
Model Generation of Test Logic for Macrocell Based Designs*

E. de la Torre, J. Calvo, J. Uceda
Universidad Politécnica de Madrid

ETSI Industriales de Madrid
c/ José Gutiérrez Abascal 2, 28006 Madrid

Phone : 34-1-4117517, Fax: 34-1-5645966, e-mail: eduardo@upmdie.upm.es

* This work has been partially funded by ECU (ESPRIT #8235)

Abstract

This paper presents a set of tools for generation,
simulation, evaluation and synthesis of VHDL models of
test logic for macrocell based embedded microcontroller
based systems. The generated models are described at
behavioural level so they fit with system descriptions
suited for fast simulation. An IEEE 1149.1 Boundary Scan
implementation is used, providing manufacturing test, on
line test and monitoring capabilities.

1. Introduction

Higher time-to-market needs for custom embedded
control applications are demanding tools for fast and
efficient system design and prototyping. The use of high
level description languages, specially VHDL[1], and the
possibility of simulating the system at the very early stages
of the design phases have been of the major benefit for the
system designer. In this way, virtual system prototyping
using fast simulation models allows the designer to
efficiently tune system performance, complexity and other
system parameters, given an initial, and very often
changing, set of system requirements.

At system level, several design specification stages can
be identified (see figure 1). The top level layer is an
abstract representation of the functionality, where
hardware and software may not be identified. From there,
a sequence of HW/SW partitioning, HW module
partitioning, scheduling and allocation operations will
decide a system architecture. This architectural definition
level represents the behaviour of the selected architecture,
on which the functionality of the system can be defined,
for digital systems, with the precision of a clock cycle, and
where the interfaces among different subsystems may be
completely defined. After this, RTL and logic synthesis
will lead to the detailed design phase that opens the
physical design stage.

The architectural level is important for emulated
prototyping or virtual prototyping, as many issues like
architecture performance estimations, module connectivity

checks, software programming and debugging, etc. can be
done with the use of such behavioural architectural model
[6]. The advantage of this model is that it provides much
better simulation performance than lower level structural
simulators. The purpose of the test environment here
presented is to raise the test design phase up to this
specification level.

Abstract

Architectural

Physical

Detailed design Typical
Test
Scope

Proposed Test
Scope

Figure 1. Specification stages and test scope

One of the ways to speed up the design process at the
architectural definition level is not to design the system
starting from scratch, but to use large pre-built blocks with
a given complete functionality called macrocells [2].
Throughout this introduction section, a discussion of the
characteristics of macrocell based designs will be done, as
well as the testing problems for these type of circuits from
the system designer point of view. Section 2 will show the
basic needs to solve these problems. These needs will be
taken as requirements for the test design environment
presented in Section 3. Section 4 shows the characteristics
of the generated VHDL test models. After this,
application results and conclusions will be shown.

A. Macrocell Based Designs

A macrocell, as defined in the OMI (the Open
Microprocessor systems Initiative European program), is a
medium to very high complexity block with a given
functionality, known interconnect interfaces (if possible,
following a standard or a common definition) and different
definition levels or properties definitions called views (for
example, architectural, RTL, layout, test, etc.).

With a macrocell approach, the task of the system

EURO-DAC ’96 with EURO-VHDL ’96
0-89791-848-7/96 $4.00 1996 IEEE

designer consists on connecting several macrocells so that
system requirements are fulfilled. However, this basic task
is not as simple as it seems, as several problems appear:
• The large granularity of the basic construction blocks

make difficult to achieve the precise requirements
matching with minimum costs. This problem, however,
may be solved with highly configurable and
parametrisable macrocell libraries: this is a point where
more emphasis should be put by macrocell designers.

• The partition between hardware and software has the
same granularity problem. However, given a
microprocessor core and a selection of the I/O devices
given by the system requirements, the target system can
be programmed on a virtual prototype and performance
may be checked very early in the design process.

• System simulations may have performance problems if
no simulation oriented models are available. For
example, regular block generators, like classic RAM,
ROM or PLA compilers produce simulation models
based on structural information that cause large
computing overheads at system level simulations.

• The use of vendor-provided macrocells may cause
problems in specific design stages if the set of views is
not complete. For example, the lack of a test view for a
complex macrocell could collapse the test pattern
generation phase, specially if no structural information
is available for the cell.

For the specific case of embedded control systems, the
macrocell concept requires an additional clarification: with
the exception of the microprocessor core blocks (integer
unit, cache memories, etc.), where block sizes are large,
the rest of functions, basically I/O devices, are obtained by
hooking small to medium size macrocells. Therefore, as
we are dealing with low end macrocells sizes, the problem
is that the number of gates required for a given DFT
implementation on or around a given macrocell may be
too large compared to the macrocell size itself. Therefore,
this fact will restrict the use of scan chains around all
macrocells because of large DFT area overheads.

Other problems, taken apart of the previous discussion
because they are the motivation of the work here
presented, are the testing difficulties:

B. The test problem

System designers usually consider the test phase as
something that has to be done much later, and by someone
else. However, complex designs require test planning at
the system level, specially if we consider the test aspects
of a system from a wide perspective, and take into account
not only the manufacturing test issue, but on-line testing
and system monitoring as well.

An additional inconvenience in large systems, is the
near to exponential increment of test costs with respect to
system size. High complexity integrated circuits and

systems require well studied and finely-tuned test
strategies. On the other side, on-line detection of hardware
and software errors is a task that may also require a large
amount of system resources, measured in terms of extra
silicon area, dedicated operating system support, etc.

The test views of a macrocell should include
manufacturing test vectors, whether the cell uses
structured DFT techniques, functional test vectors, and/or
BIST. Some methods have been proposed, based on the
Boundary Scan standard IEEE 1149.1[3,4], as standards
for manufacturing test in macrocell based designs [5]. The
aim of this method is to apply the test vectors of every
macrocell test view serially through IEEE 1149.1
compliant scan registers that surround the macrocells. This
solution is, however, very expensive in terms of additional
area if the macrocells have small sizes, as it happens in the
case of embedded systems.

On the other side, existing microprocessor testing
solutions [7 to 17] show that the way to test a
microprocessor or microcontroller chip is not the
application of a single method, but the selection of several
methods, each of them valid for a different submodule.
Among these ones, scan path techniques, connection of
macroblocks I/O signals to the primary chip I/O pins in
test mode, functional testing, BIST and boundary scan
(BS) implementations are the methods most frequently
used. It is also important to note that since the appearance
of the boundary scan standard, many microprocessors
incorporate more or less sophisticated versions of the
standard, from which other test features rely upon.

Testing has always been, in general, in the middle of a
cost trade-off in between the test design costs, including
DFT, and test application costs. In addition, test
functionality is seldom considered a basic system
requirement, and it is difficult to justify efforts in test
design and DFT. So, an important issue is to determine the
benefits of a set of selected testing strategies against the
implantation costs, and this includes the determination of
these costs at the moment of deciding the strategies to
follow.

2. Test Design Environment Requirements

From the test problems previously identified, it comes
out the need of an environment or a set of tools that offer
the system designer the following basic capabilities:
• Generation of behavioural simulation-oriented models

of test logic. The aim is to produce a model that does
not penalise simulation time when the test subsystem is
installed in the complete system model.

• The model generator should also produce high level test
simulation functions, so that the designer can easily
work with the test logic without need of knowing the
low level details, like how to assert the boundary scan
required signals, how internal registers and subregisters

are arranged, how to manage the TAP controller, etc.
• Tools for test vector serialisation and assembly are

required. The simulation environment should provide
the designer with a way to interact dynamically with the
test subsystem in simulation time.

• Synthesis oriented VHDL models are required to easily
move into later design stages.

• Estimation of test costs for a given solution, by inferring
the DFT area (without need of synthesis) and test
application time.

In this sense, high level system prototyping is an
advantage if test cost estimations can be done from high
level specifications. The possibility of automatically
generating the model of the test subsystem integrated with
the rest of the system, together with the capability of
estimating test application cost (in terms of required test
vectors) and also the estimation of increment of area
caused by DFT are of great benefit for the overall test
problem within the general system design flow.

The the test model and the proposed test environment
simplify the steps of the estimation cycle. Figure 2 shows
how the test cost optimisation cycle is improved with the
test environment proposed in this paper.

Initial Test
Specification

Test Logic
Model Generation

Simulation
Model

Optimised
Solution

Area-Time
Estimations

Test Spec.
Refinement

Figure 2. Test strategy refinement loop

The missing point in the previous figure is how to
select a new test specification to produce a minimisation
of test costs. It can be done with specific tools, like a
knowledge based tool, or through a dedicated
cost-oriented study. This decision making tool is out of the
scope of this paper.

3. Proposed Test Environment

The general aim of virtual prototyping is to provide the
system designer, including hardware and software
designers, with a combination of tools and system models
that are useful for the embedded system design, simulation
and verification stages. In the same way, the test
subsystem model and the tools proposed within the test
environment aim to simplify the design and verification

tasks for the issues related with the test subsystem starting
at the architectural level.

Figure 3 shows a block diagram of the proposed test
environment, where the different tools, models and data
information dependencies can be seen.

Test module
library

Core Logic (VHDL
circuit description)

Test Model Generator

Boundary Scan
Socket

T tb h

Core
logic

Test
Modules

Boundary
Scan Logic

Test specification
file

Test Pattern
Assembly Program

Visualisation
Tool

System Model + Test Logic Model

Figure 3. Test environment module diagram

The core logic contains the VHDL models of the
original system. This description can either be at the
integrated circuit level or the printed circuit board
(system) level. In the first case, the core logic description
is represented by a structural VHDL file showing how the
internal macrocells are interconnected. In the second case,
the PCB description is also defined by a structural
description showing the instantiations of the different
integrated circuits and their interconnection lines.

The characteristics of the test strategies to use in the
system are indicated in the test specification (TS) file. This
file contains, for each circuit, the definition of the test
functions to implement in the test subsystem, the
organisation of BS registers and subregisters, the standard
and user-specific BS instructions to use, the instantiation
of additional test modules that are to be included in the
integrated circuit together with the core logic, etc.

Both core logic and TS file are the input data to the
Test Model Generation tool (TMG). The output of the
TMG is another VHDL that integrates the original system
and all the test logic as specified in the TS file.

The test modules to integrate in the circuit are taken by
the TMG from a library of configurable test blocks
(signature analysers, watchdog controllers, bus
masters/monitors, bus range checkers, etc.). The insertion
of a test block must be specified in the TS file, and the
TMG will instantiate this module into the TSM, add the
required BS instructions for the correct addressing of

module registers and perform the adequate signal
connections with both core logic and BS logic.

DFT area estimations are produced by the TMG tool,
also. These estimations are produced from a set of
technology dependent parameters that are obtained from
the synthesis of some simple predefined modules,
optimised for the selected target technology. Technology
parameters are automatically obtained from a script that
synthesises these modules, and it has to be done once for
every target technology.

The application of test vectors through the standard
IEEE 1149.1 test access port is performed through the
Boundary Scan Socket module. This module is in charge
of applying and receiving data through the BS signals. The
models are prepared for two different simulation
environments: the first one, suited for chip manufacturing
test validations, is a full VHDL testbench template that
incorporates functions and procedures to allow operation
at higher level than basic boundary scan signal handling.
The second simulation environment, more suited for board
monitoring and on-line testing activity, uses the C
language interface of the VHDL simulator to connect with
the visualisation tool and the test pattern assembly
programs.

The generation of the value sequences that are fed to
the system through the BS may be created from high level
test functions using the Test Pattern Assembly Program
(TPAP). The TPAP may be used to perform functional
simulation for the integrated circuit or for the entire board
models. It incorporates algorithms for generation of high-
level test functions, suchs as PCB interconnection testing,
cluster testing and BS consistency check.

Simulation results might be inspected using the
waveform viewer of the VHDL simulator. However, the
interpretation of such results in the case of long test vector
sequences, as in the case of the BS logic, is a very hard
issue. The visualisation tool (VT) shows the results
obtained from the simulation not only as the resulting
sequence of test responses but as the result of the
application of the high level test functions. The
visualisation tool also lets the user to select the test
programs to apply with a script file. User driven
commands given through the visualisation tool may be
given independently on the execution of the system
testbench, allowing on-line monitoring emulation.

4. The Test Model

The model can be generated and configured from a test
specification file. This means that the addition of BS logic
and specific test modules, interconnection modifications
and high level block parametrisations are automatically
performed with the information provided in the TS file.

One of the characteristics of boundary scan testing is
the huge length of serial test data required to load and

download the boundary registers or any other serial
register connected between TDI and TDO. This means
that a lot of test clock cycles have to be simulated and
therefore a significant amount of time is used. To solve
this, the test model provides a way to perform data
load/unload independent of the system clock(s) and of the
test clock, so that serial data is available at the appropriate
register elements with low simulation effort. However, the
number of required test cycles is evaluated so that an
estimation of the total and partial test lengths can be
performed for a given test plan.

For other purposes, the model also includes the
capability of test cycle by test cycle simulation. This
allows, for example, signature calculations for blocks with
unpredicted self-test signature values, precise verification
of correct test vector application, all type of on-line
operation, etc.

Subcycle timing is not checked, although logic delay
effects have been considered to minimise timing penalties.

In some circumstances, the operation of BS with the
integrated circuit plugged together with other circuits on
the PCB may produce incorrect operation or damage to
the circuitry because signal driving directions may change
with respect to normal operation mode. The robustness of
the IEEE 1149.1 standard is in the direction of providing
the necessary HW architectural mechanisms to avoid that
possibility. Incorrect operation may, however, produce
undesired results. In this sense, the virtual model provides
information about possible incorrect or hazardous
operation during the test mode. It detects effects like the
existence of multiple drivers in a signal, leaving inputs in
high impedance, etc.

The TSM is also a gateway to the final logic
implementation on the chip and PCB: the model
generation tool produces a fully synthesisable VHDL
model of the test logic.

There are three different test models, suited for
different uses:

a) High level specification model at chip level (see
Figure 4). This model includes the instantiation of the
required BS register logic and other user defined internal
registers, the generation of the control logic required for
operation of the specified BS instructions, the instantiation
of additional library test modules and their interconnection
with the core logic and the BS control ports.

The testbench instantiates the resulting block with all
the added circuitry, the BS socket and either the
visualisation tool interface or the VHDL testbench profile,
as required by the user.

The application scope of this module includes the
validation of the internal module interconnection, the
verification of the BS instruction level routines, the
validation of the manufacturing test routines that require
the aid of the incorporated BS logic (like direct off-chip
module connection, etc), execution of BIST structures (if

any) controlled from the BS port, and the validation of the
correct operation of the modules that are instantiated from
the test module library.

TDI
TDO

TAP

Test
Block

#1

TRST*TCK TMS

ASIC TestBench

BS Socket

Macro
Cell
#1

Macro
Cell
#2

Test
Block

#2

Figure 4. Asic test Model

b) High or low level integrated circuit models
connected at PCB (see Figure 5). The model at this stage
includes the instantiation of the integrated circuit models
as in the first point, and the interconnection at PCB level
of the BS logic between several circuits. The testbench
also includes the BS socket to connect to the visualisation
tool and the test assembly program.

The application scope of this model includes the
validation of the global BS activity at either PCB level or
system level, that is: simulation of the complete system,
with the capability of observing the PCB activity together
with the BS activity. This allows, among others, the
validation of the algorithms developed for PCB
manufacturing test and simulation and validation of the
system monitoring strategies and on-line self test schemes.

Core
ASIC

#1

TDO

TRST* TCK TMS

ASIC
#3

ASIC
#4

ASIC
#5

PCB

Core
ASIC

#2

TB
#2

TB
#1

TDI

PCB Testbench

BS Socket

TAPTAP

Figure 5. PCB model

c) Low level description of the complete integrated

circuit. The low level description is a fully synthesisable
description of the whole chip logic, and thus, this stage is
oriented to the estimation of DFT area and to the synthesis
of the incorporated test blocks.

There is no benchmark generated for this block, as this
function is included in the first model type.

5. Application Results

The test environment has been developed within the
ECU project (OMI Initiative), on which a target embedded
control application is implemented based on a custom
SparcTM board. The main microcontroller chip integrates a
SparcTM compliant integer unit, instruction and data
caches, a PI-bus controller and several I/O devices. The
behavioural system model is integrated with development
system tools so that the board model can be attached to a
general use software debugger (gcc) and to a high level
hardware observer.

The test environment has been used with this target
board at chip and PCB levels. At chip level, different
features have been implemented and tested functionally:
• Boundary scan compliant logic in the integrated circuit

periphery.
• Subregisters for control and observation of I/O ports.
• Internal scan register for the IU macrocell.
• Event counter/range checker for the internal instruction

address bus.
There are presently under development more library

test modules, such as an internal bus master/observer and a
configurable watchdog controller.

In order to compare model synthesis results and
accuracy of DFT area estimations, comparisons with
SynopsysTM JTAG Compiler have been done. Several
circuits with a variable number of boundary scan cells
have been tested. The test models implemented for this
benchmark are simple implementations of the required BS
logic to minimally satisfy the IEEE 1149.1 standard
(mandatory instructions, boundary, bypass and instruction
registers). Table 1 shows DFT area estimations, synthesis
area results for the models generated with our tool, and
area results with Synopsys™ JTAG Compiler. The first
percentage column shows deviations of the area
estimations with respect to the synthesised area result of
our model. The second one shows the differences between
our model and the SynopsysTM model. Every synthesis
area result shows two numbers: the first one takes only
into account area for logic cells; the second one includes
logic cell area and interconnection area. The test models
generated with the TMG have been synthesised with
SynopsysTM Design Compiler. Area units are given in
mils. The largest circuit, coreECU, is the microprocessor
core model developed in the ECU project.

It can be observed in the table that area estimation
deviations are less than 3 percent for large circuits, and

that the model generated with the TMG is slightly larger
than with SynopsysTM JTAG Compiler. In fact, our model
is always around 26 mils larger than the SynopsysTM

model, no matter the number of cells. Therefore, area
differences are very small for large circuits.

Circuit # BS
Cells

Estim.
area

TMG area Diff
(%)

Syn. JTAG
Compiler

Diff
(%)

FrqDiv 5 380.5
928.7

376.6
894.7

1,04
1,80

350.6
785.4

7.42
13.91

BCD7seg 11 527.9
1242.6

529.4
1204.8

-0.28
3.14

503.4
1095.5

3.95
7.95

Alarm 17 675.2
1556.5

683.6
1518.6

-1.22
2.50

657.6
1409.3

3.95
7.75

RTClock 26 896.3
2027.3

904.1
1972.2

-0.87
2.77

879.6
1864.9

2.79
5.78

Comp 27 920.8
2079.6

928.7
2022.7

-0.85
2.81

904.2
1914.9

2.71
5.63

muxAlHr 40 1240.1
2759.8

1252.3
2681.8

-0.98
2.91

1226.3
2572.5

2.12
4.25

coreECU 325 8239.7
17413.4

8360.9
17166.6

-1.45
1.44

8334.8
16930.4

0.34
1.39

Table 1. Estimation and synthesis comparison results

Regarding simulation performance, the operation of
the SparcTM board model with the test model included
(only for the main chip) is only 5 to 6 percent slower than
the original system model simulations. This benchmark
was done having the system emulating a C program
execution and without activating the test logic. Test logic
was fixed in the run-test/idle state, while having the test
clock (TCK) at the same frequency of the system clock.
This show that the penalty time for adding the test model
is not very important. A test script running continuous
sampling operation on the test logic produces an increment
in simulation time around 16 percent.

The time needed for generating the test model from the
original VHDL code and the test specification file is
negligible.

6. Conclusions

A behavioural test logic model and a test environment
for simulation, estimation and synthesis have been
proposed. The main contribution of the work is to rise the
test design phase at the system designer’s level, providing
an efficient method of implementing and simulating
standard test logic in macrocell based systems.

Test design time is reduced and overlapped, allowing
the test optimisation cycle (implement-estimate-simulate)
at the high level system design phase.

Among the future trends, it is important to highlight
that the proposed environment can be easily adapted to
implement a cost-oriented automatic test plan selection
tool. This would allow the implementation of highly
optimised test designs.

The use of two standards, VHDL for the model, and

Boundary Scan for the test access logic produces wide
interoperability and usability.

Macrocell based designs can be a promising solution if
they can be highly configurable and parametrisable, and
all design views are available from the macrocell
providers. The embedded control world is a good
application field for macrocell designs.

References

 [1] IEEE Standard VHDL Language Reference Manual
(ANSI/IEEE Std 1076-1993). IEEE Computer Society.
June 1994

 [2] ELI macrocell standard. Open Microprocessor systems
Initiative. XXX

 [3] IEEE Standard Test Access Port and Boundary-Scan
Architecture. (IEEE Std 1149.1-1990 and IEEE Std
1149.1a-1993). IEEE Computer Society. October, 1993

 [4] The Boundary Scan Handbook. K.P. Parker. Prentice Hall.
1992

 [5] OMI standard 307: Macrocell manufacturing test. Matra
MHS. June, 1995

 [6] J. Goicolea, R. Guzmán, M.A. Salas, S. Olcoz, D. Navarro,
A. Roy, ‘System Designer Approach to the Development
of Embedded Systems Using VHDL’, APCHDL, October
1994

 [7] K. Holdbrook, S. Joshi, S. Mitra, J. Petolino, R. Raman,
M. Wong, ‘microSPARC™: A Case Study in Scan-based
Debug’, International Test Conference, 1994

 [8] D. Bhavsar, J. Edmonson, ‘Testability Strategy of an
ALPHA AXP Microprocessor’. International Test
Conference, 1994

 [9] D. J. Mirizzi, W. Jerrels, D. Ohmart. ‘Implementation of
Parallelsite Test on an 8-Bit Configurable
Microcontroller’, International Test Conference. 1993

[10] D.D. Josepshson, D. J. Dixon, B. J. Arnold. ‘Test Features
of the HP PA7100LC Processor’, International Test
Conference . 1993

[11] R. Patel, K. Yarlagadda. ‘Testability Features of the
SuperSPARC Microprocessor’. International Test
Conference. 1993

[12] H. T. Nagle, R. R. Fritzemeier, J. E. Van Well, M. G.
McNamer. ‘Microprocessor Testability’. IEEE
Transactions on Industrial Electronics, May, 1989

[13] T. J. Powell, F. Hwang, B. Johnson. ‘Testability features in
the TMS370 family of microcomputers’. International Test
Conference, 1988

[14] A. Crouch, M. Pressly, P. Laskso, J. Circello, ‘Testability
Features of the MC68060 Microprocessor’, International
Test Conference, 1994

[15] Hunter, K. Torku, J. LeBlanc, ‘The PowerPC(tm)
Microprocessor Test Methodology’. International Test
Conference, 1994

[16] W. Harwood, M. McDermott, ‘Testability features of the
MC68332 modular microcontroller’, International Test
Conference, 1989

[17] J.A. Lyon, M. Gladden, E. Hartung, E. Hoang, K.
Raghunathan, ‘Testability features of the 68HC16Z1’,
International Test Conference 1991

	CDROM Home Page
	1996 Home Page
	EURO-DAC96 Home Page
	Front Matter
	Table of Contents
	Session Index
	Author Index

