
Abstract

This paper presents an approach for system level specifi-
cation and hardware/software partitioning with VHDL. The
implications of using VHDL as a specification language are
discussed and a message passing mechanism is proposed
for process interaction. We define the metric values for par-
titioning and develop a cost function that guides our heuristics
towards performance optimization under hardware and soft-
ware cost constraints. Experimental results are presented.

1. Introduction

In the last years new tools have been emerging which
support the integrated design of both the hardware and the
software component of a system. The input specification ac-
cepted by such a design tool describes the functionality of
the application together with some design constraints and is
typically given as a set of interacting processes.

Several approaches have been presented in the literature
for the specification and partitioning of complex hardware/
software systems. In [1, 8, 10] automatic partitioning is per-
formed, while the approach presented in [12] is based on
manual partitioning. Partitioning at a fine grain level is per-
formed in [1, 8, 10]. In [1] and [13] partitioning is
performed at a coarser granularity.

Iterative improvement algorithms are widely used for
hardware/software partitioning. They are often based on
simulated annealing [1, 8, 16], which is mainly due to the
fact that simulated annealing algorithms can be quickly
implemented andare widely applicable to different prob-
lems. However, a limitation of this method is the relatively
long execution time and the large amount of experiments
needed to tune the algorithm.

Several languages have been used for system modeling
in hardware/software co-design environments. The
approach described in [8] starts from an initial specification
in C. Verilog is accepted as input language in [1] while the
system described in [5] starts from VHDL specifications.

This work has been partially sponsored by the Swedish National Board
for Industrial and Technical Development (NUTEK).

Other systems are based on specifications captured in Spec-
Charts [18], ESTEREL [3], Statecharts [2], or SDL [12].
These choices are partially motivated by the particular appli-
cation areas targeted by the different co-design systems, by
the availability of specific software tools as part of the co-
design environments and also by the experience and prefer-
ences of the respective research groups.

In our approach we start from a system specification in
VHDL which has been extended for system-level design. Our
goal is to synthesize a system which provides maximal perfor-
mance (in terms of execution speed) using a given amount
of hardware and software resources. The partitioning strategy
is based on metric values derived from profiling (simulation),
static analysis of the specification, and cost estimations and is
performed automatically. We consider that minimization of
communication cost between the software and the hardware
partition and improvement of the overall parallelism are of
outstanding importance during partitioning at system level.

We have implemented first a simulated annealing based
algorithm for hardware/software partitioning. We then
implemented our partitioning algorithm using the tabu
search method. Based on extensive experiments we show
that tabu search clearly outperforms simulated annealing.

The paper is divided into 6 sections. Section 2 introduces
our hardware/software co-synthesis environment. Section 3
discusses features of VHDL as a system level specification
language. In section 4 we are focusing on the successive
steps of our partitioning strategy. The cost function and the
evaluation of the partitioning algorithms is presented in sec-
tion 5. Finally, section 6 presents our conclusions.

2. The co-synthesis environment

An overview of our hardware/software co-synthesis envi-
ronment is depicted in Fig. 1. The input specification describes
system functionality in terms of interacting processes mod-
eled in VHDL which has been extended with a message
passing mechanism for interprocess communication.

When the final partitioning is done, the hardware imple-
mentation is synthesized by the CAMAD high-level
synthesis (HLS) system [17] while the software is generated

Hardware/Software Partitioning of VHDL System Specifications

Petru Eles1,2, Zebo Peng1, Krzysztof Kuchcinski1, and Alexa Doboli2

2 Computer Science and Engineering Department
Technical University of Timisoara

Romania

1 Dept. of Computer and Information Science
Linköping University

Sweden

EURO-DAC ’96 with EURO-VHDL ’96
0-89791-848-7/96 $4.00 1996 IEEE

by our VHDL to C compiler. We have made the following
assumptions concerning the target architecture:
1. There is a single microprocessor executing the software part;
2. The microprocessor and the hardware coprocessor are

working in parallel;
3. Reducing the amount of communication between the

microprocessor and the hardware coprocessor improves
the overall performance of the system.
This paper concentrates on the VHDL front-end of the co-

synthesis environment, which performs extraction of perfor-
mance critical regions and hardware/software partitioning.

3. VHDL for system-level specification

Complex systems are often specified as a set of interacting
subsystems, each of which is described by a sequential pro-
cess. VHDL [11] has several features that make it appropriate
as a language for system level specification: data and control ab-
straction; structural hierarchy; concurrency, synchronization,
and communication; timing specification; support for top-
down design methodology; executable specifications (sim-
ulation); support for both hardware and software description.

Even though it is defined as a hardware description lan-
guage, VHDL inherits features of Ada and thus includes
constructs appropriate for the description of software. Ben-
efiting from the above-listed features, the designer can
specify complex systems in VHDL, without having to consid-
er the possible implementation of components in hardware
or software. It is also possible to execute this specification
in order to test the resulted behavior and to collect some sta-
tistics that can be used to guide further design steps. There
are also pragmatic arguments for using VHDL as a system-
level specification language for co-synthesis. For example,
there is a great number of commercially available VHDL
simulation and hardware synthesis tools which can be inte-
grated into new co-synthesis environments.

Accepting VHDL as the input language for a co-synthe-
sis system requires that across all design steps toward the

Compiler

Simulation
statistics

VHDL system
specification

specification
partitioned

Simulator/

Internal
representation

user

Hardware cost
estimation

interaction
Software cost
estimation

HLS Interface Compilergenerator

Hardware
structure

(RTL design)
Software

components

Hardware
partition

Software
partition

Fig. 1. Overview of the co-synthesis environment

profiler

Extract performance
critical regions and do

hardware/software
partitioning

final synthesis result, semantic equivalence with the initial
specification and its simulation behavior should be pre-
served. The main difficulty, in this context, concerns
process interaction. According to the VHDL standard, syn-
chronization and communication between processes is
solved using signal assignment and wait statements, the se-
mantics of which is defined in terms of the VHDL
simulation cycle. Thus, synthesis of a VHDL design with
process interaction specified at the signal level requires
practically the implementation of the simulation cycle in or-
der to achieve semantic correspondence between the
specified model and the synthesized system [6]. However,
such a low level synchronization and communication mech-
anism makes reasoning about processes and their interaction
extremely complex. Therefore, both partitioning and syn-
thesis become extremely difficult and inefficient if VHDL
signal assignments and wait statements are directly used.

What we need is a high level process interaction mecha-
nism that allows reasoning about processes and their interfaces
during partitioning and synthesis, and at the same time can
be efficiently implemented both in hardware and in software.

In [6] we present a model for system-level specification
of interacting VHDL processes and describe the hardware
synthesis strategy that we have developed for it. This model
also fits to the framework of our hardware/software co-syn-
thesis environment. According to the model, processes are
the basic modules of the design, and they interact using a
synchronous message passing mechanism with predefined
send/receive commands. Communication channels are rep-
resented by VHDL signals. Assignment of a value to a
signal is done by asend command. Processes that refer to a
signal will wait until a value is assigned to it, by calling a
receive command. Bothsend andreceive have the syntax of
ordinary procedure calls. Designs formulated according to
this model are translated by a simple preprocessor into stan-
dard VHDL models for simulation purpose.

Processes communicating according to this mechanism are
loosely coupled and can be implemented without enforcing
the strong synchronization implied by the VHDL simula-
tion cycle [6]. At the same time, communication interfaces
between processes can be easily established or modified dy-
namically during partitioning, when new processes are
created or functionality is moved from one process to another.

In the context of our co-synthesis environment, a VHDL
description corresponding to thissystem-level specification
model can be simulated, partitioned, and synthesized into
hardware and software components preserving semantic
correspondence with the initial VHDL specification.

4. Refinement of the VHDL specification

Partitioning starts from an initial system specification
described as a set of VHDL processes interacting through
communication channels. This specification is further

refined by decomposing it into processes of smaller granu-
larity which, finally, have to be partitioned for hardware and
software implementation respectively. The main goal of
partitioning is to maximize performance in terms of execu-
tion speed. In order to achieve this we try to distribute
functionality between the software and the hardware parti-
tions taking into account communication cost and overall
parallelism of the synthesized system. Thus, the following
three objectives are considered:
1. To identify basic regions (processes, subprograms,

loops, and blocks of statements) responsible for most of
the execution time, in order to be assigned to hardware;

2. To minimize communication between partitions;
3. To increase parallelism within the resulted system at the

following three levels:
- internal parallelism of each process assigned to hardware;
- parallelism between processes assigned to hardware;
- parallelism between the hardware coprocessor and the

microprocessor.
The partitioning algorithm takes into account simulation

statistics, information from static analysis of the source spec-
ification, and cost estimations. Statistics data are collected
from simulation of an internal representation generated by our
VHDL compiler, loading the system with sets of typical in-
put stimuli. Two types of statistics are used for partitioning:
1. Computation load (CL) of a basic region is a quantitative

measure of the total computation executed by that
region, considering all its activations during the simulation
process. It is expressed as the total number of operations
(at the level of internal representation) executed inside
that region, where each operation is weighted with a
coefficient depending on its relative complexity:

; where is the number

of activations of operation belonging to the basic re-
gion and is the weight associated to that oper-
ation. Therelative computation load (RCL) of a block of
statements, loop, or a subprogram is the computation
load of the respective basic region divided by the
computation load of the process the region belongs to.
The relative computation load of a process is the
computation load of that process divided by the total
computation load of the system.

2. Communication intensity (CI) on a channel connecting
two processes is expressed as the total number of send
operations executed on the corresponding signal.

Hardware/software partitioning is performed in four steps:
1. Extraction of basic regions;
2. Process graph generation;
3. Process graph partitioning;
4. Process merging: During the first step one or severalchild

processes are possibly extracted from aparent process. If,
as result of step 3, some of the child processes are
assigned to the same partition with their parent, they are,

CLi N_actj ϕopj
×

opj BRi∈
∑= N-actj

opj
BRi ϕopj

optionally, merged back together.

4. 1. Extraction of basic regions

During the first partitioning step VHDL processes are
examined individually to identify regions that are responsi-
ble for most of the execution time spent inside a process.
Candidate regions are typically loops and subprograms, but
can also be blocks of statements with a high CL. The search for
candidate regions is performed bottom-up, starting from the
inner blocks, loops, and the subprograms that are not contain-
ing other basic regions. When a region has been identified
for extraction, a new process is built. It has the functionality
of the original block, loop, or subprogram while communi-
cation channels are established to theparent process. These
channels will be built using the message passing mechanism
described in section 3. It is essential that synchronization using
this process interaction mechanism affects not all processes
(this is the case of process interaction based on signals) but
only the respective parent and child process involved in the
specific communication. Due to this strictly local effect of
the transformations performed for interface generation, the
original semantics of the VHDL specification is preserved.

In the following example we illustrate the generation of pro-
cesses embedding a loop and a subprogram that were identified
for extraction inside the two VHDL processes given below:
P1:process P2:process

.
LOOP_1:while X<K loop procedure P(A: in INTEGER;

. . . B:out INTEGER) is
X := ... C + K ... ; begin
.

end loop LOOP_1; B := ... A ... ;
.

end process P1; endP;
begin

. . .
P(7, Z);
. . .

end processP2;
Given that the RCLs of the loop and the subprogram in the

above processes are greater than a threshold, two new process-
es, P1_LOOP_1 and P2_PROC_P, are generated to execute
the loop LOOP_1 and procedure P respectively. Communi-
cation channels to and from the new processes are
established according to the data dependence relationship. In
the above example, signals S_P1_C, S_P1_K, S_P1_X_TO,
and S_P1_X_FROM are introduced for communication be-
tween P1 and P1_LOOP_1, and signals S_P2_A, and
S_P2_B for communication between P2 and P2_PROC_P.

As stated, one of the objectives considered during parti-
tioning is to increase parallelism within the resulted system.
At process generation we follow this goal by introducing
additional parallelism, as far as data dependence allows,
between parent and child process. This is achieved by mov-
ing statements of the parent process into the sequence
between the send and the receive commands used for com-
munication with the child. The new VHDL code, after
process extraction, is as follows:

signal S_P1_C,S_P1_K,S_P1_X_TO, S_P1_X_FROM, S_P2_A,
S_P2_B: INTEGER;

P1:process P2:process
.
send(S_P1_C,C,S_P1_X_TO, send(S_P2_A,7);

X,S_P1_K,K); . . .-- additional parallelism
. . . -- additional parallelism receive(S_P2_B);
receive(S_P1_X_FROM); Z := S_P2_B;
X := S_P1_X_FROM; . . .
. . . end process P2;

end process P1;
P1_LOOP_1:process P2_PROC_P:process

variable X : INTEGER; variable B: INTEGER;
begin begin

receive(S_P1_C,S_P1_X_TO, receive(S_P2_A);
S_P1_K); . . .

X := S_P1_X_TO; B := ... S_P2_A ... ;
LOOP_1:while X < S_P1_Kloop . . .

. . . send(S_P2_B,B);
X := ... S_P1_C + S_P1_K ... ;end processP2_PROC_P;
. . .

end loop LOOP_1;
send(S_P1_X_FROM,X);

end process P1_LOOP_1;

The final decision if processes generated during this step
are kept as separate modules or will eventually be merged
back, depends on the two subsequent partitioning steps. An
important criterion for this decision will be the intensity of
communication between parent and child processes.

4. 2. Process graph generation

The input to the second partitioning step is a set of inter-
acting VHDL processes. The data structure on which
hardware/software partitioning is performed is theprocess
graph. Each node in this graph corresponds to a process and
an edgeconnects two nodes if and only if there exists at least
one directcommunication channel between the corresponding
processes.

The graph partitioning algorithm takes into account
weights associated to each node and edge. Node weights re-
flect the degree of suitability for hardware implementation
of the corresponding process. Edge weights measure com-
munication and mutual synchronization between processes.
The weights capture simulation statistics and information
extracted from static analysis of the system specification or
of the internal representation resulted after its compilation.
The following data extracted from static analysis are captured:

Nr_opi: total number of operations in processi;
Nr_kind_opi: number of different operations in processi;
L_pathi: length of the critical path (in terms of data

dependency) through processi.
The weight assigned to process nodei, has two components.

The first one, , is equal to the CL of the respective pro-
cess. The second one is calculated by the following formula:

= ;
where:

W1i
N

W2i
N MCL Ki

CL MU Ki
U MP Ki

P MSO Ki
SO×–×+×+×

 is equal to the RCL of processi, and thus is a
measure of the computation load;

; is a measure of the unifor-

mity of operations in processi;

; is a measure of the potential par-

allelism inside processi;

; captures the suitability of

operations of processi for software implementation.SPi
is the set of such operations (floating point computation,
file access, pointer operations, recursive subprogram call,
etc.) in processi and is a weight associated to oper-
ationopj, measuring the degree to which the operation has
to be implemented in software.
The relation between the above-named coefficientsKCL,

KU, KP, KSO is regulated by four different weight-multipli-
ers:MCL, MU, MP, andMSO, controlled by the designer.

Both components of the weight assigned to an edge con-
necting nodes i and j depend on the amount of
communication between processesi andj. The first one is a
measure of the total data quantity transferred between the
two processes. The second one does not consider the num-
ber of bits transferred but only the degree of
synchronization between the processes, expressed in the
total number of mutual interactions they are involved in:

; ;

where Chij is the set of signals (channels) used for commu-
nication between processesi andj; is the width of signal
ck in bits; is the communication intensity on signalck.

5. Process graph partitioning

After generation of the process graph hardware/software
partitioning can be performed as a graph partitioning task.
The partitioning information is captured as weights associ-
ated to the nodes and edges. These weights have to be
combined into a cost function which guides the partitioning
algorithm towards the desired objective.

5. 1. The cost function

The partitioning heuristics are guided by the following
cost function which is to be minimized:

;

Ki
CL

Ki
U Nr_opi

Nr_kind_opi
------------------------------= Ki

U

Ki
P Nr_opi

L_pathi
------------------= Ki

P

Ki
SO

wopj
opj SPi∈

∑
Nr_opi

-----------------------------= Ki
SO

wopj

W1ij
E

wdck
CIck

×
ck Chij∈

∑= W2ij
E

CIck
ck Chij∈

∑=

wdck
CIck

C(Hw,Sw) Q1 W1ij
E

ij() cut∈
∑× Q2

W2ij
E

ij()∃
∑

W1i
N

i() Hw∈
∑

NH
--×+=

Q3

W2i
N

i Hw∈
∑

NH

W2i
N

i Sw∈
∑

NS
------------------------–

×–

whereHw andSw are sets representing the hardware and the
software partition respectively; NH andNS are the cardinal-
ity of the two sets; cut is the set of edges connecting the two
partitions; (ij) is the edge connecting nodesi andj; (i) rep-
resents nodei;

The partitioning objectives stated at the beginning of sec-
tion 4 are captured by the three terms of the cost function:

- The first term captures the amount of communication
between hardware and software partition. Decreasing this
component reduces communication cost and also improves
parallelism between processes in the hardware partition and
those implemented in software.

- Thesecond term stimulates placement into hardware of
processes which have a reduced amount of interaction with
the rest of the system relative to their computation load and,
thus, are active most of the time. This strategy improves
parallelism between processes inside the hardware partition
where physical resources are allocated for real parallel exe-
cution. For a given processi, is the total

amount of interaction the process is involved in, relative to
its computation load. The whole term represents the aver-
age of this value over the nodes in the hardware partition.

- The third term in the cost function pushes processes
with a high node weight into the hardware partition and
those with a low node weight into the software one, by
increasing the difference between the average weight of
nodes in the two partitions. This is a basic objective of par-
titioning as it places time critical regions into hardware.

The criteria combined in the cost function are not ortho-
gonal, and sometimes compete with each other.This
competition between partitioning objectives is controlled by
the designer through the cost multipliersQ1, Q2, andQ3
which regulate the relative influence of the different metrics.

Minimization of the cost function has to be performed in
the context of certain constraints. Thus, our heuristics have
to produce a partitioning with a minimum forC(Hw, Sw) so
that the total hardware and software cost is within some user
specified limits:

; .

Cost estimation has to be performed before graph parti-
tioning. In the current implementation of our environment,
the CAMAD high level synthesis system [17] produces
hardware cost estimations in terms of design area. Software
cost, in terms of memory size, is estimated for each process
through compilation by our VHDL to C compiler.

5. 2. Experimental results

As a final step of the hardware/software partitioning pro-
cess the weighted graph is to be partitioned into two
subgraphs so that design constraints are satisfied and the
cost function is minimal.

Hardware/software partitioning, formulated as a graph

W2ij
E

ij()∃
∑

 W1i
N⁄

H_costi
i() Hw∈
∑ Max

H≤ S_costi
i() Sw∈
∑ Max

S≤

partitioning problem, is NP complete. In order to efficiently
explore the solution space, heuristics have to be developed
which hopefully converge towards an optimal or near-opti-
mal solution. We have implemented two such algorithms,
one based on simulated annealing (SA) [14] and the other on
tabu search (TS) [9].The partitioning algorithms and the ex-
perimental strategy used for their evaluation are presented in
[7]. We evaluated the partitioning algorithms based on exten-
sive experimentation using 32 geometric and random graphs
with number of nodes between 20 and 400. Here are the
most important conclusions drawn from these experiments:
1. Near-optimal results can be produced by both algorithms.
2. SA is based on a random exploration of the neighborhood

while TS is completely deterministic. The deterministic
nature of TS makes experimental tuning of the algorithm
and setting of the parameters less laborious than for SA.
At the same time adaptation of the SA strategy for a par-
ticular problem is relatively easy and can be performed
without a deep study of domain specific aspects. Deve-
lopment of a TS algorithm is more complex and has to
consider particular aspects of the given problem.

3. Performances obtained with TS are excellent and
definitely superior in comparison to those given by SA
(on average more than 20 times faster), as shown in Fig.
2. The times represented in the figure are the average
CPU times needed for partitioning for all graphs of the
given dimension using the SA and TS based algorithm
respectively1. This conclusion is very important
especially in the context that no TS based hardware/
software partitioning approach has yet been reported,
while SA continues to be one of the most popular
approaches for automatic partitioning.
In order to validate our system level partitioning

approach we performed two further experiments on real-life
models: theEthernet network coprocessor and theOAM
block of an ATM switch. Both models were specified in

1 The partitioning results were the same, both for SA and TS. For the 20
nodes graphs they were proven to be optimal by comparing with results
obtained from exhaustive search. For the other graphs the good quality of
the results was verified by comparing with results obtained from several
very long and expansive runs with both TS and SA [7].

0.001

0.01

0.1

1

10

100

1000

10 100 100020 40040

SA
TS

Number of graph nodes (logarithmic)

E
xe

cu
tio

n
tim

e
(s

)
(lo

ga
rit

hm
ic

)

Fig. 2. Partitioning times with SA and TS

VHDL. After simulation, basic regions were extracted and
the annotated process graph has been generated. Partition-
ing was performed using both the SA and the TS based
algorithm, with the cost function presented in section 5.1 and
a constraint on the hardware cost representing 30% of the
cost of a pure hardware implementation.

TheEthernet network coprocessor is given in [15] as an
example for system specification in SpecCharts and has
been used, in a HardwareC version, in [10]. We have rewritten
it in VHDL, as a model consisting of 10 cooperating pro-
cesses (730 lines of code). After the first partitioning step
we got a VHDL specification consisting of 20 processes. The
final partitioning produced a hardware partition with 14 pro-
cesses and a software partition with 6 processes. The most
time critical part of those processes that are handling transmis-
sion and reception of data on the ethernet line as well as
processes which are strongly connected to them have been as-
signed to hardware and the rest belong to the software partition.

Our second example implements theoperation and
maintenance (OAM) functions corresponding to the F4 lev-
el of the ATM protocol layer [4]. We specified functionality
as a VHDL model consisting of 19 interacting processes
(1321 lines of code). The model resulted after extraction of
basic regions has 27 processes. The resulted process graph
has been partitioned into 14 processes assigned to hardware
and 13 to software. Processes performing the filtering of in-
put cells and those handling user cells (which constitute the
overwhelming majority of received cells) were assigned to
hardware. Processes handling exclusively OAM cells (which
are arriving at a very low rate) were assigned to software.

In Table 1 we show the partitioning times using SA and TS
for both examples which confirm the conclusions drawn
from experiments with geometric and random graphs.

6. Conclusions

We have presented an approach to system-level specifi-
cation and partitioning in hardware/software co-design. We
have shown in this paper that such a specification can be
captured by the VHDL language. While arguing the advantag-
es of using VHDL, some limitation of VHDL as a hardware/
software co-specification language has also been identified
and a solution to resolve the problem is proposed. Our solution
is based on the concept of reduced synchronization between
VHDL processes, which is used to relax the strict synchroni-
zation imposed by the simulation-based semantics of VHDL.

We presented a technique to perform partitioning of the
input VHDL specification, which supports the use of simula-

TABLE 1: Partitioning of the VHDL models

model
nr. of processespart. with SA

tSA (sec)
part. with TS

tTS (sec)
tTS/tSAmodel after extr.

Eth. cop. 10 20 0.08 0.006 0.075
OAM bl. 19 27 0.10 0.007 0.07

tion results as well as static analysis of the input specification
to guarantee the partitioning quality.

We formulated hardware/software partitioning as a graph
partitioning problem and solved it by implementing two itera-
tive improvement heuristics based on SA and TS respectively.
The algorithms have beenevaluated based on extensive ex-
periments and the conclusions show that, while both can
produce high quality solutions, TS is definitely superior in
terms of partitioning time.

References
[1] J.K. Adams, D.E. Thomas,Multiple-Process Behavioral

Synthesis for Mixed Hardware-Software Systems, Proc. Int.
Symp. on Syst. Synth., September ’95, IEEE CS Press, 10-15.

[2] K. Buchenrieder, C. Weith,A Prototyping Environment for
Control-Oriented HW/SW Systems Using State-Charts, Ac-
tivity-Charts and FPGA’s, Proc. of EURO-DAC/VHDL’94,
IEEE CS Press, 1994, 60-65.

[3] M. Chiodo, D. Engels, P. Guisto, H. Hsieh, A. Jurecska, L. La-
vagno, K. Suzuki, A. Sangiovanni-Vincentelli,A Case Study in
Computer-Aided Co-design of Embedded Systems, Design Au-
tomation for Embedded Systems, 1, 1996, 51-67..

[4] M. De Prycker,Asynchronous Transfer Mode: Solution for
Broadband ISDN, Ellis Horwood, New York, 1993.

[5] W. Ecker,Using VHDL for HW/SW Co-Specification, Proc.
of the EURO-DACVHDL’93, IEEE CS Press, 500-505.

[6] P. Eles, K. Kuchcinski, Z. Peng, M. Minea,Synthesis of
VHDL Concurrent Processes, Proc. of EURO-DAC/VH-
DL’94, IEEE CS Press, 1994, 540-545.

[7] P. Eles, Z. Peng, K. Kuchcinski, A. Doboli,Performance
Guided System Level Hardware/Software Partitioning with It-
erative Improvement Heuristics, Res. Rep. LiTH-IDA-R-95-26,
Dep. of Comp. and Inf. Science, Linköping University, 1995.

[8] R. Ernst, J. Henkel, T. Benner,Hardware-Software Co-Syn-
thesis for Microcontrollers, IEEE Design & Test of
Computers, September 1993, 64-75.

[9] Glover, E. Taillard, D. de Werra,A User’s Guide to Tabu
Search, Annals of Operations Research, vol. 41, 1993, 3-28.

[10] R.K. Gupta, G. De Micheli,Hardware-Software Cosynthesis
for Digital Systems, IEEE Design & Test of Computers, Sep-
tember 1993, 29-41.

[11] IEEE Standard VHDL Language Reference Manual, IEEE
Std 1076-1993, 1994.

[12] T. Ben Ismail, A.A. Jerraya,Synthesis Steps and Design
Models for Codesign, Computer, February 1995, 44-52.

[13] A. Kalavade, E.A. Lee,A Global Criticality/Local Phase
Driven Algorithm for the Constrained Hardware/Software Par-
titioning Problem, Proc. of Third International Workshop on
Hardware/Software Codesign, IEEE CS Press, 1994, 42-48.

[14] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi,Optimization by sim-
ulated annealing, Science, vol. 220, no. 4598, 1983, 671-680.

[15] S. Narayan, F. Vahid, D.D. Gajski,Modeling with SpecCha-
rts, Technical Report #90-20, Dept. of Inf. and Comp.
Science, Univ. of California, Irvine, 1990/1992.

[16] Z. Peng, K. Kuchcinski, An Algorithm for Partitioning of
Application Specific Systems, Proc. EDAC’93, IEEE CS
Press, 1993, 316-321.

[17] Z. Peng, K. Kuchcinski,Automated Transformation of Algo-
rithms into Register-Transfer Level Implementation, IEEE
Trans. on Comp.-Aided Des. of Integr. Circ. and Syst., V13,
no. 2, February 1994, 150-166.

[18] F. Vahid, S. Narayan, D. Gajski,SpecCharts: A VHDL Front-
End for Embedded Systems, IEEE Trans. on Comp.-Aided
Des. of Integr. Circ. and Syst., V14, no. 6, June 1995, 150-166.

	CDROM Home Page
	1996 Home Page
	EURO-DAC96 Home Page
	Front Matter
	Table of Contents
	Session Index
	Author Index

