
The Maximal VHDL Subset
with a Cycle-Level Abstraction

Wendell C. Baker and A. Richard Newton
{wbaker,newton}@eecs.berkeley.edu

Department of Electrical Engineering and Computer Science,
University of California, Berkeley, CA 94720, USA

Abstract

The maximal VHDL subset with a cycle-level abstraction is
defined. This subset requires that the description have three
semantic properties: responsiveness, modularity and causal-
ity, but full VHDL is neither modular nor causal. Synchro-
nous VHDL is the responsive, modular and causal subset of
VHDL. The compiler uses modularity-checking and causal-
ity-checking to identify admissible programs.

1 Introduction

The extraction of a finite state machine from an HDL-based
description has become an important aspect of the current
generation of language-based design methodologies. Such
techniques have application in numerous areas: in formal ver-
ification when establishing the behavioral equivalence of two

system descriptions (c.f. [5] [17]); in synthesis when the
implementations in hardware or software must be faithful to

the behavior of the language-based specification (c.f. [4] [9]);
and in high-performance simulation when cycle-level

approximations are used (c.f. [22]).

The current generation of HDLs are based on the discrete-
event paradigm in which components are activated under the
control of an event-processing loop. This provides for a very
flexible and general operational modeling capability. At the
same time however, it has precluded the use of HDL pro-
grams as abstract behavioral specifications. To date, there has
been no theory which explains how behaviors defined by dis-
crete-event models relate to the computational model of hard-
ware: finite state machines. Existing approaches have applied
ad hoc style guidelines in an effort to constrain the problem

for synthesis or verification (c.f. [5] [8] [10] [19] [20]). Such
proposals have met with mixed success since all are different
and all are justified by the idiosyncratic needs of a particular
user community or design tool. What is needed is a general
theory which addresses the behavioral extraction problem at
the semantic level and thereby subsumes any syntax-based

policy guidelines.

The microsemantic theory described in this paper fills this
need. It precisely explains the relationship between discrete-
event and finite state machine semantics and with it, the finite
state machine extraction problem can be stated in fully gen-
eral form. Using this theory, the Synchronous VHDL subset
is defined as the largest general subset of VHDL with a
cycle-level abstraction.

The observations in this paper build upon recently-reported

results in the analysis of discrete-event semantics [14]. The
additional new result reported here is a domain-theoretic con-
struction of a fully abstract semantics for VHDL within its
non-abstract semantics of δ-time. The result presented in this
paper holds for any system description language where time
has a fine structure (the so called “δ-time” or “micro”-time)

and a zero-delay assumption.1 Such languages include HDLs

based on discrete-event simulation: VHDL [15] [16] and

Verilog [27]; as well as synchronous languages [13] such as

Esterel [4]. For concreteness, and because of its widespread
use, we report on VHDL-1076-1987 exclusively in this
paper.

2 Semantics for State-Transition Systems

Our approach draws heavily from results in formal model

theory and language semantics [12] [25]. This section pre-
sents the basic definitions.

2.1 The Semantic Map

A semantics is an abstract map from elements of a lan-

guage , that is program instances, to elements of a mathe-

matical model . This is written:

A semantics is denotational when association at the syntactic

1. Also referred to as the perfect synchrony hypothesis[4].

S

L

M

S [[program]] model=

EURO-DAC ’96 with EURO-VHDL ’96
0-89791-848-7/96 $4.00 1996 IEEE

level is defined in terms of composition at the model level.

That is, is defined in terms of one or more composition

operators . For example might contain
mappings rules of the form:

In turn, the are computed by applying to the

structural sub-parts of the original element of . As indi-
cated, the composition operators may vary with the kind of
statement mapped by .

The models are defined in terms of Scott’s domain theory
where a domain is a countable set endowed with an ordering
relation “ ” which is understood to mean “approximates.” A
domain has a minimal element ⊥, called “bottom” which is
the unique representation of “no information.” This frame-
work allows for a precisely-defined notion of approximation
and limit points. In turn this allows for the definition of a
(large) computation as a finite series small steps; the analogy
between the cycle-level and δ-steps in VHDL is direct.

A semantics is said to be fully abstract when it does not pre-

serve any structure from the source language [23]. A seman-

tics is existential when no approximation is involved:
identifies model elements directly and explicitly. In contrast,

a semantics is said to be computational when identifies
model elements by a series of approximations tending to a
limit. This notion of approximation and limit points is funda-
mental to the development which follows.

2.2 A Semantically-Defined VHDL Subset

Our goal is the weakest set of constraints on semantic
domains and δ-steps, which are applicable a priori, such that
a VHDL program is guaranteed to have a cycle-level abstrac-
tion.

2.3 Finite-State Models

The model of computation underlying cycle-level behavior is
the finite-state transition system.

2.3.1 The Fully Abstract Model

The fully abstract FSM model is defined in the traditional

manner [18] save that the states, inputs and outputs are
defined on finite domains instead of merely finite sets.

where:
Q is a finite set of states; Q is a flat finite domain.

 is a vector of input signals defined

S

°:M M× M→ S

S [[statement1; statement2]] model1°model2=

S [[statement1 || statement2]] model1×model2=

modeli S

L

S

⊆

S

S

M

M Q I O T Q0, , , ,()=

I i 0 i1 … im, , ,()= i j

over flat finite domains; the domain of I is the Carte-

sian product of the domains of the ; and the alphabet

 is the observable subset of these vectors.

 is a vector of output signals; the sig-

nals , the domain of O and the alphabet are

defined similar to I.

 is a transition relation governing the tran-
sitions of the machine.

 is a set of initial states.

The elements of the model are the steps among the states

Q which are allowed by T, restricted to and .

The model is fully abstract because it does not represent
any information about what occurs within a step. At the fully
abstract level, all concurrent coordination which might have

been intuitively visible in has been “compiled
away.”

2.3.2 The Non-Abstract Model

Such simplicity is not the case in the non-abstract model

because transitions between macro states (e.g.) are

not atomic. Rather, they are defined in terms of compound
δ-transition paths. The non-abstract model is:

where:

 is a Cartesian product domain of the state and
the domains:

 where is a flat domain of macro-

states; is the non-flat domain of δ-states.

I and O are Cartesian product the domains just as with
the fully abstract case.

 is a transition relation.

 is a set of initial states.

The ascending chains in are properly referred to as con-

trol-flow paths in δ-time and S is constructed so that:

. Thus when a control flow path

of δ-states reaches a macro-state it is “complete.” At such a
state is assumed to contain a self loop called an absorbing

end condition which prevents further increase.

By convention, the initial states are all macro-states (i.e.

the are from not), the coordinates of I are not⊥
and the coordinates of O are⊥.

i j
ΣI

O o0 o1 … on, , ,()=

oj ΣO

T Q I× O× Q×⊆

Q0 Q⊆

M

Σ I ΣO

M

prog L∈

M δ

q1 q'1→

M δ Q Tδ Q0, ,()=

Q S I O××=

S ST Sδ∪= ST

Sδ

Tδ Q Q×⊆

Q0 Q⊆

Sδ

sT ST∈∀ . sδ Sδ∈∀ .sδ sT⊆

Tδ

Q0
s S∈ ST Sδ

2.4 Problem Statement

The non-abstract semantics, , is computational whereas

the fully abstract semantics, , was existential. Absent a par-
ticular subject language, the concern here is with the condi-
tions which must exist in a non-abstract semantic model to
allow a fully abstract model to be embedded in it through a

dimensional projection [23] that suppresses the intra-step

implementation details. This situation is depicted in Figure 1.

The conditions of interest here are those which must hold in

 and so that the diagram of Figure 1 commutes. That

is, for the admissible , the following holds:

(Eq 1)

Here is a dimensional projection which suppresses the

orthogonal dimensions of that contain implementation

details.

The application of to an element of identifies the

fully abstract submodel within as:

(Eq 2)

where is a projection of the infinite paths in the transitive

graph of onto and is a projection of

 down onto . Details can be found in Baker [3].

3 Limits on Microsemantics

There are three desirable properties of a non-abstract seman-
tics: responsiveness, modularity and causality. There is also a

theorem, the RMC Barrier Theorem,1 that states that these

three properties cannot appear together in a semantic model

S δ
S

program ∈ L M

M

δ

S δ

S

Π δ

Figure 1. A non-abstract semantics , model
and a fully abstract semantics , model

S δ M δ
S M

S δ M δ
program L∈

S [[program]] S δ[[program]] °Πδ=

Πδ
M δ

Πδ M δ
M δ

Πδ((ST Sδ∪) I× O× Tδ Q0, ,) (ST I O T̂δ Q̂0, , , ,)=

T̂δ
Tδ ST I× O× ST× Q̂0

Q0 ST

having the dimensional structure of . This result predicts

the difficulty of embedding as a submodel within

and by extension the difficulty in identifying a subset of
VHDL semantics which is fully abstract.

3.1 Three Desirable Properties

Responsiveness (or): A system is considered responsive
if its output occurs in the same step as the input that
caused it. A semantics is responsive if it is possi-
ble to define a responsive system under the rules of
the semantic map .

Responsiveness distinguishes between Moore and Mealy

machines. The former is ; the latter is R.

Modularity (or): A semantics is modular when
environment-to-component and component-to-com-
ponent communication is treated symmetrically.

Modularity distinguishes the broadcast model of inter-pro-
cess communication. An equivalent statement is that signals

have flat domains. A semantics allows a test for the order

in which outputs are produced within a step. A semantics
allows outputs to be assigned multiple times within a step. In
both these cases signals cannot have flat domains.

Causality (or): A semantics is causal if the system
response does not anticipate its own future within a
step.

This is the classical definition of causality from systems the-

ory (c.f. [28]), but applied here solely within a step. Causality
requires that there exist a partial order among coordinating
components which is respected by concurrent composition.
The partial order may be state-dependent for a given compo-
nent.

With these definitions, a semantics can be crudely charac-

terized by the properties it possesses or lacks (e.g. ,

 or). Of the three properties:

• R is desirable for the cogency it affords (the Mealy- versus
Moore-machine);

• M is desirable for the limitation that it imposes on the
complexity of concurrent coordination (single assign-
ment); and

• C is necessary when treating systems operating the a phys-
ical world where time moves forward (the future cannot be
anticipated).

M is also crucial to the embedding of the full abstract model

1. Due to Huizing and Gerth [14].

M δ
M M δ

R R

S δ

S δ

R

M M S δ

M

M

C C

S δ

RMC

RMC RMC

 within . The fully abstract model supports single

assignment of outputs only therefore so must .

3.2 The RMC Barrier

Unfortunately, there is no RMC semantic map (details can be

found in Huizing and Gerth [14] or Baker [3]). But RMC is

required for the diagram of Figure 1 to commute. By defini-

tion is R and M: Mealy machines can be represented and
outputs are singly assigned in a step. induces a (partial)

relating inputs to outputs by its multi-step paths.

3.3 Surpassing the RMC Barrier

Fortuitously, the RMC Barrier applies to the class of seman-
tic maps not to systems. This leaves open the possibility of
having an incomplete or inconsistent semantics and admit-
ting only program instances where RMC holds. In the case of

synchronous languages [4] such as Esterel, the raw semantics

is and a subsequent causality checking step establishes

C for the admissible programs [13].

4 Semantics of Discrete-Event Languages

Languages based on discrete-event semantics (DES) are stud-

ied based on the domain definitions of Section 2.3 and the
RMC Barrier Theorem.

4.1 The Simulation Cycle

Discrete-event semantics is defined by an event processing
loop which executes portions of the program by propagating
representations of events. The event loop for VHDL

(from [15], §12.6.3). An examination of the state transition
behavior of the simulation cycle shows that it induces a three-

level structure of time as depicted in Figure 2. This is some-
what at variance with the standard presentation of VHDL’s
“δ-time” in which a two-level structure is supposed. The
explanation is that the invocation of an individual process is a
step in the model. This gives a fine structure within δ-time
which is here called “η-time” (equivalently “nano”-time).

4.2 Relationship to RMC Barrier

The three-level structure of time in discrete-event semantics

M M δ M

M δ

M

M δ

RMC

T1T0

Figure 2. The three-level structure of time

η
1
η

2
η

3
η

7
η

8
η

9
η

1
η

2
η

3
η

4
η

5
η

6
η

1
η

2
η

3
η

4
η

5
η

6δ1
δ

3
δ

2

is at the macro-time level and at the δ-time

level.

Theorem 1: DES is .

Proof: (sketch, details in Baker [3])

Observing the LRM [15] and the simulation cycle, §12.6.3,
one can see that:

Case : Mealy-machines can be described.

Case : There exist VHDL programs where a signal
takes on more than one value in a macrostep.

Case : There exist VHDL programs in which simula-
tion time never progresses. That program has finite
state so the infinite δ-steps are oscillatory; a cycle pre-
cludes the existence of a partial order. QED.

Theorem 2: DES is

Proof: (sketch, details in Baker [3])

Observing the LRM [15] and the simulation cycle, §12.6.3,
one can see that:

Case : A signal assignment does not become visible

until the next δ-step.
Case : A signal has a single value in a δ-step.

Case : A δ-step has a number of η-steps. A process is
run at most once within a δ-step. This bounds the
number of η-steps. The order the runnable processes
occur is immaterial; any partial order suffices. QED.

5 Synchronous VHDL

With this background the Synchronous VHDL subset can
now be defined. This new definition expands upon the previ-

ous definition [1] [2] with new semantic conditions based on
microsemantic analysis and the RMC Barrier.

5.1 Syntactic Requirements

As before, and consistent with other cycle-level VHDL

subset [19] [5], the admissible VHDL programs must have
finite state. This implies proscriptions on the manipulation of
time in waveform assignments via the after clause and
aggregate waveform assignments themselves. Signal assign-
ments must use only δ-delay. Also proscribed are the use of
dynamic memory and reference to the external environment.
These include the dependence upon a stack via static scoping,
heap memory allocation via new and the access type con-
structor and the external environment via the file type.

5.2 Semantic Requirements

When a VHDL program’s δ-time reaction terminates in an
instant then there exists a domain construction and approxi-

RMC RδMδCδ

RMC

R

M

C

RδMδCδ

Rδ

Mδ
Cδ

mation relation “ ” such which existentially associates the
η-transitions of the three-level operational semantics with the

transitions of a two-level δ-time semantics [3]. This is

depicted in Figure 3. The association is existential because
the domain and its relation need not be explicitly stated; it
exists, ex post, if and only if every δ-step series is finite.

5.3 Requirements for Full Abstraction

The domains of require that RMC hold on admissible

programs. The analysis of Section 4 slowed that the unre-

stricted semantics of VHDL is . So a VHDL program
instance has a cycle-level abstraction just when it isM andC.
This establishes the modularity-checking and causality-
checking (“MC”-checking) problems.

Modularity-checking is a decision procedure that certifies
that the signal usage in the design is consistent with flat
domains. The modularity check ensures that every signal is
assigned at most once on every δ-step path between macro
states.

Causality checking is fundamentally a monotonicity check.
Malik has shown that such a check for functions on the flat

Boolean domain is NP-complete [21]. This recent result
explains why early causality checkers (e.g.as reported for the

early versions of Esterel [4]) only attempted a conservative
estimate of monotonicity. Current work focuses on applying

BDD-based symbolic representations [6] to the causality-

checking problem (c.f. [24]).

5.4 A Prototype Implementation

We have implemented a prototype Synchronous VHDL com-
piler. Its overall architecture is fairly typical and is depicted

in Figure 4. What is unique in the flow described there is the
modularity- and causality-checking phase. Our original pro-

⊆

⊆

T1T0

η
1
η

2
η

3
η

1
η

2
η

3
η

4
η

5
η

6
η

1
η

2
η

3
η

4δ
1

δ3δ2

δ1 δ2 δ3 δ4 δ5 δ6 δ7
δ

8 δ9 δ10δ11δ12δ13 T1T0

Operational VHDL-1076

Synchronous VHDL

Figure 3. The Correspondence Between
Operational VHDL-1076 and Synchronous VHDL

M δ

RMC

totype used the Esterel V3 [7] compiler for this purpose
though we have since formulated these checks directly on a

language-independent abstract-instruction representation [3].

5.5 Experience

Our experience with this approach and with the Synchronous
VHDL subset in particular has been mixed for a number of
reasons. First, the MC-checking is a limiting factor. The
MC-check is known to be a difficult problem in its own right

though the use of clever symbolic representations [24] may
help to alleviate this. Secondly, it is extremely cumbersome if
not impossible to describe interrupt-like and nested sequen-
tial/concurrent behaviors in VHDL. This is a fundamental
limitation of VHDL’s flat process model. The only alternative
here is the addition of these concepts at the language level

The SpecCharts [11] is one such proposal, though there are

severe problems with the naive use of that approach [26].

Most vexing of all is VHDL’s property which often

causes signals to be multiply assigned. These are properly

referred to as “glitches.” An example is sketched in Figure 5.
That example is not an admissible Synchronous VHDL
design because O may be assigned twice in an instant for a
change in I which also triggers an event on Q. The way to
alleviate this problem is to develop techniques for handling

 semantics where signals have non-flat domains and sup-
port multiple assignment.

6 Conclusion

The extraction of a cycle-level FSM from an HDL system
description is an important aspect of language-based design.
The presentation in this paper defines the conditions under

VHDL-1076

Parsing

Syntactic Filtering

Semantic Filtering

Implementation Generation

Modularity Checking

Causality Checking

FSM
Simulator

Figure 4. Architecture of a Synchronous VHDL Compiler

RδMδCδ

M

which a cycle-level abstraction can exist in an arbitrary
VHDL program. Full abstraction was shown to be the condi-

tion when the cycle-level model is a submodel of the

non-abstract one . This embedding required that the

VHDL programs be RMC. Yet unrestricted discrete-event

semantics is / . Thus admissible Synchronous

VHDL programs are identified through modularity-checking
and causality-checking problems. Programs describing acy-
clic logic networks are trivially admissible.

Acknowledgments

This work was sponsored by the U.S. Defense Advanced Research
Projects Agency and monitored by the U.S. Department of Justice
Federal Bureau of Investigation under contract DABT-63-95-C-
0074. We also thank Gérard Berry for the use of his Esterel compil-
ers and his thoughtful conversations with the first author during his
visit to École des Mines de Paris in Spring 1994.

References

[1] W.C. Baker and A.R. Newton, “An Application of a Syn-
chronous Reactive Semantics to the VHDL Language,” In
Proc. of 6th IWHLS, D.D. Gajski editor, 1992.

[2] W.C. Baker, An Application of a Synchronous/Reactive
Semantics to the VHDL Language, M.S. Report, Dept. of
EECS, University of California, Berkeley, USA, January
1993, UCB/ERL M93/10.

[3] W.C. Baker, Interfacing System Description Languages to
Formal Verification, Ph.D. Dissertation, Dept. of EECS, Uni-
versity of California, Berkeley, February 1996.

[4] G. Berry and G. Gonthier, “The Esterel Synchronous Pro-
gramming Language: Design, Semantics, Implementation,” In
Science of Computer Programming, Vol.19, No. 2, 1992,
pp 87-152.

[5] J. Bormann, J. Lohse, M. Payer and G. Venzl, “Model Check-
ing in Industrial Hardware Design,” In Proc. of 32nd DAC,
June 1995, pp 298-303.

[6] K. Brace, R. Rudell and R. Bryant, “Efficient Implementation
of a BDD Package,” In Proc. of 27th DAC, June 1990, pp 40-
45.

entity EX is
port(I: in IN_TYPE; O: OUT_TYPE);

end;
architecture Mealy of EX is

signal Q: STATE_STATE;
function NEXT(Q: in STATE_TYPE;

 I: in INPUT_TYPE)
return STATE_TYPE;

function OUTPUT(Q: in STATE_TYPE;
 I: in INPUT_TYPE)

return OUTPUT_TYPE;
begin

P1: Q <= NEXT(Q, I); -- sensitive to Q, I
P1: O <= OUTPUT(Q, I); -- sensitive to Q, I

end;

Figure 5. A program that ought to be MM

M

M δ

RMC RδMδCδ

[7] Esterel V3, CIS INGENIERIE, Agence Provence Est, Les
Cardoulines, B1 06560 Valbonne, France, 1990.

[8] V. Chaiyakul, D.D. Gajski and L. Ramachandran, “High-
Level Transformations for Minimizing Syntactic Variances,”
In Proc. of 30th DAC, June 1993, pp413-418.

[9] M. Chiodo, L. Lavagno, H. Hseih, K. Suzuki,
A. Sangiovanni-Vincentelli and E. Sentovich, “Synthesis of
Software Programs for Embedded Control Applications,” In
Proc of 32nd DAC, June 1995, pp 587-592.

[10] A. Debreil and P. Odda, “Synchronous Designs in VHDL,” In
Proc. of EuroDAC/EuroVHDL, September 1993, pp 486-491.

[11] D.D. Gajski, F. Vahid, S. Narayan and J. Gong, Specification
and Design of Embedded Systems, Prentice Hall, 1994

[12] C.A. Gunter and D.S. Scott, “Semantic Domains,” In Hand-
book of Theoretical Computer Science, Vol.B, The MIT
Press, 1990, pp 635-675.

[13] N. Halbwachs, Synchronous Programming of Reactive Sys-
tems, Kluwer Academic Publishers, 1993.

[14] C. Huizing and R. Gerth, “Semantics of Reactive Systems in
Abstract Time,” In Real-Time: Theory in Practice, J.W.
de Bakker, C. Huizing, W.P. de Roever, and G. Rozenberg,
editors, Proc. of REX Workshop, June 1991, pp 291-314.

[15] IEEE Standard VHDL Language Reference Manual, The
IEEE, 1987, 345 East 47th Street, New York NY 10017,
USA, Std 1076-1987.

[16] IEEE Standard VHDL Language Reference Manual, The
IEEE, 1993, Std 1076-1993.

[17] T. Kam and P.A. Subrahmanyam, “Comparing Layouts with
HDL Models: A Formal Verification Technique,” In Proc. of
ICCD, October 1992, pp 558-591.

[18] Z. Kohavi, Switching and Finite Automata Theory, McGraw-
Hill, 1978.

[19] J. Lohse, J. Bormann, M. Payer and G. Venzl, VHDL-Trans-
lation for BDD-Based Formal Verification, Technical Report,
Siemens AG, 1994.

[20] D. Knapp, T. Ly, D. MacMillen and R. Miller, “Behavior
Synthesis Methodology for HDL-Based Specification and
Validation,” In Proc. of 32nd DAC, June 1995, pp 280-291.

[21] S. Malik, “Analysis of Cyclic Combinational Circuits,” In
Proc. of ICCAD, November 1993, pp 618-625.

[22] P.C. McGeer, K.L. McMillan, A. Saldanha,
A.L. Sangiovanni-Vincentelli and P. Scaglia, “Fast Discrete
Function Evaluation using Decision Diagrams,” In Proc. of
32nd DAC, June 1995, pp 402-407.

[23] K. Mulmuley, Full Abstraction and Semantic Equivalence,
Ph.D. Thesis, Carnegie Mellon University, 1986; Also avail-
able from The MIT Press, 1986.

[24] T.R. Shiple, G. Berry and H. Touati, “Constructive Analysis
of Cyclic Circuits,” In Proc. of ED&TC, March 1996.

[25] J.E. Stoy, The Scott-Strachey Approach to Programming Lan-
guage Theory, The MIT Press, 1977.

[26] F. Vahid and D.D. Gajski, “Obtaining Functionally Equiva-
lent Simulations Using VHDL and A Time-Shift Transform,”
In Proc. of ICCAD, November 1991, pp 362-365.

[27] Verilog Hardware Description Language Reference Manual
(LRM), November 1991, Open Verilog International, Suite
408, 1016 East El Camino Real, Sunnyvale CA 94087, USA.

[28] R.E. Ziemer, W.H. Tranger and D.R. Fanin, Signals and Sys-
tems: Continuous and Discrete, Macmillan Publishing, 1989.

	CDROM Home Page
	1996 Home Page
	EURO-DAC96 Home Page
	Front Matter
	Table of Contents
	Session Index
	Author Index

