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Abstract

An increasing productivity gap a�ects the progress of

electronic system design. As an immediately available

solution, the application of reuse techniques is widely

recognized. This paper presents a reuse workbench for

VHDL designs which covers the three basic require-

ments of a design with reuse process: availability, �nd-

ability, and understandability. The latter is realized by

a novel reverse engineering concept for VHDL designs.

It is based on the intensive use of hypertext techniques

and graphical code representations.

1. Motivation

The current electronic system design process is in-

uenced by two contradictory trends. On the one
hand, the progress of semiconductor technology leads
to a steadily increasing functional complexity. On the
other hand, product development cycles must become
smaller due to decreasing time to market periods. This
contradiction can not be resolved by an enlarged design
team since the portion of the so-called communication
overhead rises together with the head count. Moreover,
there is only a small intention within the European
electronic industries to expand development budgets
at the moment. Therefore, only a distinct increase of
designers productivity (#transistors/man month) will
remain as a reasonable solution.

The necessity of this increase is e.g. stated by [12]
who predicts a growing productivity gap (Fig. 1). Ac-
cording to a SEMATECH study, the system complexity
rose around 50% in 1995 whereas design productivity
was left behind with 21% increase.

The currently proposed solutions for this produc-
tivity dilemma mainly focus on techniques which will
reduce the amount of functional speci�cation related
to the implemented number of transistors. This may
be achieved by di�erent approaches:

� more abstract speci�cations based on the current
Hardware Description Languages (HDL) followed

by computer-aided transformation via high-level
synthesis;

� introduction of novel (e.g. graphical) speci�cation
methods together with the development of suit-
able transformation tools;

� reuse of existing design data and design know-
ledge.

Since the �rst two approaches have not reached a wide
commercial availability and would require huge invest-
ments in training and software, the reuse approach
might remain as a cost-e�ective and instantly available
technique to overcome the productivity problem.
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Figure 1. Productivity gap

2. From hardware to software reuse

Reuse is not new to electronic system design. Since
the �rst commercial applications of digital electronics,
standardized components and inferfaces (e.g. 74xx-ICs,
TTL voltage levels) were utilized in order to reduce de-
velopment and manufacturing costs. At that time, the
application-speci�c functionality resulted from a struc-
tural con�guration of standardized hardware compo-
nents on a printed circuit board.

Today, electronic system design is dominated by
complex and programmable components (e.g. CPLDs,
FPGAs) and the usage of synthesis tools which au-
tomatically transform a technology-independent HDL
speci�cation into a low-level implementation [4].



Therefore, most of the functional properties of a de-
sign (and the design-speci�c intellectual property) are
not kept in a structural hardware con�guration but in a
software-like HDL description ('software chips'). This
leads to the assumption that reuse in a modern hard-
ware design process can adopt reuse techniques origi-
nating from software engineering.

2.1. Reuse bene�ts

Of course, the major advantage of reuse during a
software-like hardware development is the reduced de-
sign time which results from less coding e�ort but also
from savings during the speci�cation, documentation,
and test phases. The reduced design time will directly
lead to smaller development costs (up to 85%, [9]).

Additionally, the reuse of existing models will im-
prove the predictability of design e�orts, thus design
risks are minimized. This bene�t is also supported by
an increased quality, since reused models have been
'tested' several times by di�erent users. Last but not
least, reuse might disburden engineers from repetitive
tasks and therefore improve their motivation.

2.2. Reuse requirements

To fully exploit the bene�ts of reuse, it is mandatory
that reuse becomes a design principle. The underlying
basic requirements are normally separated into design

for reuse and design with reuse requirements.

Design for reuse (DFR) denotes the additional
e�ort that has to be spent during model creation in
order to increase the probability of future reusage. The
resulting models must show several characteristics:

� wide application range:

{ structural and functional adaptability;

{ abstraction (no application speci�c details);

{ portability;

� understandability:

{ deterministic behavior;

{ readability, consistent documentation;

{ encapsulation of model parameters;

� consideration of standards:

{ general and domain-speci�c guidelines;

{ interface structure and interface types;

� �ne-grained modularity.

Design with reuse (DWR) summarizes all design
activities which partly or even completely depend on
previously designed models. The basic steps during a

design with reuse are: selection of reuse candidates,
analysis of functionality, evaluation of suitability, and
adaption to the speci�c constraints of a design task.

The success of a DWR strategy which compensates
the DFR costs, mainly depends on a wide availability of
models intended for reuse. This is mostly achieved by a
repository realizing computer-aided storage and man-
agement of reusable software. In addition, functional
and/or non-functional retrieval mechanisms have to be
provided to support the �ndability of reuse candidates.
Further assistance of DWR might be contributed by
computer-aided analysis tools which ease understand-

ability and facilitate the adaption process. According
to [2] the costs of modifying only 20% of an external
software module are nearly the same as developing the
module from scratch, if no analysis tools are applied.
The analysis tools might also enlarge the con�dence
of a designer into external source code. This means
that analysis tools could overcome the psychological
con
icts ('not invented here syndrome') which usually
occur during a DWR process.

3. VHDL and reuse

Severe problems appearing during the maintenance
of complex electronic systems have been the major rea-
son for developing the standardized language VHDL
which allows the creation of highly reusable mod-
els. VHDL incorporates reuse techniques belonging
to hardware design (structural module con�guration)
as well as those originating from software development
(functional parametrization).

For example, the adaptability of a VHDL design is
supported by generics (encapsulated inside the entity),
generate-statements (conditional compilation), or un-
constrained types. The portability of a VHDL design is
achieved by its independence from a speci�c semicon-
ductor technology and the encapsulation of platform-
dependent properties. Furthermore, the standardized
simulation semantics and VHDL's self-descriptiveness
are supporting the analysis process. Besides these lan-
guage properties which ease a DFR, VHDL also backs
DWR techniques by an extensive and 
exible module
con�guration concept.

4. A VHDL reuse workbench

The excellent reuse properties of VHDL have en-
couraged many users to develop and apply VHDL-
based DFR strategies (e.g. [13]). This section will
present a novel approach for a VHDL-based hardware
design reuse workbench. The workbench should ease
a DWR process in order to bene�t from former DFR
investments. However, the workbench might be uti-
lized even for the reuse of any arbitrary VHDL code
collection (e.g. public domain models from ftp-sites).
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Figure 2. The VHDL reuse workbench { system overview

The workbench integrates di�erent tools, which pro-
vide VHDL model storage, �ndability, functional and
structural analysis as well as quality checks. In the
following, we will motivate the necessity of the di�er-
ent workbench components as depicted in Fig. 2. The
underlying concepts and the functionality of the com-
ponents will be introduced.

4.1. Model server

Database: The above-mentioned requirement of a
wide availability (see 2.2) is provided by a commer-
cial object-oriented database which serves as a gen-
eral VHDL model repository . The database comprises
a client-server concept which keeps the access to the
model server independent of a speci�c operating sys-
tem or hardware platform. Locking mechanisms assure
con
ict-free multi-user transactions.

C++ is applied as data de�nition and data manip-
ulation language. The object-orientation of C++ en-
ables us to model complex and recursive structures, like
the VHDL syntax, in an understandable and realisitic
way. Furthermore, object-oriented databases allow to
navigate across the data very close to its structure.
This would not be possible in a relational database
since they realize navigation by joins of tables.

Database modeling: To store and access VHDL
designs inside the model server, a suitable represen-
tation of VHDL by a database model has to be pro-
vided. Since we will support very detailed queries
(e.g. concerning signal initialization), we must store
the VHDL models in a �ne-grained manner. More-
over, the database model should not incorporate appli-
cation details and should be extendible to future VHDL
standards. Therefore, we decided to derive the object-

oriented database model solely and systematically from
the VHDL grammar.

The derivation starts from the VHDL grammar G1
which is de�ned in [7]. First, G1 is transformed into
an abstract, object-oriented attribute grammar G2 [5]
which facilitates the implementation of semantic at-
tribute calculation. A succeeding, completely formal
grammar translation maps grammar G2 to an object-
oriented class hierarchy G3. Apart from redundant el-
ements of chain productions, all terminal symbols and
non-terminal symbols of G1 are represented as classes
in G3. The inheritance hierarchy and the relationships
inside G3 re
ect the syntactic structure of G1. A �nal
transformation of G3 simpli�es the resulting database
model (DBM) and adds some database-speci�c con-
tainers, the so-called collections. The mentioned trans-
formations and translations take into account that all
queries to the initial language L(G1) should be realiz-
able, i.e.:

L(G1) � L(G2) � L(G3) � L(DBM)

Since the collections are attached to the VHDL-speci�c
classes, syntax based queries can be applied across all
VHDL models inside the repository, e.g. "check in all
design units if signals are explicitly initialized" (bottom-

up query). Besides this, each design unit might be
queried from the class library unit down to its termi-
nal classes (top-down query).

VHDL compiler: Before VHDL source code �les
are transfered to the model server, the code structure
will be automatically analysed, i.e. the design hierarchy
is extracted by a modi�ed make�le generator, which
was initially provided by [15]. After this structural

decomposition, a VHDL compiler generates instances
of classes and inserts relationships and derivations in
order to re
ect the VHDL source code. The VHDL
compiler is based on a LALR(1) grammar and is im-
plemented with the Cocktail compiler generator [5].



4.2. Model analysis

A core functionality of the reuse workbench is pro-
vided by the model analysis module implementing
novel VHDL reverse engineering techniques. These
techniques are aimed to simplify the functional and
structural analysis of VHDL designs. It is expected
that the model analysis module will accelerate the pro-
cess of adaption and will overcome the mentioned psy-
chological DWR con
icts (see 2.2).

The di�erent, mostly graphical user interfaces (Fig.
3) will be dynamically generated on request. They
could invoke each other, as it is indicated by the
straight lines in Fig. 3. Besides this, many automat-
ically attached hyperlinks provide cross references be-
tween the details of a VHDL design (curved lines).
Some screenshots of the implemented analysis inter-
faces are published in [10].
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Figure 3. Model analysis interfaces

The unit manager serves as an entry point to the
model analysis. It visualizes the complete hierarchy
of a VHDL design and o�ers some navigational aid
because it highlights the current position during the
analysis and tags already analysed design units. The
entity graphic depicts the interface of each VHDL en-
tity (ports and generics).

The remaining analysis interfaces (Hypertext, Pro-
cess Model Graph (PMG), and VCSD) are aimed to
attack the understanding problems which typically oc-
cur during VHDL source code analysis. They will be
discussed in detail in the following paragraphs.

VHDL hypertext: The outstanding structuring
capabilities of VHDL allow a modular, redundancy-free
and reusable description of even very complex digital
systems. Unfortunately, structuring and partitioning
accross many design units and source code �les will
prevent from quickly analysing a single model, since
related information is widely distributed (Fig. 4).

Therefore, the model analysis module provides a hy-

PACKAGE p2 IS
   TYPE t IS ...
   ...

PACKAGE p1 IS
   SUBTYPE s IS t ...
   ...ENTITY e IS

   PORT(x: s);
   ...ARCHITECTURE a OF e IS

BEGIN
    y <= sin(x);

AA

Figure 4. Example of distributed information

pertext interface, which enables the user to simply ex-
plore a VHDL design by mouse clicks ('VHDL surf-
ing'). For that, hyperlinks are automatically attached
to all identi�ers inside the VHDL source code. The
hyperlinks point to the correlating declaration of each
identi�er (Fig. 5). Since every identi�er can be used
many times, a directed many-to-one relation exists for
each identi�er declaration. The declaration itself and
the corresponding design unit also contain many hyper-
links which point to further declarations, and so on.

declaration a

   identifier b

identifier a

identifier a

Hypertext
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Graphic
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declaration b
Hypertext

...

...

m:1

Figure 5. VHDL hypertext structure

Because the hyperlinks are attached dynamically

on user's request, we are able to implement a hy-
perlink web which is interactively con�gured by the
user. This means that the user might select links by
VHDL-speci�c criteria (e.g. links to signal declarations
or links to input port declarations). A solely activa-
tion of input port links e.g. will enable the user to
quickly detect if and where input ports are read inside
an algorithmic VHDL description. After selection, a
simple mouse click will immediately open the design
unit where the identi�er is declared; the corresponding
declarative statement will be highlighted.

CONFIGURATION c OF e IS
 FOR adder
  FOR c1: ha USE
   ENTITY work.ha(beh);
   FOR beh
     FOR x1: xor2 USE 
     ENTITY work.x(beh);
  ...
END c;

Figure 6. Hyperlinks inside a VHDL con�guration

Besides this, the user might navigate along an al-
ready selected link path through di�erent design units
via a back/forward mechanism. For example, it is pos-



sible to access the declarations of all bold-faced iden-
ti�ers inside con�guration c (Fig. 6) by a mouse click
and return to con�guration c each time.

VHDL process model graph: The behavior of
a VHDL model is determined by its concurrent state-
ments inside the VHDL architecture. A manually car-
ried out functional analysis has to identify the signal
drivers and triggering conditions (sensitivity sets) of
all concurrent statements. Often, the sensitivity set
must be extracted from complex expressions inside the
wait-statements which might be hidden inside some
procedures. A further analysis problem results from
the fact that concurrency is described by a linear, one-
dimensional medium (ASCII text �les). Therefore, the
designer has to move up and down inside the source
code during the analysis process (Fig. 7). This proce-
dure is tedious and error-prone (cf. goto programming).

ARCHITECTURE ... BEGIN

END;

Figure 7. Non-sequential functional analysis

The VHDL reuse workbench supports the functional
analysis by an automatic translation of VHDL ar-
chitectures into a meaningful process model graph1

(PMG). The nodes of this graph represent the con-
current statements; the edges depict the activating sig-
nals. Statements which might invoke themselves via
one or more signals (or inout ports) are marked by
a loop. Furthermore, redundant signals are eliminated
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Figure 8. Process model graph (PMG) of block b1

from the PMG. This happens e.g. if signals inside a sen-
sitivity set have no corresponding signal driver. There-
fore, the PMG might also be applied during the de-
bugging phase of a VHDL design project. Connections

1A more data
ow oriented diagramwith identical namingwas
introduced by [1].

to the VHDL hypertext interface are provided by au-
tomatically attached hyperlinks which point from each
identi�er inside the PMG (port, signal, label) to the
correlated declaration or usage inside the VHDL source
code.

The hierarchical 'clustering' of concurrent state-
ments inside a generate- or block-statement is visual-
ized by hierarchical diagrams. Fig. 8 depicts a PMG
which has been extracted from the following piece of
VHDL code. Please note that the signal guard which
is implicitly declared by the guard expression was made
visible to the user.

...

b1: BLOCK (a = '1')

PORT (b: IN bit);

PORT MAP (b => x);

SIGNAL c: bit;

BEGIN

a1: c <= GUARDED b;

a2: nand2 PORT MAP(c, d, w);

END BLOCK b1;

...

VHDL control structure diagram: Besides the
PMG (visualizing concurrent statements), the model
analysis provides automatically generated diagrams
which depict the structure of sequential code inside
processes and subprograms (functions and procedures).
The diagram is based on so-called control structure di-
agrams (CSD) which were introduced by [3] to ease
ADA source code analysis. Compared to the well-
known structure charts and 
ow diagrams, CSDs show
a strong relation to the source code, allow an easy im-
plementation, and e�ciently visualize exit- and next-
statements. Since CSDs only expand in two directions
(to the right: structural depth, to the bottom: code se-
quence) we have been able to easily extend their func-
tionality by a user-con�gurable depth of visualization.
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Figure 9. VHDL control structure diagram (VCSD)

Moreover, we added the following properties, result-
ing in the VHDL control structure diagram (VCSD):

� visualization of VHDL speci�c constructs;

� user-de�ned amount of depicted information;

� automatically inserted hyperlinks pointing from
all structures and identi�ers to the VHDL hyper-
text source code.



Fig. 9 shows a small example of a VCSD containing
two loops, one if-, one case-, one exit-, and one next-
statement.

4.3. Model quality

The expressive power and 
exibility of VHDL leads
to a large number of possible modeling styles. This fact
has motivated the development of tools which support
an automatic inspection of modeling quality, e.g. [14].

The VHDL reuse workbench incorporates a model
quality checker which processes rules concerning syn-
thesizability and simulation e�ciency as well as reus-
ability in order to support the DFR process. Di�erent
reuse facets like understandability, adaptability, porta-
bility, and deterministic behavior are inspected as far
as possible.

Mostly, rules depend on the speci�c application
(e.g. PCB vs. ASIC), the designer's company, or the
applied design tools. For this reason, the prede�ned
rules can be parametrized and con�gured to rule sets
inside the individual environment.

4.4. Non-VHDL modeling domains

Besides the digital world, analog components and
the system environment have to be regarded if sys-
tem modeling and simulation are performed. There-
fore, we decided to provide some interfaces which could
reuse non-VHDL models via transformation (i.e. con-
verting them to VHDL) or at least by coupling them
to a VHDL simulator via model integration (Fig. 2).
Currently, we complement Verilog-to-VHDL transla-
tors and VHDL backends of system design tools by a
VHDL interface which transforms control system mod-
els of xmath [8] into VHDL models. An additional

exible interface allows to connect external simulation
models, written in the programming language C, to
a VHDL simulator via UNIX interprocess communica-
tion [11]. In the future, this interface might be replaced
by the Open Model Interface (OMI) which is currently
designed by the Open Modeling Forum (OMF) [6].

5. Conclusions

This paper presents a reuse workbench for VHDL
designs simplifying code reuse in order to narrow the
existing productivity gap. First applications proved
that especially the wide availability of VHDL models
and the automatic analysis tools will motivate design-
ers to regard foreign VHDL models. Additionally, the
workbench can reduce communication overhead inside
larger design teams and may support code review and
error-detection.

Since the tool targets VHDL code and VHDL re-
lated design data, it will not cover all reuse aspects of
electronic design (e.g. layout macros). At the moment,

a second limitation results from the simple model se-
lection via a non-functional key word search. Further-
more, the tool is based on a compiler independent of
compilers interfacing VHDL simulators. This leads to
extra compilation times during the design process.

Future developments will include an interactive rule
correction functionality inside the quality checking
module. Additionally, the hypertext interface should
become editable (with an update feature) to ease the
reuse phase of model adaption. Finally, the model
selection module might be enriched by a formalized,
VHDL-oriented query language.
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