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Abstract
This paper presents a fault model for VHDL descriptions at
the Register Transfer Level and its evaluation with respect
to a logic level fault model (single-stuck-at). The proposed
fault model may be used for early estimations of the fault
coverage before the synthesis is made in the design process
of an integrated circuit. The obtained results show a high
correlation between the fault coverages achieved with the
proposed fault model and logic fault models on a set of
examples. The main contribution of this work is the
proposal of a new fault model for VHDL/RT descriptions
and the demonstration of its usefulness for estimating the
achieved fault coverage with a set of test vectors in design
phases previous to synthesis.

1. Introduction
Testing is one of the key tasks within the design process

of electronic systems and its definition is a specially hard
task in integrated circuit design. Test pattern generation is a
procedure that defines the input stimuli (test vectors) that
have to be applied to a manufactured device to assure that it
does not have any defect. As the number of possible defects
in a complex integrated device is so large, it is almost
impossible to assure the total integrity of the circuit with a
rational number of test vectors. Therefore, an abstraction of
these physical defects has to be made to make the problem
affordable for the designer that has to generate them during
the design phase. Fault models are abstract representations
of the circuit behaviour under the effect of a physical
failure. Now, the goal of the test vectors defined by the
designer is the detection of faults defined by this fault
model that are much closer to the design aspects than the
physical defects, more closely related to technological
aspects [1]. The definition and adoption of a fault model
implies a compromise between two main aspects: accuracy
of the model, as if it does not represent the circuit defects
the test quality will be very bad, and its simplicity, as if it is
very complex nor the designer neither the CAD tools will
be able to deal with it.

Most of current testing procedures are actually using the
single-stuck-at-‘0’, ‘1’ fault model defined at the logic gate
level. The normal requirement for industrial designs is that

the set of test vectors provided by the designer achieve at
least a 95% fault coverage of all detectable stuck-at faults
(what means that the test vectors have to detect at the
primary outputs of the circuit, the 95% of all the detectable
stuck-at faults in the circuit). A lot of work has been and is
being made to change this fault model, as it has been shown
that it does not correctly model the possible defects inside
the integrated circuits. So, new fault models have been
proposed based on switch level descriptions [2] (stuck-on,
stuck-off), on delay faults and more recently on electrical
current testing (what are usually called Iddq techniques
[3]).

Another important factor to be considered in the fault
model definition, is that the fault model has to be tightly
tied to the design process to assure the efficiency in
generating the test vectors. Current design processes are
based on top-down methodologies, using hardware
description languages (HDLs) as input to the design
process, automatic synthesis tools, and therefore, the
designer is more dedicated to high-level tasks (at the
algorithmic or architectural level) more than low-level
design (like logic gate or transistor levels) [4]. As well as
the design process itself has changed a lot, the test
generation and evaluation procedures must also change.
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Figure 1. Test in the design process based on automatic synthesis

The left part of Figure 1 shows the disconnection
between design and test tasks in the design flow based on a
top-down methodology. The right part of this figure shows
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the goal of coupling both design and test in the same phase
of the design process.

Two main solutions could be possible to access the test
definition from the early stages of the design process:
a) The use of test synthesis tools. This method consists on

the insertion of structured test blocks in the design (like
Scan Path) and the generation of the test vectors. The
designer may use this tool at the same time the circuit
is being synthesised with the advantage that the method
is almost automatic and all the test logic and vectors
are available in the detailed design step. The main
disadvantage is that the cost in area of the added logic
and pins may not be affordable in some cases. Besides,
the circuits have to be totally synchronous to be
handled by these tools [5].

The early estimations of fault coverage from the HDL
descriptions. This method consists on having a
measurement of the testability of the circuit and the quality
of a set of test vectors before the synthesis is being made.
This way the designer may be aware of the amount of
additional vectors required for the test and where are the
low detection areas of the circuit. This method does not
provide the test vectors but allows the designer to have an
early information about the testability of the circuit and the
possible requirements of test logic within it.

The work presented in this paper is included in this last
approach. The procedure will be the definition of a fault
model for register transfer level (RTL) descriptions in
VHDL, as they are the descriptions where the designer uses
to work in current design technologies.

There is no accepted fault model for RTL, not only in
VHDL, but also in any other design environment. Some
other fault models have been developed for VHDL or HDL
based descriptions. For example, in [6] a fault model and a
complete test set tool, including automatic test pattern
generation and fault simulation, is presented. The main
problem of the solution proposed is the fault model itself,
that has not been compared with low level fault models and
therefore the accuracy of the test method is not shown. The
type of descriptions supported by the method defined in [6]
are single-process VHDL descriptions. The fault model
presented in [7] for C-hardware descriptions follows the
same goal as the one presented in this paper: having a good
estimation of the lower level faults. However, it considers
some faults defined as “multiple” (not single faults) that are
not closely related to the low level faults. Besides, a fault
model based on VHDL will be more useful as this language
is the design vehicle of most current methodologies.

The main difference between the fault model described
in this paper and the already proposed in [6] and [7] is that
this one is totally oriented to model hardware faults and its
definition has been directly driven to this goal. For this
reason, the fault model will deal with synthesisable
descriptions, whose translation to logic gates is well known,

and those possible faults at RT level with no clear
translation to lower levels have not been considered. For
estimating its accuracy, several experiments have been run
on a set of examples to evaluate how good is the estimation
of fault coverage with respect to the normally used fault
models (stuck-at-‘0’,’1’).

The paper is organised as follows. Section 1 describes
the fault model in detail. Section 3 shows the experimental
results obtained in the evaluation of the fault model on a set
of examples. Section 4 presents the conclusions of the
paper.

2. Fault model description
The use of a fault model at RT level would allow the

designer has a previous estimation of the fault coverage
achieved with a test vector set, before the synthesis is made.
At this point, architectural modifications to improve the
circuit testability could be performed and the test
generation time could be reduced at later stages of the
design flow. Therefore, this fault model is oriented to make
easier estimations of the fault coverage achieved in pre-
synthesised descriptions in VHDL and its final goal is
directly related to manufacturing test more than other
possible verification tasks such as design error detection,
functional verification, etc. Those faults with no hardware
meaning have not been considered in the fault model.

Once the objectives of this fault model have been
identified, the input descriptions should also be identified
in terms of those VHDL constructs that the fault model will
consider. As the main objective is having a definition for
pre-synthesis descriptions, a synthesis VHDL subset has
been chosen: Level-0 synthesis subset [8]. This subset
includes those VHDL constructs that are accepted by the
most important commercial synthesis tools and defines not
only the VHDL subset but also the synthesis semantics
(associated hardware) to the mentioned descriptions.

2.1 Assumptions of the fault model definition
Some assumptions previous to the fault model definition

have been established. The main preconditions are:
* The fault model is based on single faults. This means

that only one fault is inserted in the VHDL description
at a time.

* Intermittent faults are not considered. The fault effect
will be present during the whole simulation, as they are
permanent faults.

* Faults will have local scope. Each fault will be injected
in a particular line of code where the faulty object is
referenced.

* Input descriptions (fault-free) will be compliant to the
Level-0 subset. The faulty descriptions may not be
compliant to the subset, although they must be VHDL
correct, so that they can be simulated in a standard
VHDL simulator.



* The internal code (body) of the functions or procedures
called in the description will be affected by the same
fault model as the VHDL architectures.

* The fault model is defined for behavioural
descriptions. Structural descriptions will be affected by
structural faults based on the “stuck-at” fault model on
the interconnections among behavioural modules, as
shown in Figure 2. Level-0 subset does not allow
mixed descriptions (structural-behavioural).
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Figure 2. Fault insertion for RT structural descriptions

2.2 Detailed description of the fault model
The fault model is divided in three classes, depending on

the type of object affected by the fault:
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Figure 3. Summary of RT fault model

* Faults on data: the fault model is based on “stuck-at”
faults. The affected object (signal, variable) will take a
constant value and the insertion will be made in a
statement where the object is referenced. The insertion
is made on assignment statements, affecting the right
part of the assignment (target object).

* Faults on expressions: the fault model is based on
“stuck-at” faults. The affected expression will take a
constant value. Two types of expressions are identified:
› Control expressions: those expressions that appear

in the control statements.
› Data expressions: those expressions that appear in

the left part of an assignment statement.
* Faults on statements: the fault model is based on

“dead” faults. The effect of the fault is that the affected
statements are not executed.

Faults on data: For each data type, the object under fault
may be stuck-at different values
* Scalar data types

› bit, std_logic: The considered fault models are
stuck-at-‘0’, stuck-at-‘1’. In std_logic data types no
other possible fault model is considered (stuck-at-
‘Z’ , etc.) because they do not have a particular
hardware significance.

› enumerated: The signals or variables of any user
defined enumerated type can be stuck-at-“all
possible values”.

› integer, natural, positive: As the codification at the
logic level by the synthesis tools is known, the fault
model defined for these types makes that each bit of
the resulting bus can be stuck-at-‘0’ or stuck-at-‘1’.
The assumed codification is binary for the positive
numbers and 2’s complement for the types that have
negative values in their range. This solution makes
the fault model closer to the hardware structure and
reduces the number of possible faults.

* Composite data types
› arrays: Each element of the array will have an

individual fault. This makes the fault model closer
to the low level fault models with the assumption of
single faults. Level-0 subset does not accept record
data types, so arrays are the only possible
composite data types.

Faults on expressions:
* Control expressions

› if__then__else__: The condition of the if statement
may be stuck-at-true or stuck-at-false

› case__is__when__: The expression which controls
the case statement may be stuck-at-“all possible
values”.

› for__in__loop__: The index controlling the loop
may change its range from the minimum to the
maximum+1 and from the minimum-1 to the
maximum.

› concurrent statements: Concurrent statements will
be translated to their equivalent in processes and
sequential statements and the same fault model will
be applied.

* Data expressions
› The same fault model used for data faults will be

used on expressions, depending on the type of value
returned by the expression.

Faults on statements:
* Sequential statements

› if__then__else__: The if statement may fail with
two faults: dead-then, dead-else. In the first case
the statements associated with the then part will not
execute and in the second case the statements
associated with the else part will not execute.

› case__is__when__: The fault model applied is
dead-alternative, which makes that the affected
alternative (when statement part) does not execute.



› for__in__loop__: The fault model is dead-loop,
which makes the body of the loop does not execute.

› procedure call: The fault model causes that the
procedure call does not take place (dead-call).

› signal or variable assignment: The signal or
variable assignment statement does not execute
(dead-assignment).

* Concurrent statements: Concurrent statements will be
translated to their equivalent in processes and
sequential statements and the same fault model will be
applied (dead-then, dead-else, dead-assignment, dead-
call).

2.3 Insertion mechanisms
For this fault model, the fault list will have a particular

structure. Each fault will be identified by a label, that will
be the name of the corresponding faulty architecture, a
number referred to the line of the VHDL where the fault
will be inserted, and a set of particular features that depend
on the fault class (value to stuck-at to, name of the affected
signal or variable, etc.).

The fault insertion is made on the VHDL code (fault-
free description), by adding code perturbations to this input
description. This way, several architectures of the same
entity are generated, each one representing one fault. The
code perturbations consist of adding, switching or
eliminating code sentences, to model the circuit behaviour
under a fault condition.
* Data faults: An additional line of code is added after

the affected line, which assigns the faulty value to the
data object under fault.

* Data expression faults: The fault-free expression is
switched to the faulty one.

* Control expression faults: The faulty expression is
switched to a variable that takes the faulty value and is
locally defined for the process where the faulty line is
located.

* Statement faults: The lines of code affected by the fault
are eliminated by adding comments (--) to them.

3. Experimental results
This section presents the experimental results obtained

in the comparison of the proposed fault model with the
stuck-at fault model at the logic gate level.

The comparison has been made using a set of examples
and following the method proposed in Figure 4. On one
hand, the input description is synthesised, with a
commercial automatic synthesis tool, and the fault
simulation is performed on the equivalent netlist with a set
of test vectors. The same set of vectors is used to perform a
VHDL fault simulation using the proposed fault model. The
resulting fault coverages (logic and VHDL/RT) are then
compared.
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Figure 4. Proposed method for fault model evaluation

The following table shows a brief description of the
example descriptions used for these experiments. For the
first two examples (ALU, ALU16) three different synthesis
processes have been run, optimising time or area. This is
shown with different number of logic faults for each
experiment.

Circuit
nr.VHDL

faults
nr.logic
faults Description

1481
ALU 302 2160 8-bit ALU with 8 operations

2530
6662

ALU16 493 7164 16-bit ALU with 8 operations
7174

MULTIS 503 3244 sequential multiplier (8 bits)
SHREG 66 480 shift register (8 bits)
SUBST 586 2621 contains ALU and a FSM

TCONT16 208 1146 16-bit counter with test logic
TRAREC 223 1468 reception-transmission unit

Table 1. Description of the example circuits

The VHDL fault simulation has been made with the
following steps:
1. The fault list is extracted from the VHDL code and the

defined fault model.
2. From the fault list and the input VHDL code, the

perturbed codes are generated, following the insertion
scheme presented before. As a result, there will be n
(n = number of faults) faulty architectures of the entity
under test, plus the free-fault architecture.

3. All the architectures (fault-free and faulty ones) are
simulated in parallel, using a commercial VHDL
simulator (Synopsys VSS). The output values of all
these architectures are stored in arrays that are
compared with the fault-free output value to indicate
the detection of faults. These comparisons are made at
given times, defined as strobe windows, that can be
defined by the user. In the same VHDL simulation file,



and as a result of the comparisons, the achieved fault
coverage is computed.

Most of these steps are automatically performed as some
C programs have been developed to generate the faulty
codes, the simulation file, etc. The process is not clearly
optimised in simulation time but it gives an easy way to
compute the fault coverage for the VHDL/RT proposed
fault model.

The test vectors used for most of these simulations have
been randomly generated. In some cases, the initialisation
signals have been manually generated, because the
achieved fault coverages were so low. It has been decided
to use random test vectors because they are not better suited
for logic nor high level test, although it is known that real
test is not made with random vectors due to their low
quality (specially for sequential circuits).

The following figures show the experimental results
obtained for the selected examples. In these graphs, the
VHDL/RT and logic fault coverages are represented for
each experiment. In the first two examples three different
logic fault coverages are shown, corresponding to the
different logic circuits obtained in the synthesis processes.
At the end, the results are summarised showing the average
error, which measures the differences between the logic and
the VHDL/RT fault coverages, and the correlation
coefficient, which measures the deviation of tendency
between both data series (the closer to 1, the better).
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Figure 5. Experimental results

Circuit name Average error Correlation coef.
ALU (1st synthesis) 12.0 % 0.956
ALU (2nd synthesis) 12.9 % 0.944
ALU (3rd synthesis) 14.3 % 0.935

ALU16 (1st synthesis) 11.9 % 0.933
ALU16 (2nd synthesis) 10.9 % 0.929
ALU16 (3rd synthesis) 10.5 % 0.932

MULTIS 7.7 % 0.985
SHREG 3.1 % 0.907
SUBST 10.3 % 0.974

TCONT16 8.4 % 0.961
TRAREC 20.3 % 0.998

Table 2. Summary of the experimental results

As general conclusions of the experimental results
obtained with the set of examples it is possible to state:
* The fault model presented does not give a precise value

of the fault coverage achieved at the lower levels.
However, it gives an estimation of the fault coverage
achieved with a set of test vectors using pre-synthesised
descriptions: low fault coverages at the RT level imply
low fault coverages at the logic level.

* The quality of a set of test vectors can be estimated
with the proposed method from RT descriptions, as it
has been shown how RT and logic fault coverages are
correlated for the selected set of examples. Therefore,
the increase of fault coverage at the RT level is similar
to the increase at logic gate level with the same set of
test vectors (the correlation coefficients are close to 1).

* For those circuits with a large combinational part, the
estimation of fault coverage at RTL is “optimistic” and
the synthesis options have an influence on the accuracy
of the estimation. This is due to the fact that in these
cases it is difficult to represent the logic faults at the
RT level. However, we find “pesimistic” results in
highly sequential circuits (as TRAREC). In this case the
error is due to a large number of faults at the RT level
that are very difficult to detect or even undetectable.

* The achieved results are better than the ones presented
in previous fault models [6], [7], as they get better
correlation coefficients (larger than 90%). The errors
were not reported in the previous references. The main

difference is the use of single-bit fault models for
integer data types and arrays which make this fault
model more oriented to the hardware represented by
the VHDL code, as the synthesis process has been
taken into account in its definition.

4. Conclusions
A fault model for VHDL descriptions at the register

transfer level has been presented. The fault model has been
defined in a systematic way, analysing all the objects that
can appear on the considered VHDL subset (Level-0
subset). This fault model will allow the designer to have an
estimation of the achieved fault coverage before the circuit
synthesis is made and therefore, to take some decisions on
the test strategy to be followed before closing the
architectural design. The experimental results presented in
the paper have been run on a set of examples to measure
the precision of the fault model compared to the logic level
fault models. The results show a high correlation between
both fault coverages and a tight relationship between them.

In order to accelerate the VHDL/RT fault simulation
process, it would be necessary to build a VHDL fault
simulator from the beginning. This means a new
elaboration procedure and a new simulation cycle to be
able to inject faults in the VHDL descriptions. At the
moment, this is not available although there have been
interesting contributions to this field as in [9].
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