
EURO-DAC ’96 with EURO-VHDL ’96
0-89791-848-7/96 $4.00  1996 IEEE

Beyond VHDL: Textual Formalisms, Visual Techniques, or Both?

Franz J. Rammig
Heinz Nixdorf Institut, Universit¨at-GH, Paderborn

franz@uni-paderborn.de

Abstract

Since a couple of years VHDL is the dominating Hard-
ware Description Language. There are very good reasons
for this and simply the existence of VHDL as standardized
language had a major impact on the advance of high level
design techniques. In this paper some ideas about specifica-
tion and modelling techniques beyond VHDL curently car-
ried out in the author's research group are discussed. One
approach is to integrate formal specification techniques like
Evolving Algebras (EA) and Z into a VHDL-oriented design
environment . Other approaches concentrate on the poten-
tial of visual modelling techniques. Here techniques based
on Parallel Logic Programming like Pictorial Janus (PJ)
or such ones based on higher order Petri Nets are under
investigation.

1. Introduction

VHDL may be seen as a formal modelling tool. From the
point of view of more abstract systems designers, VHDL is a
modelling language and not at all a specification means. The
analogy to software engineering makes this statement evi-
dent. No software engineer would treat a program in C++,
say, as a specification. In this part of the paper two tech-
niques of more abstract specifications are discussed shortly:
Evolving Algebras (EA) and Z. Both have connections to
VHDL. One of the existing definitions of a formal semantics
of VHDL has been done in EA [BGM95] while Z is studied
by the SDDL-group of DaSC [Bar95].

1.1. Evolving Algebras

EAs have initially been defined by Gurevich [Gur93].
In this paper an introduction very similar to this one in
[BGM95] is used. EAs can be understood as “pseudocode
over abstract data”, without any particular theoretical pre-
requisites. The abstract data itself is given by elements of
sets (domains and unverses) denoted by capitalized words.
In abstract specifications these sets need not to be specified

further. The operations allowed on universes are repre-
sented by partial functions. Relations are denoted by their
associated boolean-valued membership function. So hetero-
geneous structures(D1; :::;Dn; f1; :::fm) with the domains
Di and functionsfj have to be considered. Such structures
without relations traditionallyare calledalgebras. In the ap-
proach of EAs such algebras (calledstate algebras) are used
to desribe states of the system to be specified. EAs are op-
erational by nature, i.e. systems are specified bystatesand
state transitions. State transitionsare represented as trans-
formations of static algebras. Such changes are obtained by
executingupdate instructionsof form f (t1; :::; tn) := t .

This can be read as setting the value of functionf at the
given arguments to the valuet . Obviously 0-ary functions
play the role ofvariablesin imperative programming lan-
guages and the above update instruction becomes a simple
value assignment in this case. As partial functions are con-
sidered the special value“undef” is possible. Now these
update rules need to be guided in some way. For this pur-
pose asequential EA-Machineis defined as a finite set of
transition rules of formif Condthen Updates.

Here Cond (called condition or guard) is a first-order
logical expression. This expression becoming true triggers
the simultaneous execution of all update instructions in the
finite setUpdates. The following simple example, taken
from [BGM95], illustrates sequential EA-Machines:

if Condition
then A := B

B := A

This little example defines the simultaneous update of
the 0-ary functionsA andB. Since these two updates are
performed strictly in parallel the two values ofA and B
simply become exchanged. This swap of values is per-
formed wheneverConditionevaluates totrue. Additional
parallelism is introduced by allowing formal variables in the
update instructions where the domain of such formal vari-
ables is declared in the guard of the transition rule. In the
following example, simultaneously the first element of all
lists within a certain specification is removed:

if List2 LIST
then if List 6= fg

then LIST := tail (List)

As in the case ofZ (see below) it is assumed that the
standard mathematical universes of booleans, integers, lists
of any kind, etc. and all the standard operations on them
are available. Further sophistication is introduced bydis-
tributed EA-Machines. They are given by a finite number
of moduleseach of which is attached to a finite number of
agents. Thus, a distributed EA-Machine can be seen as a set
of concurrently running agents. Each agent is specified with
the help of a finite set of transition rules. All these transition
rules operate on a globally shared structure. In [BGM95]
such distributed EA-Machines are used to define formally
the semantics of VHDL93. As an example may serve the
definition of the determination of the next point of time to
be simulated:

if AllProcessesSuspended
thenif Tn = Tc

then cycle := delta cycle
phase := updatedriving values
elsif cycle = delta cycle
then cycle := postponedcycle
phase := execute postponed
else cycle := timecycle
phase := updatedriving values
AdvanceTime
UpdateDrivers(Tn)
whereTn = minfmindriver, mintimeoutg

This example shows how natural specifications in EA
look like. It is described the following situation: If the ex-
pected next timeTn is equal to the current timeTc the
kernel goes into cycledelta cycle. Otherwise the ker-
nel goes either fromdelta cycle to postponed cycle or
from postponed cycle to time cycle. In the case of a
postponed cycle postponed processes are executed. In the
case of atime cycle the drivers are updated with respect
to the new timeTn andTc is advanced toTn . When suf-
ficiently refined, specifications in EA are executable. For
this purpose runtime systems have been developed in Ann
Arbor and Paderborn [DDG96].

1.2. The Specification Language Z

The non executable specification languageZ [Sp94] is
intended to define and reason about a wide range of systems.
The Z notation consists of two parts: first of all the usual
mathematical notation based on set theory and first order
predicate logic is part ofZ. Complete descriptions inZ are
organized using schemata. Therefore a schema language

for structural decomposition of descriptions constitute the
second part of the languageZ. In a certain senseZ follows
an operational approach as there is the notion ofstatesand
state transitions. A state of a system is usually described as
a number of variables and a number of associated invariant
properties. An operation on the state that changes declared
variables is defined by a schema like:

Operation

∆State; ΞState; v ; v 0

predicate

Change declared variables as defined in the
pre and post-conditions (of the predicate)

By convention an operation schema that includes a state
schema∆State may change the values of the variables de-
clared inState. ΞStatedefines that the variables inState
remain unchanged. An undecorated variablev appearing in
an operation schema refers to the value ofv before the op-
eration occurs andv' refers to the value after the operation
has been performed. Schemata may be composed using var-
ious schema operatorslike schema disjunction or schema
conjunction. As most of today's engineers passed some
education in set theory and mathematical notation only the
relatively simple principles of the schema language have
to be learned in addition to folk knowledge. This makes
Z attractive as specification language. In fact,Z has been
used as specification language in a couple of large projects
in the hardware and software domain. The question is how
to transform (non executable) specifications inZ to VHDL,
say. The basic technique for this transformation is the re-
finement calculus (RC) as developed by Back [Ba88] and
Morgan [Mo90]. This RC, initially defined for sequential
specifications has been extended to support non-sequential
embedded systems by Mahoney and Hayes [MH92]. Ad-
ditional extensions cover real-time features and complex
concurrent systems. In [Oc96] the system Z2VHDL is dis-
cussed. Z2VHDL takes a Z specification and refines it step
by step into a version that automatically can be translated to
executable VHDL. Obviously Z2VHDL is not a fully auto-
matic procedure (in this case Z would have become an exe-
cutable specification language) but a system that guides the
user to apply refinment steps in such a way that a VHDL im-
plementation is obtained.Z specifications on a sufficiently
detailed level of abstraction, however, may be translated to
VHDL automatically.

2. Visual Hardware Description Languages

2.1. Introduction

In a certain sense the trend in hardware specification and
modelling during the past decade was alittlebit paradox. As
long as there was no good support for graphical computing
available, graphical techniques (e.g. schematic entry) were
widespread. When excellent support for graphics became
available to affordable prices graphical techniques have been
replaced by textual ones (VHDL). Obviouslygraphical tech-
niques are not suited to replace all kinds of textual represen-
tations. There are good reasons that hieroglyphs finally have
been replaced by letter based notations. On the other hand
there are numerous situations where symbols and pictures
allow a much more concise description,especially if pictures
are put to motion. In our group we are experimenting with
two powerful mechanisms which can easily bound to visual
representations. The first one is given by high order Petri
nets. For Petri nets there exists a very intuitive graphical
representation. In fact most people have this representation
in mind when they think in terms of Petri nets. We have
enhanced the basic model in order to overcome most of the
known deficiencies of Petri nets while preserving their ben-
efits. The result has been called SEA (System Engineering
and Animation). Parallel Logic Programming being a sec-
ond paradigm for visual programming may be surprising.
However this programming technique based on terms like
agents, rules, messages can be represented in a very natu-
ral way in a visual form. An agent may have a graphical
representations. It contains (also graphically) rules that de-
fine its behaviour. By an intuitive animation of message
flow and pattern matching the behaviour of a parallel, logic
programs becomes an easy to understand moving picture.
In our case we follow the approach proposed by Kahn and
Saraswat [KS90], called Pictorial Janus (PJ). In contrast to
them we offer true online animation. Therefore our system
is called Janus in Motion (JIM). Both of our approaches can
be adopted to the specific pictorial world to be modelled.

2.2. Approaches Based on High Order Petri Nets

Since decades Petri nets play an important role in the area
of system engineering. The original definition of these nets,
however, turned out to be too elementary. To overcome
these deficiencies various approaches of hierarchical nets
and higher order Petri nets have been proposed. Here an
extension of Predicate/Transition nets (Pr/T nets) will be
discussed. Only a short informal introductionshall be given,
where it is assumed that the reader is familiar with ordinary
Petri nets. The first basic difference between these nets and
Pr/T nets is that in Pr/T netstokensare individuals while in
ordinary nets only their cardinality on places is of interest. In

contrary to ordinary Petri nets theinput arcsof a transition
are labelledwith typed variables. A transition isfirable
only if there is a validinterpretationof the set of these typed
variables using currentlyinstantiated tokensin the respective
places. Equally named variables attached to input arcs of
one transition have to be substituted by the same values for
an interpretation to be valid. Transitions have attached a
predicateand atoken mapping. A transitionfires under a
specific interpretation only if its predicate is true for this
interpretation. So looking for a valid interpretation may be
interpreted as looking for sufficient syntactically correct data
while testing the predicate means testing whether semantical
restrictions are met. If a transition fires it destroys the input
tokens that constitute the interpretation it is reacting on,
and calculates (i.e. instantiates) tokens on its output places.
By labelling output arcs with typed variables values can be
routed individually to token instantiations. Fig. 1 shows a
Pr/T net transition before and after firing.

4
8

4,5

8,7

x<y

z:=x+y
P

P

P

P1

2

3

4

t

<x>

<x,y>

<x,z>

<z,y>

a)

8

8,7

x<y

z:=x+y
P

P

P

P1

2

3

4

t

<x>

<x,y>

<x,z>

<z,y>

4,9

9,5

b)

Figure 1. Pr/T net Transition Before and After
Firing

In the case of our system SEA (SystemEngineering and
Animation) further annotations are introduced. As men-
tioned above, transitions in Pr/T nets are annotated with a
condition and an action. This one may be seperated into
preactions to be executed after the demarking of the input
places and postactions to be executed right before the mark-
ing of the output places. SEA extends the basic concepts
of Pr/T nets by including hierarchy and timing. Concerning
hierarchy both, hierarchical (macro) places and hierarchical
(macro) transitions are offered by SEA. Macro places have

a semantics inherited from StateCharts while the semantics
of macro transition is inherited from Structured Petri nets
[CK81]. Concerning timing, SEA offersenabling delayand
firing delay. The first one defines the minimal time delay
before an enabled transition becomes active while the fir-
ing delay defines how long it takes to fire a transition. In
both cases(min, typ, max)specifications are possible. The
actions attached to transitions may consist of computations
of arbitrary kind and arbitrary complexity, formulated in
any kind of language. By this also graphical modelling
techniques can be incorporated easily by defining corre-
sponding libraries. Pr/T nets have a standard graphical rep-
resentation inherited from Petri nets. This representation,
however, may not look natural to an engineer who is famil-
iar with the graphical notations used in his or her domain.
SEA therefore offers arbitrary graphical representations of
macro transitionsandmacro places. By using the same in-
terfaces as the corresponding standard representation these
user defined pictures are bound to the semantics of the net
in standard form in an unambiguous way. Of course for a
dynamic modelling technique like Pr/T nets it is essential
to animate also the dynamic behaviour of the non-standard
representation. In SEA there is a rather simple, yet pow-
erful mechanism to support animation. There may be an
arbitray number of graphical objects associated to a macro-
node. The macro-node has a vector of so-called“visibility
bits” . Each bit corresponds to exactly one graphical object.
Only such graphical objects are displayed that are enabled
by the corresponding visibility bit. These bits may be ma-
nipulated by actions attached to transitions. The various
graphical objects may differ in any aspect, even in shape
and size. This allows a wide variety of visual animations.
A small example, taken from [KKJ96] may serve to demon-
strate these capabilities. Fig. 2 shows the general structure
of a hierarchical description of an elevator system.

Elevator
System

Central
Control Elevator

Elevator
Request

MechanicsLocal
Control

Cabin
PanelPanel

Floor
Panel

System

Central
Control

Dataflow
Graph

Hardware
Differential
Equations

Central

Figure 2. Elevator System Decomposition

It can be seen that various modelling techniques are in-
tended to be used, ranging from data flow graphs to differ-
ential equations. Fig. 3 shows the top level graphics in SEA
of this system for the case of four floors.

Figure 3. SEA Model of Elevator System

It should be mentioned that this is not just a picture but
one possible graphical representation of an executable Pr/T
net. As sound can be handled in the same way as graph-
ics, the model used as an example here also produces all
the sounds today's elevators tend to produce. The picture
should be self explaning. Only the four graphical symbols
within Local Control may need some explanation. They
stand (top to bottom) for a closed floor door without cabin
at this position, an open door with cabin, an open door with-
out cabin and a closed door with cabin. These symbols are
highlighted during simulation whenever the appropriate sit-
uation is true. If the model is correct, the third symbol is
never highlighted, of course. This top level model has to
be refined to make it operational and to hand over a more
detailed model to implementation. So there are underlying
Pr/T nets for all macro-nodes in the shown representation.
This can be done also for subsystems to be modelled in a
continuous way. This is needed to model the elevator me-
chanics in our example. Such parts usually are specified
via a mathematical model using differential equations. In
our example the elevator mechanics may be modelled as a
mass system that is moved by an electric engine. This one
is controlled by a controller that calculates the input volt-
age for the motor from the difference between the required
elevationhreg and the actual onehact . Fig. 4 shows this

system.

m

h

ω

i a

ua

Ra L a

r

ϕr

ground level

Figure 4. Elevator Mechanics

This situation can be modelled by differential equations
that may be represented by the block diagram as shown in
Fig. 5

C 1
+

-
C 3

C 2

+

-
C 8

+
-

C 5
+

+

C 4

C 6 C 9

C 7

+

-

I1 I2 I3 I4 I5

+

u h-actω

ϕ

i
va a

Figure 5. Block Diagram of Motor Driven Ele-
vator

In [BR96] it is described how such block diagrams can
be transformed into Pr/T nets using the Z-transformation.
In SEA there is included a library for all elements used by
mechanical engineers in block diagram representations of
differential equations. Fig. 6 shows some examples from
this library.

C

+/-
+/-

Init

[x] [x]

[x]

delay = D

[x] [y]

y = x * c

[0]

[c] [c]

[c] [z]

(armed("C"))
c = read("C")

[x]

I = x * D + I

[0]

[I] [I]

[init] [z]

(armed("Init"))
init = read("Init")

old new

[I]new

new old

[z]

(armed("+/- "))

[1]

[x]

[x’] [x]

(armed("+/- "))

[1]

[z]
[y]

z’ = -z

z = x + y

[y] [y]
[z] [z]

y= y * z

[z]

[z]
x’= x * z

Value

[x] [x]

write "Value" x

connect

multiply integrate

sum

display

2

2

1

1

z’ = -z [z’]

[z]
[z’]

[z]

[z]

[z]

(z<0)
write "+/- " ’-’

1

[z]

 (z>0)
write "+/- " ’+’

1

[z’] (z>0)
write "+/- " ’+’2

(z<0)
write "+/- " ’-’2

[z’]

Figure 6. Library for differential Equations

SEA is a graphical specification and modelling system
that covers the entire area of heterogeneous systems con-
sisting of both, discrete parts and continuous ones. By its
hierarchy concepts very complex situations can be handled.
A user friendly interface allows various classes of users to
work with SEA in the environment they are familiar with.

2.3. Approaches Based on Parallel Logic Program-
ming

Concurrent logic programming has been investigated as
system description language since a coupleof years [WS87].
Here we shall concentrate on their pictorial version, more
precisely onPictorial Janus (PJ)and the online program-
ming environment for PJ calledJIM (Janus in Motion). This
has been developed in our group while PJ originates from
Xerox PARC. Just to give a better understanding of the

principles of this pictorial language, which is based on con-
current logic programming, some basics ofFlat Concurrent
Prolog (FCP)as the most general representative of this class
of languages shall be introduced here.

FCP is a general purpose logic programming language
designed for concurrent programming and parallel execu-
tion. It has been developed at Weizmann Institute of Sci-
ence in 1985 [MTSLS85]. The computational model of FCP
is based on theprocess interpretationof logic programms
in which active parts of a computation are conceived as
concurrent processes. These concurrent processes commu-
nicate viashared logical variables. An individual process
is represented by agoal atomof the formp(A1;A2; :::;Ak).
By this a process oftype pwith arity k and theargument
list A1; :::;Ak is identified where theA1; :::;Ak are arbi-
trary logical terms. A process can perform one single op-
eration, calledprocess reduction. It is determined by the
current values of the process' arguments, when and how
the process reduction can be executed. Given a logic pro-
gram, the behaviour of a processp(A1; :::;Ak) is defined
by the finite subset of program clauses for predicatep and
arity k . This subset is also called aprocess procedure.
Each clause represents a rewrite rule forgoal atoms. It
has the structure of aguarded Horn clauseof the form
A G1;G2; :::;Gm j B1;B2; :::;Bn. HereA stands for
the clause goal,Gi for guard predicatesandBj for body
predicates. The guard predicatesGi states conditions re-
ferring to process argument values. In order to perform
a reduction on a processA0 using some program clause
A G1;G2; :::;Gm j B1;B2; :::Bn, the goal atomA0 has
to unifywith the clause's head atomA (as in ordinary PRO-
LOG) and in addition all guard predicatesG1;G2; :::;Gm

must be true under the selected unification. The body part
B1;B2; :::;Bn here is interpreted as a collection of atoms
defining a multiset of concurrently active subprocesses. As
result of a successful reduction step, these subprocesses
spawn a local subnetwork that replaces the reduced process.
The global network state is updated due to the unification
carried out. Aprocess reductionis possible if the related
process procedure contains at least one enabled clause (uni-
fyable and fulfillable guards). All clauses of such a proce-
dure are tried in parallel (OR parallelism). In the case of
multiple applicable clauses a selection is made indetermin-
istically under control of thecommit operator" j ". A clause
is definitely selected for reduction after its commit operator
has been processed. All other concurrently regarded clauses
for this reduction are discarded at this time. The commit
operator is irreversible, i.e. there is no backtracking.

Pictorial Janus (PJ), defined by Kahn and Saraswat
[KS90] now is a complete visual programming language
based on the parallel logic programming languageJanus.
Janus is a language which can be characterized as a sim-
plification of FCP. These simplifications need not to be ex-

plained here. The sequel introduction to PJ and our system
JIM is an excerpt from [DLMT96]. The basic elements of
PJ programs are graphical primitives like closed contoures
and connection arcs. As the meaning of such closed con-
toures is independent from its geometrical representation
and graphical context, objects may be modelled in the most
appropriate way concerning colour, shape, size, etc.. The
basic primitives are combined to objects by the topological
relationships attachment and inclusion. Concerning objects,
PJ offersagents, functions, relationsandmessages. Mes-
sages may beconstantsor list elements. Each object may
have ports to allow connections to other objects to be es-
tablished. Agents contain one or morerules that define the
agent's reaction to external messages. Fig. 7 lists the var-
ious PJ objects. In this figure ports are filled grey just to
emphasize their contoures.

7

Constant

1

0 0

0

0

1

Agent Rule

+

Function

Link Channel

1

1

Relation

>

List

Figure 7. PJ Objects

Constants hold values while list elements establish more
complex data structures. Different elements may be con-
nected bylinkswhich are represented by unidirectional lines.
They represent data dependencies. Functions and agents
consume and producemessages. An agent (it corresponds
to a procedure in FCP) is defined by a closed contour with a
set of external argument ports. Its behaviour is defined by a
set of rules which are located inside its contour. These rules
correspond to clauses in FCP. A rule is basically a copy of
the agent's interface. Each rule defines the behaviour of an
agent with respect to different input patterns (i.e. guards).
The guards are located outside the rule's contour wheras
the behaviour(subconfiguration)is defined inside. A sub-
configuration defines a set of linked objects, i.e. messages,
functions and agents, being created when the rule is matched.
Instead of directly specifying the behaviour of an agent, a
call arrow may instantiate another agent or the agent itself
recursively. A recursive call makes an agentpersistentas it
is replaced by itself on execution.Channelsestablish direct
connections between two external ports. The meaning is to
send messages to other agents. Fig. 8 shows a simple PJ
program defining an AND-gate.

0

AND-Gate

0

1

0

1

1
1

1

0

0

0

0

Figure 8. PJ Agent with 4 Rules

Theexciting ideabehind PJ is that it is not only agraphical
representation of a logic programming language but that the
visual animation of the program's behaviour is an integral
part of PJ. So PJ completely follows the paradigm of“draw
a picture and look how it works”. In order to understand this
idea the execution model and its visual representation shall
be discussed now. By a PJ program a net of communicating
agents is given. These agents concurrently send and receive
messages. In the case that an event has been detected at any
port of an agent, i.e. a message has been arrived, the agent
checks whether any of it's rules can be applied. This is done
by simplepattern matching. The PJ execution model can be
sketched by the following simplified steps. Assume that at
least one new message has been arrived at one external port
of agentA:

1. Check rules: A checks each of it's rulesr for match-
ing with the objects at the external ports. This phase
is visualized later (see 2.).

2. Select rule: In the case that a ruler matches,r be-
comes a candidate for the further computation of the
agent. One ruler' is nonteterministically selected
from this set of candidates. Graphically now the ob-
jects within a subconfiguration of the selected rule are
instantiated. Call arrows of agents are replaced by
the corresponding behaviour. The selected rule con-
tinuously grows until its contour overlaps the agent's
contour. The above mentioned pattern matching is
visualized by morphing of the finally overlapping ob-
jects.

3. Create subconfiguration: The subconfiguration de-
fined byr' is generated. This phase has already been
visualized (see 2.).

4. Link subconfiguration: Objects of the generated
subconfiguration are linked to the already existing

configuration. As a result new messages are directed
to agents which causes additional events to happen.

5. Delete agent:The agentA together with the matched
input objects including their connections are deleted.
Graphically the matched, as well as the matching ob-
jects smoothly disappear. The subconfiguration is re-
sized until it fits to the space of the prevously deleted
objects. The shrinking of links finally animates the
motion of messages to their destination.

Fig. 9 gives a short animation sequence by six snapshots
when matching a 0-0 combination at the input of the AND-
agent of Fig. 8.

0

0
11

0

10

1

0

0

0

1

1

0

00

1

0

1

0

0

1

0

1

1

1

0

00

1

0

0

0

1

0

0

1

0

0

&

0

1

1

0

00

1

0

1

0

0

0

1

0 0

1

1

1

0

&

0

0

0

1

0

&

0

&

0

0

1

1

0
1

0

0

0

1

& &

1

1

00

1

0

0

0

1 0

1 0

0

1

0

0

1

1

1

1

0

0

0

1

0 0

1

1
1

& 0

1

1

1

1

00

0

1

1

1

1

1

0

0

0

1

0 0

1

1
1

&

0

0
1

0

1

0

1

1

1

&

01

1

0

2

54

0

3

6

Figure 9. An Animation Example

In our research group we have implemented a program-
ming environment for PJ with true online animation sup-
port, calledJanus In Motion (JIM). It consists of three main
components: aneditor serves as a graphical entry of the
language. Aninterpreterexecutes the program on a logical
level while ananimatorfinally computes the visualization of
the execution. The system can be installed on a distributed
environment using PVM. Fig. 10 gives an impression of
JIM's desktop.

Figure 10. Screendump PJ Editor

2.4. Conclusion

VHDL will stay to be the dominating specification and
modelling language in the area of hardware design for the

next years. In addition, however, various attempts are made
to provide for more abstract, more formal (and by this for-
mally verifyable) specifications. The two approaches pre-
sented in this paper are examples for this ongoing research.
As both techniques are supported by very active scientific
communities and as both have been applied to a variety of
real application examples, these two approaches are cer-
tainly examples of specific relevance.

Certainly in the future visual languages will play a much
more important role in any kinds of specification, modelling
and programming. Again the two approaches presented in
this contribution may serve as examples. Approaches based
on Pr/T nets, e.g. SEA, have basic concepts in common with
such ones based on parallel logic programming, e.g. JIM.
There is a close similarity between the rules for activating
a Pr/T net transition and activating a rule in a language like
FCP or PJ. Both incorporate unification and guard-testing.
For more details see [Ra95]. On the other hand hierarchy
concepts from StateCharts and Structured Petri Nets have
been included into SEA while at the same time SDL has been
embedded into JIM [LMT95]. So a common understanding
of pictorial modelling languages is evolving.

Combining these pictorial techniques with algebraic ones
to a well understood and easy to handle multiparadigmatic
approach to system specification and modelling may be the
most promising solution.

2.5. Acknowledgements

This paper is an overview on ongoing work within the au-
thor's research group. Therefore original ideas and slightly
modified excerpts from publications of the following per-
sons have been used to compile this contribution: Egon
Börger, Maria Brielmann, Giuseppe Del Castillo, Marita
Dücker, Christian Geiger, Uwe Gl¨asser, Bernd Kleinjohann,
Lisa Kleinjohann, Georg Lehrenfeld, Wolfgang M¨uller,
Christel Oczko, J¨urgen Tacken, Christoph Tahedl.

2.6. References

[Ba88] R.J.R. Back:A Calculus of Refinments for Program
Derivations.Acta Informatica,vol. 25,1988

[Bar95] D.L.Barton:Overview of the SDDL Study Group,June
1995

[BG94] E.Börger and U.Gl¨asser: A Formal Specification of
the PVM Architecture.In: B.Pehrson and I.Simon (eds.): Proc. of
the IFIP World Congress' 94, Volume I:Technology and Founda-
tions,Elsevier Science Publishers B.V.,1994,pp.402-409

[BGM95] E.Börger,U.Glässer and W.M¨uller: Formal Defi-
nition of an Abstract VHDL'93 Simulator by EA-Machines.In:
C.Delgado Kloos and P.T. Breuer (eds.):Formal Semantics for
VHDL,Kluwer Academic Publishers,1995,pp.107-139

[BR96] M.Brielmann and F.J. Rammig:Principles for the De-
velopment of Computer Based Systems. In: Proc. of the IEEE

Int.Symposium and Workshop on Engineering of Computer Based
Systems,ECBS. March 1996,Friedrichshaven, Germany,pp.166-
173

[CK81] L.A.Cherkasova,V.E.Kotov:Structured Nets,Lecture
Notes of Computer Science 118,Springer,1981

[DDG96] G. Del Castillo, I.Durdanovic and U.Gl¨asser: An
Evolving Algebra Abstract Machine.In H.Kleine Büning(ed.)Proc.
of Computer Science Logic -CSL' 95,to appear in:LNCS,Springer-
Verlag,1996

[DLMT96] M.Duecker,G.Lehrenfeld,W.Mueller and C.Tahedl:
A Distributed System for the Interactive Real-Time Anima-
tion of a Complete Visual Programming Language.C-LAB
Paderborn,Germany,C-LAB Report 05/95

[Gur93] Yuri Gurevich: Evolving Algebras 1993: Lipari
Guide.In E. Börger (ed.):Specification and Validation Meth-
ods.Oxford University Press,1995

[KKJ96] B.Kleinjohann,E.Kleinjohann and J.Tacken:The
SEA Language for System Engineering and Animation.
Proc.ICAPN' 96,1996

[KS90] K.M Kahn and V.Saraswat:Complete Visualizations of
Concurrent Programs and their Executions.In Proc. of the IEEE
Workshop on Visual Languages,IEEE,1990

[LMT95] G.Lehrenfeld,W.Müller and C.Tahedl:Transforming
SDL diagrams Into a Complete Visual Representation.In: Proceed-
ings of the IEEE Symposium on Visual Langauges' 95, September
5-8,Darmstadt,Germany,1995

[MH92] B.Mahony and I.Hayes:A case Study in Timed Refine-
ment: A Central Heater.In: Z Forum 1991,University of Queens-
land,January,1991

[Mo90] C.Morgan:Programming from Specifications,Prentice
Hall International,1990

[MTSLS85] C.Mierowsky,S.Taylor,E.Shapiro,L.Levi and
S.Safra:The Design and Implementation of Flat Concurrent Pro-
log. Technical Report CS 85-9,Dept. of CS, The Weizmann Insti-
tute of Science,Rehovot,Israel,1985

[Oc96] Chr.Oczko:Embedding VHDL into a Formal Specifica-
tion Environment - A Case Study.In Proc. SIG-VHDL Spring' 96
Working Conference,Dresden,Germany, Shaker Verlag,1996

[Ra95] F.J. Rammig:Models and Tools for Integrated Sys-
tem Design.In: Proc. of The 10th Congress of the Brazilian Mi-
croelectronics Society and 1st Ibero American Microelectronics
Conference.pp.191-210,1995

[Sp94] J.M.Spivey: The Z Notation:“A Reference Manu-
al”, Prentice Hall International,Series in Computer Science, 2nd
ed.,1994

[WS87] D.Weinbaum and E.Shapiro:Hardware Descrip-
tion and Simulation Using Concurrent Prolog. Proc.IFIP
CHDL87,North Holland,1987

	CDROM Home Page
	1996 Home Page
	EURO-DAC96 Home Page
	Front Matter
	Table of Contents
	Session Index
	Author Index

