53, 38041 Grenoble Cedex 9, France

Abstract

An automatedtool for diagnosingsimpledesign errorsin
VHDL descriptionsispresented. Thetool istested on bench-
mark circuits, and the results show that the error is local-
ized precisely, after theapplicationof a small number of spe-
cially generated test patterns. This tool is now integrated
within the PREVAILTM system, and is being tested on in-
dustrial circuits.

1. Introduction

Design fault diagnosis plays an essential role in provid-
ing correct circuits. Although automated synthesistoolsare
used to provide correct by construction products, manual
changes are made to achieve some critical design aspects
such as speed and area requirements, or to carry out small
specification changes. Industrial experience shows that a
phase of design correction is aways necessary, and many
examples can be cited. For instance, in the EWSD-CCS7E
processor developed by SIEMENS, a total of 320 errors
were discovered during the simulation phase[3].

The place of thediagnosisin the design processis shown
inFigure 1. We assume that aspecificationis given and val-
idated using ssimulation and/or forma techniques. After a
synthesis step (whether automatic or manual, or a combi-
nation of both), a description of the implementationis pro-
duced. A suitable verifier isthen used to check the correct-
ness of the implementation with respect to the specification.
If an error is detected, counter examples are generated; the
diagnosis and the correction are carried out, and the verifi-
cation is done again. This diagnosis-correction-verification
cycleisrepeated until acorrect implementation is obtained.

Existing verification tools can discover the existence of
design errors, but provide no information about their na-
ture or how to correct them. In the best case, verifiersissue
counter examplesintheform of input patternsthat witnessa
difference between the behavior of the implementation and
the specification. Thetask of findingand correcting theerror
isthen |eft for the designer who uses the counter examples
to reason about the type and the location of the error. This
manua diagnosistakesavery long time, that can exceed the
design timeitsdlf. It isthus necessary to mechanize it.

In this paper we present an automated diagnostic system
for simple design errors, in both combinational and sequen-

EURO-DAC ' 96 with EURO-VHDL '96
0-89791-848-7/96 $4.00 [J 1996 IEEE

Initial VHDL
description of
IMPL

VHDL description| |VHDL description
of IMPL of SPEC

Verifier

e

No

Generate
Counter-Examples

Return Correct VHDL
description of IMPL

Figure 1. Diagnosis in the design process.

tia circuits. The system is based on the close cooperation
of three basic modules: atest pattern generator, a smula
tor and adiagnoser. The pattern generator generates special,
diagnosis-orientedtest patterns. The simulator s mulatesthe
implementation and the specification under the application
of these patterns, and gives the simulation result to the diag-
noser which, in turn, uses this result to limit the suspected
area of the circuit. This information is passed to the pat-
tern generator to guideit in generating new patterns, and the
same operation isrepeated until the error isfound. Figure 2
shows the information flow among these three modul es.

The diagnosis system was implemented in PROLOG,
and it acceptscircuit descriptionsin aspecial PROLOG for-
mat. To integratethissystem withtheexisting CAD tools, a
trandator was built to transform a subset of VHDL into the
required PROLOG format. The translated format keepsin-
formation about the original VHDL descriptions, so that the
diagnostic system can determine exactly the line number of
the VHDL sourcefile where the error exists.

Section 2 introduces the basic definitions and terminol-
ogy used through out the paper. Section 3 describesthe con-
cept and the main rules of the diagnostic system. Theresults
are given in Section 4, and our conclusions are findly pre-
sented in section 5.

2. Definitionsand Ter minology

Throughout this paper we consider acircuit specification
SPEC, and itsimplementation IMPL. The specification out-

IMPL

Pattern Generator

Error - Results[o
m{ Diagnoser }%{ Simulator

Special Test Patterns

Figure 2. The overall diagnosis system.

put isdenoted W = {w;, ws, ...w,, }, and the implemen-
tation output isdenoted Y = {y1,ys, ...ym }, Where m is
the number of outputs. The implementation is described as
agate network, whilethe description style for the specifica
tionisnot restricted. In the following, whenever werefer to
agate, it is agate in the implementation (since the specifi-
cation may be described functionally).

Definition 2.1 : Test Patterns.
For acircuit with n inputs, atest pattern is an n-bit vector
over theternary domain 77, where 7 = {0, 1, X'} .

7 ={0,1, X} - The Ternary Domain.
X isan unspecified value, with the semantics that the out-
puts shouln’t depend onit.

Definition 2.2 : The cone of influence of agate G, COI(G),
isthe set of all the gates and primary inputsthat lie on any
signal path directed from the primary inputsto G. o

Definition 2.3 : Boundary of aset of gates

A gate G iscdled a successor of agate Gy, (G # G2),
if the output of &, isconnected to at least one input of (5.
The boundary B(R) of aset of gates R, under the applica-
tion of atest pattern, isthe subset of gates of R that have no
successorsin R, and whose output valueis’0' or'1'. o

Error Model and Basic Assumptions

The error modd for our diagnosis agorithms is based
on the study presented in [2] about simple design errors,
and the problems addressed to us by the design engineers at
Thomson-TCS. Two main categories of errors are covered:
gate errors, and connection errors (see Figure 3). Gate er-
rorsinclude missing or extrainverters, the replacement of a
gate by another one of adifferent type, and extragate errors.
Connection errors include missing or extra connections at
the input of a gate, the replacement of a connection by an-
other one, and bad connectionsto’1’ or'0'.

The following assumptions are made concerning the im-
plementation to be diagnosed:

1. Only oneerror, at most, isassumed to occur inthe cone
of influence of each primary output.
2. Theerror isone of the above mentioned ones.
3. The gate types used are AND, NAND, OR, NOR,
XOR, XNOR, BUFfer, and NOT.
4. The error does not introduce | oopsin thedesign.
ThePrinciple of Diagnosisby Error Hypothesis
If we consider acircuit of n gates, and assume that one
of m possible errors can occur at any gate, then under the
assumption of a single error the number of possible errors

Error Type Wrong Circuit Correct Circuit
Missing
Inverter
Extra > -
n Inverter
5
o [Type B B
<
© A
Extra A
B B— ¢ —
Gate B e
Missing A A
o | Connection B ° 2 °
s}
2
=
w
s Extra A] A —
= . B— G |— G f—
8 Connection | ¢ B —
c
c
o
O
Connection | B c

Figure 3. The design errors model

ism x n. If we consider only one error type at atime, this
number isreduced to n and the analysisis easier.

For this reason we adopted the methodol ogy of diagno-
sis by error hypothesis. an error typeis assumed, and the
diagnosisis made. If the error is not found, another typeis
chosen, and a (possibly) different diagnosis procedureis ap-
plied, and so on until the error isfound. The error hypothe-
ses are selected in this order (decreasing probability of oc-
currence, according to [1]):

e HYP-0: An extramissing inverter.
e HYP-1: A gatereplacement of type 1. (OR < AND,

NOR < NAND).
o HYP-2: A gatereplacement of type2. (OR < NAND,

NOR < AND).

e HYP-3: Anextrawire efror.

e HYP-4: A missing wireerror.

e HYP-5: A bad connection error.

The replacements (AND < NAND) and (OR + NOR)
are covered by HYP-0. It was shown in [11] that HYP-
0, HYP-1 and HYP-2 aso cover extra gate errors, and the
replacement of XOR/XNOR gates by other gates, if each
XOR/XNOR gate is replaced by an equivalent network of
AND, OR, NOR, NAND and NOT gates.

Definition 2.4 : Suspected and Correct gate sets.

Let P and P’ be test patterns, P witnesses the error, and P’
not necessarily. The suspected-gate set SG(P) contains any
gate G such that Y = ¥ under the application of P, if a
correction is made a ' according to the assumed error hy-
pothesis. If under the application of P, y; = w; for some
i € {1,2,...m}, then the correct-gate set CG(P’) contains
any gates (G such that w; # y; if G ischanged according to
the assumed error hypothesis. ¢

Definition 2.5 : C'V (G, P) isthe current value at the out-
put of agate GG, when the pattern P isapplied to theimple-
mentation primary inputs. ¢

RV(G,P) |

|
[Hypothesis | Gate | CV (G, P) | 07

Ill | IXI |
707 Not Suspected Not Suspected
OR 17 Je[v(e) =" 0 Ve,v(e) Z 0AJefuv(e) =" X’
HYP-1 07 JeJu(e)="1" Ve,v(e) Z ' 1"AJeJu(e) =" X7
AND 17 Not Suspected Not Suspected
07 Suspected Not Suspected
OR 17 Ve,v(e) =" 17 Ve,v(e) Z 0'AJeJu(e) =" X7
HYP-2 07 Ve v(e) =" 0 Ve v(e) Z 1'AJeJv(e) =" X'
AND 17 Suspected Not Suspected
707 Not Suspected Not Suspected
OR 1’ Je[v(e) ="1'A Je,jJv(e) ="1"Av(j) =" XA
Vi e v(i) = 0 Vi'g e j}ou(i) £ 1
HYP-3 o’ Je[wv(e) =" 0'A Je,jJv(e) =" 0"Av(y) =" XA
AND ViZewv(i)=' 1| Vig e j}v(i) 2 0
17 Not Suspected Not Suspected
707 Suspected Suspected
OR 17 Not Suspected Not Suspected
HYP-4 07 Not Suspected Not Suspected
AND 17 Suspected Suspected
707 Suspected Suspected
OR 17 Je[v(e) =" 1'A Je[v(e) =" 1'A
ViZev(i)='0 Vi#ev(i) £ 1
o7 Je[wv(e) =" 0'A Je[v(e) =" 0'A
HYP-5 | AND Vigew(i)='1 | Vigev() £ 0
17 Suspected Suspected
07 Suspected Suspected
NOT 17 Suspected Suspected
Table 1. Rules for determining SG (HYP-1 to HYP-5)
| RV (G, P) |
[Type [CV(G, P) | 70’ [17 [X7 |
0’ CI ={e]e€inputs(G)} Cl=¢
if JeJu(e) =" X" then
tqt —
OR 1 Cl=B (ﬂvM#D COI(e)) CI =B (ﬂv(e):w COI(e))
dseCl = ¢
if Je[v(e) =" X7 then
tnt - —
0 Cl=B (ﬂv(e)¢1 COI(e)) CI =B ﬂv(e):,u, COI(e))
AND dseCT = ¢
17 CT ={efe € inputs(G)} Cl=¢
[CI={e[e€inputs(G)} [CI=2¢ |

NOT | 0’ [
[CI={ele € inputs(G)} |

[CT=% |

Table 2. Rules for determining changeable inputs

Definition 2.6 : Required value at agate output

Let Y,,, (G, V, P) denote the value obtained at the output of
theimplementation, under the application of aninput pattern
P, if thecurrent value at the output of agate &, C'V (G, P),
isreplaced by another value V.

The required value at the output of a gate G, RV (G, P),
under the application of an error detecting pattern P, isthe
valuewhich satisfies Y, (G, RV (G, P), P) = W(P). ¢
Definition 2.7 : A changeableinput of agate, under the ap-
plication of aninput pattern P, isan input which, if itsvalue
iscomplemented, forcesthe output of to take therequired
value RV (G, P). o

Definition 2.8 : A fixed input of a gate, under the applica
tion of an input pattern P, is an input which, if itsvalueis
complemented, forces the output of G to take a new value
V.V£CV(G, P).o

3. Diagnosis by Backwar d-Propagation
Diagnosisby backward-propagation isbased on simul at-

ing the specification and theimplementati on under the appli-

cation of ternary test patterns. Depending on the simulation

result, each test pattern is classified as an Error-Detecting
pattern, EDP, or aNon-Detecting Pattern, NDP, and theim-
plementation isthen anayzed to extract the Suspected-Gate
sets and Correct-Gate sets. A basic principleisthat the test
patterns used in our method always produce a definitevalue
(0" or’1") at theimplementation outputs.

If under the application of a pattern P, the error is de-
tected at one output y;, then two possibilitiesmay arise: e-
ther w; (P) =5,;(P),or w;(P) ="X".

First case: w;(P) =7,(P)

The diagnosis starts at the gate G whose output isy;. If
the correction at G according to the assumed error hypoth-
esis makes y; (P) = w;(P) then G is put in the suspected
gate set SG(P). But thevalue of w;(P) may also be obtained
by making no correction at G and complementing the value
of one of itsinputs e (e is a changeable input). If thisis
possible, the diagnosis agorithm investigates a so the gate
from which e originates, and checks whether the correction
at thisgateresultsin complementing thevalue of ¢, and con-
sequently makes y; (P) = w;(P). The operation is repeated
recursively until the primary inputs are reached.

Second case! w; (P) ='X’

The same procedure is applied but the investigation
begins at the inputs of the gates that inhibit the propagation
of the value 'X’, (i.e. those gates that have 'X’ at their
inputs but not at their outputs). This greatly reduces the
search area.

Rulesthat determine if a gateis suspected

These rules are defined for any gate G of the implemen-

tation under the application of atest pattern P, and for each
error hypothesis.
HypothesisHYP-0: If for agate G in theimplementation,
CV(G,P) = RV(G, P), then (G is suspected, and an in-
verter may be placed at itsoutput to correct theimplementa
tion. Fictitiousgates of typebuffer are created at the primary
inputstoincludethecase of amissinginverter at someinput.
Hypotheses HYP-1 to HYP-5: The rulesfor determining
whether a gate GG is suspected or not, under these error hy-
potheses, are listed in Table 1. The entries of thistable rep-
resent the conditions on the inputs of G under which G is
considered a suspected gate. Inthistablee, 7, j represent
any inputs of the gate 7, and v(e), v(i), v(j) are their cur-
rent values. The entriesmarked Not Suspected mean that the
gate GG is not suspected, and the entries marked Suspected
mean that the gate G is suspected with no conditionson the
values of itsinputs.

For instance, the second line of thetablereads asfollows.
Column4: if thecurrent valueof an ORgate Gis’1’, and the
requiredvalueis’0', then G issuspected accordingtoHY P-
1if a least one of its inputs has the value'0’. Column 6:
if the current value of an OR gate G is’1’, and the required
valueis’ X', then GG issuspected accordingto HY P-1if none
of itsinputsis’0’, and at least oneinputis’X’.

Intables1to 4, weonly givetherulesfor OR and AND
gates, plus NOT when applicable. Rules for NAND and
OR gates (resp. for NOR and AND) are the same, if you
interchange the occurences of 'O’ and’'1’ intherules.

Rulesthat determine the changeable inputs of a gate

The required value at the output of one gate may be ob-
tained by complementing the value of one of its inputs.
However, only certaininputs, called changeableinputs, (see
definition 2.7), can achieve thisgoal. The rules for deter-
mining the set of changeable inputs (Cl set) of agate G un-
der the application of atest pattern P are shown in Table 2.
These rules are valid under al error hypotheses, since the
Cl sets depend only on the current value of the gate inputs,
the value of the gate output, and the gate type. In thistable
e represents any input of the gate (7, v(e) itscurrent value,
COl(e) the cone of influence of the gate from which e orig-
inates, and ¢ denotesthe empty set.

If theerror isnot detected on some output y; under theap-
plication of apattern P, theny; () must not be changed af-
ter the correction of the circuit. The circuit is scanned from
thiscorrect output backward tothe primary inputs, butinthis
caseweextract aset of correct gatesC'G/(P). Therulesused
to get C'G(P) vary according to the error hypothesis:

[Gate Output |
Hypothesis | Type | 07 [17 |

OR | NotCorrect | Je[uw(e) Z 17 |

HYP1 [AND | 3e]u(e) 2 0 | NotComedt |
[OR] Correct [Ve,u(e) =17]

HYP2 [AND | Ve,u(e) = 0 | _ Comect]

Table 3. Rules for getting CG (HYP-1, HYP-2)

HYP-0: Any inverter under investigation belongsto CG, if
itsoutput valueis’0’ or '1’.

HYP-1 and HYP-2: Table 3 contains the necessary con-
ditions on the inputs of a gate G, for & to be correct. In
thistable, the entries marked Not Correct mean that the gate
G cannot be put in the correct-gate set CG(P). The entries
marked Correct mean that GG is a correct gate without con-
ditionson itsinputs.

HYP-3, HYP-4 and HYP-5: Here we can’t determine cor-
rect gate sets due to the nature of the connection errors.

When a gate is found to be correct, itsinputsare d'so in-
vestigated to extract thefixed inputs(see definition 2.8). The
rules used to determine the fixed-inputs set, Fl, of agate G
under the application of atest pattern P arelistedin Table 4.
Inthistable, e and ¢ are any inputs of the gate (7, and v(e)
and v(¢) aretheir current values.

In the case of connection errors, it is not sufficient to de-
termine the suspected gate, but also which connectionisthe
erroneous one. For extra-connection errors, the extra in-
put of the gate must be specified. For missing connection
errors, the node from which the missing connection orig-
inates must be determined, and for bad-connection errors,
the bad and the good connections must be specified. Thea-
gorithmsfor determining the erroneous connections may be
found in [13], asthereisno place to detail them here.

3.1. The Diagnosis Algorithm

Given atest pattern TP and assuming a certain error hy-
pothesis HYP, the algorithm scans the circuit from the pri-
mary outputs backward to the primary inputs. Thisis made
by the recursive function scan-circuit described below. Be-
fore caling the agorithm for the first time, the suspected
gate set SG contains al the circuit gates, and then it isre-
duced with the repeated application of the agorithm with
different test patterns. The operation stopsif thesize of SG
isreduced to zero, which means that the HYP isawrong hy-
pothesisand another one must betried, or when no more test
patterns are supplied by the test pattern generator.

algorithm diagnose-circuit(TP, HYP);
begin
apply TP to the inputs of the implementation|MPL;
simulate IMPL;
for every gate G, drivingaprimary outputy; # X do
New SG = ¢;
CG=¢;
if y; # w; then Pat-Type:= EDP else Pat-Type := NDP;
scan-circuit(Pat-Type, G, ,HYP);
if Pat-Type=EDP then
SG = New SG;
else
SG=SG- CG;
endif;
endfor;
end.

Gate Output

Type 07 | 7

ifJeJule) =" 1A
Vi # e, v(1) £ 1

OR | FI ={e|e €inputs(G)}

ifJeJv(e) =" 0'A
AND | Vi # e, v(i) 2" 0
then FI = {e},else F'I = ¢

FI =A{e|e €inputs(G)}

NOT | FI={e|e € inputs(G)} | FI={e]|e € inputs(G)}

Table 4. Rules for determining FI

procedure scan-circuit(Pat-Type, G, HYP);
begin
if G isaprimary input then
exit;
endif;
if Pat-Type= EDPthen
if (G € SG) A (G issuspected) then
New SG=New SGU {G};
endif;
for every inputi € Changeable-Inputs(G)do
scan-circuit(Pat-Type,:, HYP);
endfor;
else
if (G € SG) A (G iscorrect) A HYP = HYP-0, HYP-1 or HYP-2 then
CG=CGU {G};
endif;
for every input: € Fixed-Inputs(G)do
scan-circuit(Pat-Type,:,HYP);
endfor;
endif;
end.

3.2. Test Pattern Generation

Thediagnosisalgorithmpresented intheprevioussection
can analyze the circuit under the application of any test pat-
tern. However, to accelerate the diagnosisprocess, it is bet-
ter to use test patterns specially generated for the diagnosis.
The method isasfollows: agate (G is selected from the sus-
pected gate set, and two patterns are generated for it. One
pattern can detect theerror if G wastheerroneousone, while
theother one doesnot activate the error and thusdoes not de-
tectit, if G wastheerroneousone. It was provenin [11] that
thismethod allowsto reduce very rapidly the suspected gate
set. Infavorablecases, theerror can be exactly located after
the application of only one pair of these patterns.

The complete diagnosis algorithm is thus given bel ow:

algorithm diagnose(Error Hypothesis);
begin
SG = All the circuit gates;
Tested «+ ¢;
while (] SG| > 1) and (SG Z Tested) do
Let G beagateinSGand G ¢ Tested
Tested + TestedU {G},;
TP1 = Pettern that detectsthe error if G is erroneous.
TP2 = Pettern that does not detect the error if G is erroneous.
diagnose-circuit(TPL,Error Hypothesis);
diagnose-circuit(TP2,Error Hypothesis);
enddo
write(Error Hypothesis, S G);
end

3.3. Diagnosis of Sequential Circuits

We extended this diagnosisalgorithmto synchronous se-
guential circuitsunder HYP-0, HYP-1 and HY P-2. Theim-
plementation and the specification may have different num-
ber of states and state encoding. The specification is re-
garded as ablack box on which only the primary inputsand
the primary outputsare observabl e, and which can beinitial-

izedinaninitia state correspondingto theinitia state of the
implementation.

We introduced the new concept of Possible Next Sates.
They arethe set of statesreachablefromagiveninitia state,
or agiven set of initia states, dueto the existence of severa
possiblelocations of theerror. Theimplementationisrepre-
sented by itsiterativelogicarray modd [5], and ssmulatedin
each timeframe separately. It isthen diagnosed by applying
combinational diagnosisrules, where the present-state lines
aretreated as primary inputs, and the next-state lines as pri-
mary outputs. Before proceeding to the next timeframe, the
set of possiblenext statesis computed, and thentheanaysis
isdone in the next time frame under each one of these pos-
sible next states. Thisoperation isrepeated until the error is
found. The method isfully described in [12].

4. Reaults

A prototype diagnosis system implements the above d-
gorithms in PROLOG, including the test pattern generator
and thelogicsimulator. The softwarewas appliedto circuits
taken fromthel SCAS 85 and ISCAS 89 benchmarks[7, 6].

The results obtained on a SPARC-10 workstation with
10 Megabytes of memory are shown in Table 5 for combi-
national circuits , and Table 6 for sequential circuits. The
columns titled “No. of Exp.” give, for each circuit, the
number of diagnosis experiments made. Each experiment
is made on a randomly inserted error of a random type
according to the six error hypotheses HYP-(0-5). The
columnstitled " Pat. Used” givesthe average number of test
vectors applied before the diagnosis report is generated.
The average CPU time is given in seconds. This time
includes pattern generation, simulation and diagnosistimes.
The average number of suspected gates returned asresult is
given inthe columnstitled " Cand.”

Result Analysis:

In 100% of the experiments, the actua error was among
the final suspected gates. The error is aways found with a
finediagnosticresolution; inamost al of thecases only one
error candidate is proposed. In the case of combinationa
circuits the number of test patterns applied before finding
the error is small compared with other methods [8, 10, 14],
thanksto the mixed use of error detecting and non-detecting
patterns[11]. Theexecutiontimegrowsamost linearly with
the product of the number of gates and the applied test pat-
terns. The number of applied test patterns, before adiagnos-
tic report ismade, depends highly on thetopol ogy of the cir-
cuit under test: for the circuits with large number of inputs
and outputs (c2670, c5315, and c7552), the average num-
ber of applied test patternsisrelatively small with respect to
other circuits. Thisisdueto the fact that if the error shows
on alarge number of outputs, then the erroneous gate must
reside within the common cone of influence of all these out-
puts, which reduces the search area of the circuit.

Some sequential circuits require a large number of test
vectors because they are difficult to control, and a long
sequence of vectors is needed to witnesses the error (e.g.

‘ Name Number of No. of Average of |

n Ut ales | Exp. -used [CPUTime | Cand.|
cI7 5 2 6 35 4.09 0.14 1.00
c432 36 7 160 686 18.11 58.62 116
c499 41 32 202 929 18.70 101.69 136
cI355 [41 32 546 2728 28.08 41197 116
cI908 | 33 25 880 2556 22.67 602.92 119
€2670 | 233 | 140 | 1193 1785 15.29 461.17 1.03

c3540 | 50 22 1669 1255 26.48 2187.08 117

c5315 | 178 | 123 [2307 931 17.17 1681.16 115
c6288 | 32 32 2416 698 22.01 2102.75 1.65
c7552 | 207 | 108 | 3512 177 14.36 2993.50 1.02

Table 5. Results for ISCAS’85 benchmarks

s208, s382, s838, and s1423). Many factors may affect the
length of thetest sequences, such as the number of loopsper
flip/flop and the number of state controlling inputs[9].

The CPU times mentioned here are based on our experi-
mental implementation of the algorithms. We didn’t devote
alarge effort to program optimization, as our main interest
was to show the applicability of our approach. We believe
that these time performances can be significantly improved
by rewriting the software using faster languages like C.

Name | Number of [No. of Average of

[Tn T Out | Gaies T T | Exp. [CPUtime T Cand.
27 4 1 10 3 14 243 0.61 164
208 11 1 96 8 114 132.79 251.05 344
298 3 6 119 14 126 17.62 59.89 2.09
344 9 11 160 15 174 6.55 64.88 116
349 9 11 150 15 177 6.53 69.55 126
382 3 6 158 21 104 12521 | 1298.99 2.37
s386 7 7 159 6 222 18.10 49.18 3.26
400 3 6 148 21 90 69.59 1009.89 2.22
420 19 1 196 16 95 79.18 77513 4.02
510 19 7 211 6 209 18.07 127.75 2.32
641 3B | 24 379 19 174 407 306.79 1.06
820 18 [19 289 5 111 841 199.52 231

838 35 1 390 32 10 129.70 8427.23 3.60

953 16 23 395 29 61 20.61 1360.41 3.95

s1196 | 14 14 529 18 378 2.69 167.37 191

s1423 | 17 5 657 74 10 211.00 | 14245.10 3.60

5378 | 35 49 2779 | 179 10 20.30 14445.42 6.30

Table 6. Results for ISCAS’89 benchmarks

5. Conclusion

In this paper an origina automatic diagnosistoal is pre-
sented. This tool finds precisely the type and location of
simple design errors in VHDL descriptions of combina
tional and sequentia circuits. The specification may be
given at any level of abstraction, and the implementationis
given at the RTL level. This means that in the case of se-
guentia circuits, the implementation and the specification
may have different number of states and state encodings.

We are now working on several extensions: first, we
try to include other error hypotheses, in particular complex
component replacements instead of the simple gate types
considered here. A longer term research concerns multiple
errors, for which no satisfactory method exists currently.

Finally, we believe that automatic diagnosisis an essen-
tial element in any CAD environment. Our prototype diag-
nosis system is now integrated within the PREVAILTM en-
vironment [4], and has been used successfully to find errors
inindustrial circuits supplied by Thomson-TCS.

6. Acknowledgments

This work is partialy supported by the EUREKA
"JESSI-AC3" project, and the ESPRIT Basic Research
Action CHARME Working Group #6018.

References

[1] E.J. Ass, K. A. Klingsheim, and T. Steen. Quantifying de-
sign quality: A model and design experiments. In Proc.
EURO-ASIC' 92, pages 172-177. IEEE Computer Society
Press, 1992.

[2] M. S. Abadir, J. Ferguson, and T. E. Kirkland. Logic de-
sign verification via test generation. 1EEE Trans on CAD,
7(1):138-148, Jan. 1988.

[3] T.W.Albrecht. Concurrent design methodology and config-
uration management of the SSEEMENS EWSD-CCSYE pro-
cessor system simulation. In Proc. DAC’ 95, pages 222227,
1995.

[4] D.Borrione, L. Pierre, and A. Salem. Formal verification of
vhdl descriptionsin the PREVAIL environment. |EEE De-
sign & Test of Computers, 9(2):42-56, June 1992.

[5] M. A. Breuer and A. D. Friedman. Diagnosis and Reliable
Design of Digital Systems. Computer Science Press, New
York, 1976.

[6] F.Brglez, D. Bryan, and K. Kozminski. Combinational pro-
files of sequential benchmark circuits. In Proc. |IEEE Int.
Symp. Circuits and Systems, Portland, OR, May 1989.

[7] F.Brglezand H. Fujiwara. A neutral netlist of 10 combinato-
rial benchmark circuits and atarget translator in FORTRAN.
In Proc. IEEE Int. Symp. Circuits and Systems, pages 663—
698, June 1985.

[8] A. Kuehlmann, D. I. Cheng, A. Srinivasan, and D. P.
LaPotin. Error diagnosisfor transistor-level verification. In
Proc. DAC' 94, pages 218224, 1994.

[9] A.Lioy, P.L.Montessoro,andS. Gai. A complexity analysis
of sequential ATPG. In Proc. IEEE Int. Symp. Circuits and
Systems, pages 1946-1949, May 1989.

[10] M. Tomita, T. Yamamoto, F. Sumikawa, and K. Hirano. Rec-
tification of multiple logic design errors in multiple output
circuits. In Proc. DAC’ 94, pages 212-217, 1994.

[11] A.Wahbaand D. Borrione. Design error diagnosisin logic
circuits using diagnosis-oriented test patterns. Research Re-
port RR-940-1, ARTEMIS-IMAG, Grenoble, France, June
1994,

[12] A.WahbaandD.Borrione. Designerror diagnosisin sequen-
tial circuits. In Proc. Correct Hardware Design and Verifi-
cation Methods, CHARME' 95, number 987 in Lecture Notes
in Computer Science, pages 171-188. Springer Verlag, Oc-
tober 1995.

[13] A.Wahbaand D. Borrione. Connection errors location and
correction in combinational circuits. Research Report 96.1.1,
TIMA-INPG, Grenoble, France, Feb 1996.

[14] Q.Zhang. Logic \erificationand Design Error Diagnosisfor
Combinational Circuits. Ph.D. thesis, Université Catholique
deLouvain, Belgium, Feb. 1995.

	CDROM Home Page
	1996 Home Page
	EURO-DAC96 Home Page
	Front Matter
	Table of Contents
	Session Index
	Author Index

