
EURO-DAC ’96 with EURO-VHDL ’96
0-89791-848-7/96 $4.00 1996 IEEE

BDD-Based Testability Estimation of VHDL Designs�

Fabrizio Ferrandi # Franco Fummi # Enrico Macii z Massimo Poncino z Donatella Sciuto #

Politecnico di Milano

Dip. di Elettronica e Informazione

Milano, ITALY 20133

z Politecnico di Torino

Dip. di Automatica e Informatica

Torino, ITALY 10129

Abstract

In this paper we present a method, based on symbolic ATPG

techniques, that allows the designer to predict the testability of

of a control-oriented complex design speci�ed as a set of inter-

acting VHDL modules. Conversely from existing approaches,

our method is purely functional, that is, it does not subsume

the knowledge of a gate-level implementation of the system be-

ing analyzed. Therefore, it allows us to compute testability es-

timates with a high degree of accuracy for examples on which

existing tools fail due to the enormous amount of information

they have to handle when considering the structural implemen-

tation of the circuit under investigation. Preliminary exper-

imental results demonstrate the e�ectiveness of the proposed

technique.

1 Introduction

The ability of accurately estimating the testability of a dig-
ital system at the early stages of the development process,

that is, before the behavioral speci�cation is synthesized

into a gate-level implementation, is very important in mod-
ern VLSI circuit design. In fact, it may help reducing the

total system development time, as well as increasing the

quality of the �nal realization of the chip with respect to
some cost functions, such as area, speed, power consump-

tion, and testability.

In industrial environments, the synthesis of highly com-
plex devices is based on the speci�cation of networks of

interconnected �nite state machines controlling data paths
(IFSMD [1]) using hardware description languages such as

VHDL.

In this paper, we propose a technique to estimate the fault

coverage of a design before the logic synthesis phase, thus

allowing an evaluation of the quality of the VHDL code

in terms of testability. This information enables the de-
signer to decide whether or not the application of Dft to the

VHDL source code is required to eventually achieve testa-

bility improvements in the �nal circuit realization. The
fundamental observation here is that an early modi�ca-

tion of the design is always bene�cial from several points

of view, such as area, performance and power consump-
tion of the gate-level circuit, as well as time savings in

completing the system development.

�

This work was supported, in part, by OMI/REQUEST n. 20616

{ Reuse and Quality Estimation.

Our contribution is the �rst outcome of the testability-

related portion of an on-going research project� whose ul-

timate objective is the de�nition and implementation of a
VHDL testability quality checker. This in the more gen-

eral context of the realization of a exible development

framework that allows a fast and right-the-�rst-time de-
sign of easily testable systems, along the realization of the

associated testing procedures.

The main problem arising when the goal is evaluating the
testability of a VHDL description is the reliability and the

accuracy of the predicted test costs that the estimator is

able to guarantee. This is due to the fact that it is manda-
tory to de�ne a fault model on the functional description

that must be related to the gate-level one. The solution

we consider is test generation-based, that is, it relies on the
use of symbolic test pattern generation to identify faults

in the VHDL code. This is done by way of a comparison

between the correct and the faulty systems, being the lat-
ter derived from the former through insertion of a fault.

Clearly, the inserted fault is speci�ed at the functional-

level, but it is strictly related to the corresponding gate-
level fault, thanks to the knowledge of the algorithm used

to synthesize the VHDL speci�cation into a netlist. This

method, di�erently from others in the literature [3], im-
plicitly evaluates the circuit's controllability and observ-

ability without de�ning quantitative measures; conversely,

it establishes the chance of successfully identifying a test
pattern for each of the considered functional faults.

Approaches in the literature considering the problem of

test generation and testability analysis for VHDL are of
two types: Coverage-oriented, whose goal is to guarantee

the exercise of all functionalities [4], and fault-oriented,

whose objective is to obtain fault coverage information
from the behavioral model [5, 6]. Fault-oriented test gener-

ation relies on the association of failure modes to the hard-

ware description language constructs [7]. However, the

validation of such fault model with respect to the stuck-at

fault model depends on the logic synthesis algorithm used,
and it cannot be assumed in general. The correlation iden-

ti�ed by Ghosh is approximately 80%. Following this mod-

eling strategy, di�erent methods have been proposed [6, 8].
All techniques use a graph-based internal representation of

the VHDL description for explicit path sensitization and

mainly consider data-path based architectures [9, 10].

The method we present is based on the assumption that
the system under consideration is described in VHDL as a

network of interacting FSMDs. In addition, it is assumed
that the testability for the data portion of the system is

obtained through scan registers and appropriate driving

circuitry [2]; in fact, this is what is commonly done in
the development of practical designs. Therefore, the focus

is on the control part of the system, whose behavior is

usually speci�ed through a network of interacting FSMs
(IFSM). In this sense, we can claim that the approach

to behavioral VHDL testability estimation we present in

this paper is innovative; in fact, solutions to the problem
of testing control-oriented architectures proposed in the

past [11, 12, 13] always resorted to the use of information

coming from the structural implementation of the circuit.
On the other hand, the analysis we carry out is purely

functional.

As we just said, we are interested in estimating the testa-
bility of the control logic by operating directly at the spec-

i�cation level, that is, without resorting to the information

that becomes available after logic synthesis. To do this, we
extract from the VHDL description the control part consti-

tuted by interacting FSMs, and we translate their VHDL

descriptions into an internal implicit representation based
on BDDs [14]. Then, we assume the control logic to be im-

plemented initially by a two-level network; this allows us to

identify from the BDD representation of the VHDL spec-
i�cation the essential prime implicants that will surely be

included in any gate-level realization of the design. Stuck-

at faults on such implicants represent our functional fault
model. The multi-level implementation can then be ob-

tained from the two-level one by applying some testability

preserving transformations [15]. Test generation is �nally
performed for the BDD representations using a tool [16]

we have developed in the context of gate-level optimization

of interacting FSMs [17]. The testability of each module
(FSM) can thus be estimated by using the fault coverage

achieved for it.

The remainder of this manuscript is organized as follows.
Section 2 introduces the adopted VHDL-level fault model,

the procedures to extract from the VHDL source code of a

controller the corresponding BDD representation, a set of
faults, and the BDD representation of the controller con-

taining one of such faults. Section 3 summarizes the BDD-

based test pattern generation algorithm of [16]. Section 4
reports some preliminary experimental results demonstrat-

ing the viability and the e�ectiveness of the proposed ap-

proach. Finally, Section 5 is devoted to concluding remarks
and directions for future research.

2 Fault Modeling at the RT Level

The adopted fault model is based on a BDD representa-

tion of the behavior of each FSM composing the VHDL

description of a device. Thus, we �rst introduce a tech-

nique to extract such BDD representation from a VHDL

description at the register-transfer (RT) level.

2.1 Extraction of the Global Relation of a FSM

from VHDL

The test generation algorithm of [16] builds a global re-

lation, represented as a BDD, for each component of an
IFSM starting from its gate-level implementation. Here,

we propose to build the same relation, still represented as

a BDD, through direct translation of the VHDL code.
Three main reasons advise to follow this strategy. First,

testability information becomes available before RT-level

synthesis. The designer can evaluate the testability prob-
lems, concerning the concatenation of VHDL entities, be-

fore their RT-level synthesis. It is fundamental to modify

for testability a design from the early stages of its speci�-
cation. Second, VHDL synthesis tools infer some memory

elements during RT-level synthesis that do not concern

with the actual behavior. Such memory elements increase
the number of states of the implemented controller and

also the complexity of the corresponding BDD represen-

tation. For instance, let us consider the simple VHDL
code reported in Figure 1, describing the behavior of a

synchronous controller when it is in state p0.

CASE state IS

WHEN p0 =>

IF start m = '1' THEN

state <= refresh;

end m <= '0';

valid pol <= '0';

start r <='1';

ELSE

state <= p0;

valid pol <= '1';

start r <= '1';

END IF;

Figure 1: VHDL Description of a Part of a Controller.

The output signals end m, valid pol and start r are as-

signed into a synchronous process, thus they must be con-

nected to ip-ops. Moreover, end m is not assigned in
the ELSE branch of the condition, thus it requires a de-

fault value to be synthesized. Consequently, the synthesis

tool (e.g., [19, 20]) inserts a muxed-ip-op onto such an
output port. It is evident that the implemented FSM has

an higher number of states with respect to the speci�ca-

tion, and most of them are equivalent. Thus, the global

relation extracted from the implementation would have an

unnecessarily high number of state variables. Finally, un-
speci�ed transitions are not included in the global relation.

During the extraction of the global relation of a sequential

circuit from its implementation, even transitions outgoing
from unspeci�ed states are included. In fact, all combi-

nations of input and present state variables are implicitly

taken into account to identify the FSM's transitions. On
the contrary, the global relation of a controller includes

only speci�ed transitions if it is directly constructed from

a VHDL speci�cation. A lower number of transitions usu-
ally implies a smaller BDD.

The technique we propose to translate a VHDL descrip-
tion specifying a controller into the corresponding relation

represented as a BDD starts by analyzing the VHDL archi-
tecture associated with the entity of the FSM. Two types

of analysis are performed. First, a state identi�cation is

carried out. In fact, considering the execution ow of the
sequential process, a signal or variable belongs to the state

of the FSM when it is read before any write or initial-

ization instruction. After state identi�cation, the global
relation is computed. The style of the �nite state machine

considered presents a process with a conditional structure.

Figure 2 reports a simpli�ed description of a FSM.

statement list =

branch | assignment statement list

branch =

<IF> condition <THEN>

statement list

<END IF> |

<IF> condition <THEN>

statement list

<ELSE>

statement list

<END IF>

Figure 2: General VHDL Structure of a FSM.

The VHDL assignment statement is translated into the re-

lation Assign(x; s; z; t) which depends on the primary in-
puts x, the current state s, the primary outputs z and the

next state t. Each signal/variable is coded into a BDD
variable, and the high-level operator is converted into an

array of Boolean functions represented by BDDs. So, each

expression included in an assignment statement is com-
puted by composing its high level operators. Then Assign

relation is computed by relating the output or the next

state variable with the Boolean functions associated with
the considered expression. Similarly, the VHDL condition

statement is translated into the Cond(x,s) relation.
The VHDL branch statement is translated into relation
Branch(x; s; z; t) by using the following formula:

Branch(x; s; z; t) = Cond(x; s) � Stat then(x; s; z; t) +

Cond(x; s) � Stat else(x; s; z; t);

where Stat then(x;s; z; t) and Stat else(x;s; z; t) identify
the two relations associated with the statement lists of

the THEN and the ELSE clauses. Stat else(x;s; z; t) is equal

to 0 when the branch statement does not present the ELSE
branch.
Finally, the VHDL statement list is translated into the
Stat(x; s; z; t) relation by using the following formula:

Stat(x; s; z; t) = Branch(x; s; z; t) + Stat list(x; s; z; t)

or

Stat(x; s; z; t) = Assign(x; s; z; t) + Stat list(x; s; z; t);

where Stat list is di�erent from 0 when statement list

presents more than one statement.

The global relation associated with the device is then com-
puted by recursively using the formulas shown above.
As an example, let us consider the description of the part
of controller shown in Figure 1. The formula associated
with the IF statement is:

start m � (refresh�state+ end m+ valid pol+ start r)+

start m � (p0�state+ valid pol+ start r):

2.2 Fault Model

Let us consider a n-input, single-output Boolean function

g. A minimal two-level implementation of g is composed of
essential primes and primes that together cover the on-set

of the function with minimum cost. Let pe be the set of es-

sential primes, jpej its cardinality, and ke the total number
of its literals. Similarly, let p be one set of primes required

to complete the minimum cost cover, jpj its cardinality,

and k the total number of its literals.
All the stuck-at faults of the implementation of function g

are guaranteed to be equivalent to the faults belonging to

the following classes [2]:

� SA-1 faults on all literals of each prime in pe [p (i.e.,
they are equivalent to SA-1 faults on the and and or

gates).

� SA-0 faults on one literal of each prime in pe [p (i.e.,
they are equivalent to SA-0 faults on the and and or

gates).

� SA-0 and SA-1 faults on all input variables (i.e., they

represent stuck-at faults on the inverter gates by assum-
ing that all input variables are in complemented form for

at least one prime in pe [p).

The upper-bound Ug on the total number of faults is:

Ug = ke + k + jpej+ jpj+ 2n:

Clearly, faults corresponding to the essential primes are
present in every implementation of the Boolean function,
independently on the other primes selected to complete
the cover (i.e., the primes in p). A necessary condition to
test all stuck-at faults of every implementation of g is then
the test of faults corresponding to the essential primes.
Therefore, the number Lg of stuck-at faults that always
need to be considered is:

Lg = ke + pe + 2n:

The considerations above can be extended to the case of a

n-input, m-output Boolean function G = (g1; : : : ; gm) by
letting pe be the union of the pie sets of essential primes of

each single output function gi composing G. Furthermore,

there are multi-level transformations of two-level imple-
mentations which preserve testability [15]. Test patterns

generated for a two-level implementation can then be ex-

tended to a multiple-level one, by applying such transfor-
mation techniques.

2.3 Generation of the Faulty Global Relation of

a FSM

The test generation approach presented in Section 3 is

based on the comparison between the fault-free global re-
lation of a FSM, M , represented as a BDD, and the faulty

global relation of the FSM, MF , still represented as BDD,

obtained from M by injection of one fault. Let R(x; z; s; t)
be the global relation of M and let RF (x; z; s; t) be the

global relation of MF .

In this section we describe how relation RF can be gen-
erated starting from R for a given fault f . To do so, we

separately consider each Boolean function Ri(x; s), associ-

ated with each primary output zi and state output ti, so
that R(x; z; s; t) =

Q
Ri(x; s)�bi : bi = zijbi = ti.

The essential primes of the Boolean function representing
the global relation R are implicitly computed by apply-
ing the algorithm in [18]. The faulty global relation, RF ,
is then determined based on the set of primes (pe [p)
in the two-level cover, and on the previously described
three classes of faults. In fact, the following three di�erent
strategies for fault insertion are applied in relation to the
type of fault.

� SA-1 faults on all literals of each prime in pe [p.

Let ip(x1; � � � ; xl; s1; � � � ; sm) 2 pe be an essential prime, and

bi : bi = xijbi = si.

8bi : ip(x; s)bi 6= ip(x; s)
bi

(i.e., ip(x; s) depends on bi) then

the faulty prime ipF (x; s) = ip(x; s)bi and

the faulty relation RiF (x; s) = Ri(x; s) � ip(x; s) + ipF (x; s)

(i.e., the fault-free essential prime is replaced by the corre-

sponding faulty prime).

� SA-0 faults on one literal of each prime in pe [p.

Let bi : bi = xijbi = si.

9bi : ip(x; s)bi 6= ip(x; s)
bi

then

the faulty prime ipF (x; s) = ip(x; s)
bi

and

the faulty relation RiF (x; s) = Ri(x; s) � ip(x; s) + ipF (x; s).

� SA-0 and SA-1 faults on all input variables.

Let bi : bi = xijbi = si.

8bi : Ri(x; s)bi 6= Ri(x; s)bi
then the faulty relation

RiF (x; s) = Ri(x; s)bi
for SA-0 fault and

RiF (x; s) = Ri(x; s)bi for SA-1 fault.

At the end, the global faulty relation, RF (x;s), is re-

constructed starting from each computed faulty relation
RiF (x;s).

3 Testing Strategy

In [16], we presented a testing strategy for complex systems

structured as a network of FSMs. The method considers
FSM networks whose connection graphs are DAGs, since

it can be shown that, once a speci�c FSM, M , has been

selected, it is always possible to �nd a serial decomposition,
i.e., a topological sort, of such network with respect to M ,

even in presence of reconvergent fanout connections.

The set of FSMs driving M originates the controlling net-

work (C), while the set of FSMs driven by M originates

the observing network (O). As an example, Figure 3 shows

the controlling and the observing networks for FSM 3.

FSM1
FSM

4
FSM

3
FSM 2 FSM

6FSM 5

Controlling Network Observing Network
FSM
Under
Test

M
OC

Figure 3: Controlling and Observing Networks for FSM 3.

The testing procedure works in three steps. First, after in-
jecting fault f into M , the set TSM of all minimum length

test sequences for fault f are computed. If no sequence

exists, the fault is untestable. In the second phase, it is
veri�ed whether the controlling FSM, C, is able to gen-

erate some of the sequences in TSM . If this is the case,

a sequence JSC , representing the justi�cation sequence of
TSM is generated; otherwise, the fault f is marked as non-

excitable. In the third phase, it is veri�ed if, under appli-

cation of the test sequence (JSC+TSC), the fault can be
observed on the primary output lines of machine O. To do

this, we �rst fault simulate the test sequence (JSC+TSC)

to obtain the corresponding sequences JSO and TSO, in
terms of the input variables of O. Then, we determine the

set of observing states of O for which the outputs of O

di�er, under the application of the distinguishing vectors
of TSO. If no observing state exists or is reachable, then

fault f is non-observable with respect to set of sequences

that have been considered. Otherwise, the set of state of O
that originate sequences JSO+TSO is determined; if such

a set contains the reset state of machine O, then fault f is

observable.
For further details about speci�c steps of the testing algo-

rithm, the reader is referred to [16].

4 Experimental Results

In this section we present preliminary results we have ob-

tained by applying the testability estimation techniques
proposed in this paper to some benchmark designs.

The �rst set of data, shown in Table 1, aims at demon-

strating the advantages that one may get in extracting the
BDD-based description of a FSM directly from the VHDL

code instead of from a gate-level implementation. The con-

sidered circuits come from both industrial and academic
environments. Those with the ctrl su�x are parts of the

vending machine reported in the VHDL book of Perry [21]

and the others are telecom controllers. For each circuit
we present the total number of primary inputs and pri-

mary outputs; then, the number of states and the number

of BDD nodes of the global relation of the FSM associ-
ated to the circuit in the case such relation is extracted

from the VHDL source code; on the other hand, when the

gate-level netlist is used, we report the number memory el-
ements and, again, the number of BDD nodes of the global

relation of the FSM associated to the circuit. This com-

parison clearly highlights what is the advantage one can
get by using the direct extraction technique of this paper.

Example Inputs Outputs VHDL Netlist

States BDD Nodes FF BDD Nodes

change tim ctrl 5 7 32 131 10 4999

coin tim ctrl 5 3 16 61 5 234

exac change ctrl 10 2 65536 431 17 2079444

item tim ctrl 10 4 2 43 5 531

write 10 8 7 178 11 12610

tx 10 10 44 380 16 264327

itg 7 5 8 140 3 124

alfa 7 6 14 237 4 193

Table 1: Results: Extraction of the Global Relation From VHDL and Netlist.

In the case of benchmarks named itg and alfa, the BDD
representations of the global relations extracted from the

netlists are a slightly smaller than the BDD representations

extracted from the VHDL source code. This depends on
the di�erent degrees of speci�cation of the implemented

circuits and the corresponding VHDL descriptions, that

sensibly a�ect such small examples. On the contrary, the
other global relations extracted directly from VHDL are

signi�cantly smaller than the corresponding BDD repre-

sentations extracted from the netlists. Consider, for in-
stance, circuit exac change ctrl. For this example, only

431 BDD nodes are required to represent its global re-

lation when the starting point is the VHDL description.
Such number becomes almost unmanageable (i.e., mem-

ory occupation gets very close to the machine limit) when

the extraction is performed starting from the netlist.
The second set of data that we present concerns the analy-

sis of the accuracy that the proposed testability estimator

is able to guarantee.
To carry out the experiments we have chosen an industrial

chip realizing the functionalities of a telecommunications

controller. The design is composed of several intercon-
nected FSMDs. All data-path sections have been omitted,

since we assume that they are testable (possibly by apply-

ing a scan-path technique). The control logic, on the other
hand, originates the IFSM depicted in Figure 4 which con-

tains �ve components. A possible implementation of this

circuit contains a total of 37 synchronous memory elements
(i.e., ip-ops) and approximately 600 combinational logic

gates.

In Table 2 we compare, for each component of the IFSM,
the fault coverage obtained by applying the test generation

procedure of [16] to the BDD representations of the FSMs

global relations extracted from the VHDL descriptions and
the gate-level netlists.

Comp VHDL Netlist

Faults FC (%) CPU (s) Faults FC (%)

FSM1 74 85.1 474.6 53 83.0

FSM2 151 54.3 414.9 137 57.6

FSM3 186 7.9 88.3 198 8.7

FSM4 82 97.6 850.7 72 94.5

FSM5 248 95.0 971.0 226 98.0

Table 2: Results: Fault Coverage Comparison.

When the VHDL source code is used, only the faults corre-
sponding to the essential primes of the two-level cover have

been taken into account, and they have been modeled with-

out resorting to the structural circuit description. On the
other hand, when the gate-level implementation is used, all

the faults present in the FSM implementation have been

considered. The two coverage are very similar, thus un-
derlining the e�ectiveness of the proposed approach.

It is interesting to notice that gate-level test generation

can not be performed on the design implementation using
available structural (e.g., HITEC [22]) or traversal-based

(e.g., Veritas [23]) test generators, due to the size of the

circuit to be handled. On the contrary, the test genera-
tor presented in [16] identi�es the nature (i.e., testable or

redundant) of each stuck-at fault in the circuit implemen-

tation. Moreover, information regarding redundant faults
identi�ed at the VHDL level allows a designer to modify

the device speci�cation before its actual synthesis. In this

example, it is clear that FSM3 is di�cult to be tested due
to its interconnections.

FSM_SYNC

FSM

halt

cck

end

res

start_master

res FSM_MASTER

1 FSM 2

answ_from_chp

force_end_1

end_write_1
end_write_2

pol

pol_ok
start_r

start_p

back

flag

force_end_2

FSM_MATH

FSM 3

comb_o

FSM_CHP

FSM 4

FSM_MEM

FSM 5 up1
up2

answ_chp

end_write_1

end_write_2

data

sp_val

px_up1 px_up2

px_pol_ok1px_pol_ok2

end_master

end_math_1

end_math_2

phase

pol_ok_0
pol_ok_1

endpol
answ_from_chp

str_lab

en_reg

Figure 4: IFSM Description of a Telecom Device.

5 Concluding Remarks

The complexity of modern VLSI systems no longer allows

the development of new designs without the help of au-

tomatic synthesis tools. Once the behavioral speci�cation
of the system is available, human intervention is required

to guide the synthesis process by means of precise archi-

tectural and technological choices. Among the quality cri-
teria to be considered while designing a new chip, testa-

bility plays a central role; this is why sophisticated de-

sign for testability techniques have been proposed in the
past. Clearly, achieving high testability may be expen-

sive in terms of chip area, speed, and power consumption;

therefore, the use of DfT techniques should be limited to
the cases where no alternatives exist.

In order to reach this goal is thus essential to be able to

estimate the testability of the system under development
as early as possible in the design process. This is because,

at the high level of abstraction, the complexity of the de-

scription is still manageable, since several implementation
details are not relevant and, therefore, can be kept hidden.

In addition, making the right architectural choices may re-

sult in large advantages from the view-point of the quality
of the circuit produced by the logic synthesis tool.

The main contribution of this paper is a technique to pre-

dict the testability of a control-oriented digital design de-
scribed in VHDL at the behavioral level. In particular,

the system is assumed to be composed of several inter-

acting modules, being this the way industrial circuits are
designed. A BDD-based representation of each module is

then extracted from the corresponding VHDL source code.

Faults, modeled at the functional level, are then injected,
one at a time, to create a faulty instance of each module,

still represented as a BDD. Test generation on the result-

ing network of interacting modules is performed and some
global testability information retrieved.

All the proposed algorithms are fully symbolic, that is,

they completely rely on BDD-based, implicit enumeration
techniques to handle a large amount of information; as a

consequence, reasonably large examples can be processed

by our testability estimation tool in very short times. Ex-
perimental results, though preliminary, are very promising,

and prove the viability of the approach presented here.

As future work, we are currently looking into the problem
of extending the proposed technique to the case of designs

whose behaviors can be modeled by generic FSMDs. This

in the more general context of building a quality checker
and cost predictor for complex digital systems described

in VHDL at the RT level.

References

[1] D. Gajski, N. Dutt, A. Wu, S. Lin, High-Level Synthesis: Introduc-

tion to Chip and System Design, Kluwer Academic Publishers, 1992.

[2] M. Abramovici, M. A. Breuer, A. D. Friedman, Digital Systems Test-

ing and Testable Design, Computer Science Press, 1995.

[3] X. Gu, K. Kuchcinski, Z. Peng, \Testability Analysis and Im-

provement from VHDL Behavioral Speci�cations," EuroVHDL'94:

IEEE European VHDL Conference, pp. 644-649, Grenoble, France,

September 1994.

[4] S. R. Rao, B. Y. Pan, J. R. Armstrong, \Hierarchical Test Gener-

ation for VHDL Behavioral Models," EuroVHDL'94: IEEE Euro-

pean VHDL Conference, pp. 175-182, Hamburg, Germany, Septem-

ber 1993.

[5] U.H. Levendel and P.R. Menon. \Test Generation Algorithms for

Computer Hardware Description Languages," IEEE Transactions on

Computers, Vol. C-31, No. 7, pp. 557-588, July 1982.

[6] N. Giambiasi, J. F. Santucci, A. L. Courbis, V. Pla, \Test Pattern

Generation for Behavioral Descriptions in VHDL," EuroVHDL'94:

IEEE European VHDL Conference, pp. 228-235, Hamburg, Ger-

many, September 1991.

[7] S. Ghosh, T. J. Chakraborty, \On Behavior Fault Modeling for Dig-

ital Designs," Journal of Electronic Testing: Theory and Applica-

tions, Vol. 2, pp. 135-151, 1991.

[8] V. Pla, J. F. Santucci, N. Giambiasi, \On the Modeling and Test-

ing of VHDL Behavioral Descriptions of Sequential Circuits," Eu-

roVHDL'94: IEEE European VHDL Conference, pp. 440-445, Ham-

burg, Germany, September 1993.

[9] P. Vishakantaiah, J. Abraham, M. Abadir, \Automatic Test Knowl-

edge Extraction from VHDL ATKET," DAC-29: ACM/IEEE Design

Automation Conference, pp. 273-278, Anaheim, CA, June 1992.

[10] P. Vishakantaiah, J. A. Abraham, D. G. Saab, \CHEETA: Composi-

tion of Hierarchical Sequential Tests Using ATKET," ITC'93: IEEE

International Test Conference, pp. 606-615, Baltimore, MD, October

1993.

[11] A. Ghosh, S. Devadas, A. R. Newton, \Sequential Test Generation

and Synthesis for Testability at the Register-Transfer and Logic

Levels," IEEE Transactions on CAD/ICAS, Vol. CAD-12, No. 5,

pp. 579-598, May 1993.

[12] K. T. Cheng, \An ATPG-Based Approach to Sequential Logic Op-

timization," ITC'91: IEEE International Test Conference, pp. 372-

375, Nashville, TN, October 1991.

[13] U. Glaser, K. T. Cheng, \Logic Optimization by an Improved Se-

quential Redundancy Addition and Removal Technique," IEEE Asia

South-Paci�c Design Automation Conference, pp. 235-240, Chiba,

Japan, August 1995.

[14] R. Bryant, \Graph-Based Algorithms for Boolean Function Manipu-

lation," IEEE Transactions on Computers, Vol. C-35, No. 8, pp. 79-

85, August 1986.

[15] S. Devadas, A. Ghosh, K. Keutzer, Logic Synthesis, McGraw-Hill,

1994.

[16] F. Ferrandi, F. Fummi, E. Macii, M. Poncino, D. Sciuto, \Test

Generation for Networks of Interacting FSMs Using Symbolic Tech-

niques," GLS-VLSI'96: IEEE Great Lakes Symposium on VLSI,

pp. 208-213, Ames, IA, March 1996.

[17] F. Ferrandi, F. Fummi, E. Macii, M. Poncino, D. Sciuto, \Sym-

bolic Optimization of FSM Networks Based on Sequential ATPG

Techniques", DAC-33: ACM/IEEE Design Automation Converence,

pp. 467-470, Las Vegas, NV, June 1996.

[18] O. Coudert, J. C. Madre, \Implicit and Incremental Computation

of Primes and Essential Primes of Boolean Functions," DAC-29:

ACM/IEEE Design Automation Converence, pp. 36-39, Anaheim,

CA, June 1992.

[19] Synopsys User's Manual, Synopsys Inc., 1994.

[20] Autologic VHDL Reference Manual, Mentor Graphics, 1993.

[21] D. L. Perry, VHDL, McGraw-Hill, 1993.

[22] T. Niermann, J.}. Patel, \HITEC: A Test Generation Package for

Sequential Circuits," EDAC'91: IEEE European Conference on De-

sign Automation, pp. 214-218, Amsterdam, The Netherlands, Febru-

ary 1991.

[23] H. Cho, G. D. Hachtel, F. Somenzi, \Redundancy Identi�ca-

tion/Removal and Test Generation for Sequential Circuits Using

Implicit State Enumeration," IEEE Transactions on CAD/ICAS,

Vol. CAD-12, No. 7, pp. 935-945, July 1993.

	CDROM Home Page
	1996 Home Page
	EURO-DAC96 Home Page
	Front Matter
	Table of Contents
	Session Index
	Author Index

