
EURO-DAC ’96 with EURO-VHDL ’96
0-89791-848-7/96 $4.00 1996 IEEE

Software Methodologies for VHDL Code Static Analysis based on Flow Graphs

Luciano Baresi, Cristiana Bolchini, and Donatella Sciuto
Dipartimento di Elettronica e Informazione

Politecnico di Milano
P.zza L. Da Vinci, 32 - 20133 Milano, Italy
[baresi|bolchini|sciuto]@elet.polimi.it

Abstract

At a high level of abstraction, the VHDL specification of the
functionalities that a circuit shall perform is given by defining the
behavioral model. The similarity with procedural programming
languages suggested to tailor some software analysis techniques
to VHDL behavioral description analysis. The paper presents sev-
eral analyses of the code, based on data flows, aimed at identify-
ing significant properties of the final circuit from the synthesis and
testability points of view.

1. Introduction

VHDL is now the most widespread language for building soft-
ware models of hardware systems. However, although the com-
plexity of the described models is rapidly increasing, no support
is given to the designer to evaluate the quality of its code. Such
a problem has been already analyzed by the software engineering
research area and different techniques for evaluating concurrent
and sequential software specifications have been proposed.

The aim of this paper is to consider static analysis techniques
to identify significant properties of the implementation, from the
behavioral VHDL description. The information collected from the
code analysis is very important for (a) discovering and correcting
possible errors, inconsistencies, and incompletenesses, without af-
fecting the following design phases; (b) deriving test patterns, that
will be used to validate the circuit during simulation; (c) identify-
ing code fragments, that are known to be critical with respect to
synthesis; and (d) predicting the outputs of a synthesis tool, i.e.,
how a synthesized circuit should look like.

Approaches to VHDL analysis for quality evaluation have been
already published in literature [1, 5, 11, 8]. New commercial tools
mainly dealing with code coverage are already available [15, 17].
More sophisticated analyses for synthesizability, simulation, com-
plexity evaluation and testability are under study in the EEC sup-
ported OMI Project REQUEST.

This paper presents the first results of this project by proposing
a data flow based methodology to statically extract information
from the VHDL specification, which is interesting both for test-
ability analysis and for synthesis purposes.

The syntactic similarity between behavioral VHDL and pro-
cedural programming languages suggested to try to apply soft-
ware analysis techniques to investigate VHDL code. The work
describes an approach for identifying deadlock conditions within
VHDL specifications. Hints and ideas have been taken from reach-
ability analysis [13] and symbolic execution [7]. While proposing
this technique, we adapted the concept of deadlock to the hard-
ware domain. Many proposals to uncover deadlock conditions in
concurrent software systems use the dining philosophers problem
to validate their approach. This is why a VHDL model of the prob-
lem has been the starting point of the work. Besides this, several
techniques based on data flow analysis are presented to highlight
useful properties of VHDL behavioral descriptions.

The rest of this paper is organized as follows. Section 2 pro-
poses a VHDL model of the dining philosophers problem, pointing
out its usefulness as far as VHDL and hardware systems are con-
cerned. Moreover it informally figures out an analysis technique to
discover potential deadlocks. Static analysis techniques, all based
on some annotations of the flow graph of the VHDL code under
analysis, are described in Section 3. Finally, Section 4 draws some
conclusions.

2. A VHDL Model of the Dining Philosophers

Dijkstra’s Dining Philosophers problem[6] was chosen to
study deadlocks in VHDL code and their impact on the resulting
circuits. The problem can be formulated as follows:

Five philosophers are seated around a table. Between each
philosopher there is a single fork. The life of a philosopher con-
sists of periods of eating and thinking. When a philosopher gets
hungry, he tries to get his left and right fork, one at a time, in either
order. If successful in acquiring the two forks, he eats for a while,
then puts down the forks and thinks.

A problem can arise if each philosopher simultaneously grabs
his left (right) fork and then waits for his right (left) fork. Since
right (left) forks are not available, all philosophers starve and a
deadlock occurs.

This problem can be modeled in VHDL by exploiting the fea-
tures of the language.Processes may be used to model the philo-
sophers whereassignals are suited for modeling the forks. Main
role for the characterization of the problem is played by the VHDL
synchronization mechanism.

Communications in VHDL are asynchronous, based on events
on signals. As to model execution, during the start-up phase, all
processes are executed either till the end or till they are suspended
waiting for some events to occur. After that, processes are ex-
ecuted each time there is a change on the signals they are sensible
to. The outputs always remain available, and there is no run-time
supervisor: all the processes are executed in parallel.

It is meaningful to study whether a modeled system can enter
deadlock situations. Quoting [16], deadlock can be defined form-
ally as follows:

A set of processes is deadlocked if each process in the
set is waiting for an event that only another process in
the set can cause.

Because all processes are waiting, none of them will ever cause
any event, and all the processes remain blocked. This definition
applies directly to hardware systems.

The differences, with respect to software systems, are:

� a closed system, such as our model of the dining philosophers
problem, is either always or never deadlocked. There is no
run-time supervisor that defines the actual scheduling among
processes. If a system can enter a deadlock condition, this is
not a possibility, but a certainty.

� The dynamics of an open system is not hard-coded within the
specification of the system itself. It depends on the arrival of
external signals. This undeterminism turns the certainty of
deadlocks into the possibility of having them.

� An event is a change on a signal. A process can either be
suspended waiting for an event or need an event to change its
outputs. In both cases, events are necessary to allow a circuit
to evolve.

� A blocked circuit does not stop working, but it evolves
through dummy executions. This condition is easily detect-
able by an external observer who sees always the same output
values.

In case of closed systems, then, the first and the fourth points
imply that a VHDL behavioral description, with deadlocks, should
be synthesized by a set of constant values, instead of a real logic
circuit. In the case of open systems, the absence of a reset signal
may become a critical point if the code is characterized by the
possible presence of deadlocks. In fact, the reset signal would
provide the means for exiting the deadlock situation, placing the
circuit in its initial state.

Now, the problem is how deadlocks can be uncovered in hard-
ware circuits and, even better, in VHDL behavioral specifications.
The aforementioned condition is easily detectable by simulation,
but, to the best of our knowledge, not by the analysis of designed
models.

This is the reason why we defined a VHDL model of the dining
philosophers problem. Each resource is modeled by a separate
process. Thus, both philosophers and forks are coded as processes.
So doing, we can say that we do not actually model a fork, but a
sort of dispatcher that oversees resource allocation.

Characteristic of the modeled dining philosophers problem is
the fact that all philosophers behave in the same way and the non-
determinism has been eliminated from the model.

Looking at the code [2], not included here due to space consid-
erations, we noticed that:

� two distinct signals (FORKNL and FORKNR) are used to
represent the request for acquiring a fork: one for each adja-
cent philosopher. This solution has been adopted not to have
multiple-driven signals, constituting not synthesizable code.

� The actual availability of a fork is represented by a boolean
signal (FORKN).

� All the philosophers are controlled by the same external
clock, i.e., they all obey the same timing. The adoption of
more than one clock would have led to not synthesizable
models for commercial logic synthesis tools [15, 12].

� It is supposed that all the philosophers try to start eating at
the same time. This is the easiest choice to have a deadlock.
Moreover it does not require the use of external signals to
control the philosophers, i.e., we have a closed system.

Note that, the approach here adopted is not restricted to closed
systems only, but it is suited for open systems too.

The simulation of the designed model highlighted what expec-
ted: outputs are actually constants in the time domain, after a first
initialization phase. On the contrary, the synthesis, using commer-
cial logic synthesis tools [15, 12] did not produce simple constants
(including set logic), but an unexpected logical circuit. This is due
to the fact that having defined different processes, different finite
state machines are synthesized, sharing the logic but not the states.
Hence the tool is not able to identify the possible occurrence of a
deadlock and the correspondence to a constant value.

Therefore, deadlock analysis can be effective to evaluate the
quality of the design with respect to the specific problem.

2.1. Deadlock

A first step to detect deadlocks is the analysis of the informa-
tion that flows among the processes involved in the communica-
tion. To do this, we define theinformation flow graphof a VHDL
model. An information flow graphis a directed graph, where
nodes represent processes, and edges information flow. There is
an edge, labeled withv, between a processS and a processT , if
T reads the variablev updated byS.

A trivial condition that could lead to deadlocks is then the ab-
sence of loops in the flow graph. A process (node) cannot re-
compute its outputs as a consequence of external events. On the
contrary, when information flows around a loop, processes can
be fed with new inputs and thus produce new outputs. It is true,
however, that clocked processes could modify their inputs due to
internal events only. For instance, an output signal could be incre-
mented at each clock sample, even if the inputs do not change.

Information flow graphsdo not often provide definitive solu-
tions, but they are easy to build and can be regarded as the first step
in analyzing a VHDL model. According to this, we defined thein-
formation flow graph(Figure 1) for the philosophers problem. For
the sake of simplicity, we consider two philosophers only. In this

graph, processes controlled by a sensitivity list are highlighted by
a circle around the node. Moreover signals are divided into signals
that appear into sensitivity lists, depicted by dashed lines, and the
others, represented by solid lines.

It can be immediately noticed that the condition on information
flow does not hold: each process can be fed with new inputs. It is
true, however, that the two philosophers wait for the same two
signals.

PHILOSOPHER1

PHILOSOPHER2

FORK2 FORK1

FORK1

FORK1

FORK2

FORK2

FORK1R

FORK1LFORK2R

FORK2L

Figure 1. Philosophers: information flow graph

This fact suggests to extend the analysis by considering the de-
pendencies among the events necessary to each process. In other
words, we define adependencies graph. Nodes are the signals that
appear in aninformation flow graph, and edges state eventual de-
pendencies among signals. An edge between a nodes and a node
t means that there is a change ons only if there is a change ont.
Thedependencies graphfor the philosophers problem is shown in
Figure 2. It can be noticed that, after the start-up phase, there is
an event on FORK1R, if there is an event on FORK1. Unfortu-
nately, this relation holds also in the other way around: an event
on FORK1 requires an event on either FORK1R or FORK1L. The
same circularities exist also among signals FORK2L, FORK2R,
and FORK2. This means that the whole system has entered a cir-
cular wait condition, i.e., a deadlock condition.

FORK1FORK2

FORK1RFORK2L

FORK1LFORK2R

Figure 2. Philosophers: dependencies graph

The previous methods can also suggest partial simplifications
in synthesizing a model. The conditions could hold for a subset
of the involved processes. Simplifications would apply to those
processes only, instead of to the whole model.

The use of boolean signals for regulating both the request and
the acquisition of a fork, i.e., the presence of semaphores both in
philosopher processes and in fork processes, imposes a rendez-
vous-like communication model. This means we can define how
the model evolves in its execution space, borrowing some ideas
from reachability analysis [13].

Looking at how signals are used and at theinformation flow
graphof Figure 1, we can define four high-level functions:

set request: a processP probes the variablev and sends a request
to setv.

reset request: a processP sends a request to resetv.

set: a processP sets the variablev.

reset: a processP resets the variablev.

resetset

FORK1

1

2

3

9

7

8

resetset

FORK2

PHILOSOPHER1

eat

reset request(FORK1) and reset request(FORK2)

set request(FORK2)

set request(FORK1)

PHILOSOPHER2

set request(FORK1)

set request(FORK2)

eat

reset request(FORK1) and reset request(FORK2)

5 6

4

12

10

11

Figure 3. Philosophers: graph representations.

The identification of these macro-instructions allows us to ex-
tract from the processes, two philosophers and two forks, a graph
representation, shown in Figure 3, that resemblesflowgraphs(the
numbers by the graph represent the labels of the states used in the
execution space). According to the VHDL model we defined [2],
the graph for a philosopher process translates the finite state ma-
chine coded by the case statement. In the same way, the graph of
a fork represents the two alternatives offered by anif statement.
In both cases the loop is required by the dynamic semantics of
VHDL.

These four graphs help us in building the execution space, Fig-
ure 4, of the model. VHDL processes execute and, if possible,
change their state all in parallel. As expected, it is not possible to
leave the state where each philosopher tries to get the second fork.
The dashed line indicates that the whole system is not blocked, but
it goes on executing in the same state.

1 4 7 10 1 5 7 11 2 4 8 10

Figure 4. Philosophers: execution space

When an open system is taken into consideration, Figure 2
is modified by adding new ingoing edges in the nodes (signals)
sensible to external events. In this way we model the sensitivity
of the processes to unpredictable signals. These signals do not
modify the basic interdependencies between the philosophers and
the forks, but they introduce undeterminism in model’s dynam-
ics. This unpredictability makes the proposed analysis highlight
the possibility, instead of the certainty, of deadlocks.

3. Flow Graph based Static Analyses

After having examined the communication among processes
focusing the attention on the problem of possible deadlocks, let
us now take into account the sequential programming language
aspects of VHDL. A variety of different methods have been suc-
cessfully proposed and applied for analyzing sequential software
programs [9]. This section aims at concentrating on static analysis
techniques, that, even if not as powerful as dynamic analysis, offer
valuable results and are easier to apply.

All the techniques presented in the next sections are based on
appropriate annotations on the nodes of a graph. As already done
in Section 2, VHDL code is translated into a graph-like represent-
ation, calledflow graph. A flow graph [9], basically a directed
graph, is composed of nodes, representing program statements1,
and edges, defining execution flow. Notice that, for readers famil-
iar with the LEDA tool [10], the representation proposed here is
very similar to the graphs built by the tool.

The obtained graph is then decorated with the information
needed for the particular analysis. Section 3.1 takes into account
delays associated with variables2. The operations performed on
each variable are used in Section 3.2 to uncover inferred latches.
Finally “transparent” variables, are addressed in Section 3.3.

3.1. Timings

A first analysis that can be done on theflow graphof a VHDL
process concerns the delays associated with variables, i.e., which
is the actual effect ofafter statements on variables propagation.

The analysis can help in studying problems related to control-
lability and observability for testability verification [4]. We can
statically decide whether all the combinations of the possible val-
ues are observable on process inputs. Different delays could actu-
ally forbid some combinations.

Let us define apath as a directed path from the entry node to
the terminal node of theflow graph. The presence of loops within
a flow graphleads to, at least from a theoretical point of view, an
infinite set ofpaths. Fortunately, the problem can be overcome by
exploiting both the peculiarities of VHDL and the specific needs
of the current analysis. To have a specification that could be syn-
thesized, loops must be upperbounded. The aforementioned as-
sumption would definitively solve the problem. Moreover, to have
a synthesizable specification, delays cannot be put within loops.
This means that, as far as current analysis is concerned, loops
can be discarded and the graph becomes a directed acyclic graph
(DAG).

Graph nodes, in which variables are assigned, are annotated
with a pair< N;LD >. N is the variable name andLD is the
local delay.LD is 0 if the variable is not delayed, i.e., if the state-
mentafter does not follow the assignment. After that, all the
paths, within the modifiedflow graph, are searched. For each
path, delays associated with each variable are summed, defining
new pairs< N; PD >. N is still the variable name andPD is
the delay on thepath. At the end, for each variable, the minimum

1A “statement” can be both a single actual statement and a whole pro-
cess invocation, considered as a macro-statement.

2A variable indicates both an actual variable and a signal.

MUX: PROCESS(I0, I1, I2, I3, A, B)
VARIABLE muxval: INTEGER;

BEGIN
muxval := 0;
IF (A = ’1’) THEN

muxval := muxval + 1;
END IF;

IF (B = ’1’) THEN
muxval := muxval + 2;

END IF;

CASE muxval IS
WHEN 0 => Q <= I0 AFTER 10 ns;
WHEN 1 => Q <= I1 AFTER 10 ns;
WHEN 2 => Q <= I2 AFTER 10 ns;
WHEN 3 => Q <= I3 AFTER 10 ns;
WHEN OTHERS => NULL;

END CASE;
END PROCESS MUX;

Begin

if (A=’1’)

End

muxval:=muxval+1

then

end if

else

if (B=’1’)

muxval:=muxval+2

then

end if

else

 case muxval is

Q<=I0 after 10 ns

0

Q<=I1 after 10 ns

1

NULL

others

Q<=I2 after 10 ns

3

Q<=I3 after 10 ns

2

end case

10 10 10 10

Figure 5. An example of Timings analysis

and maximum values ofPD define its delay domain. If the two
values are0, the variable is actually not delayed.

The analysis of all leaf processes is the precondition to be able
to reason on a set of related processes. In this case, theflow graph
contains nodes that are whole processes. These nodes are not as-
sociated with a single pair, but with a set of pairs: the results
of the analysis on the single process. The set comprises a tuple
< N; LDmin; LDmax > for each significant variable. Again,
N is the variable name,LDmin andLDmax are the minimum
and maximum delay evaluated for the variable. After that, the ana-
lysis goes on in almost the same way.

Figure 5 presents the VHDL code of a multiplexer. In this toy
example, it can be noticed at a first glance that outputQ is always
deferred of 10 nsecs. The proposed analysis provides the same
information. If we consider annotated nodes only, i.e., the ones in
which variableQ is assigned, we identify four paths. In all cases

ENTITY state_machine IS
PORT(clk: in std_logic;

x: in std_logic;
z: out std_logic);

END state_machine;

ARCHITECTURE arch OF state_mix_machine IS
TYPE states IS (S0, S1);
SIGNAL state: states;

BEGIN
PROCESS (clk)
BEGIN

IF (clk=’1’ and clk’event) THEN
CASE state IS

WHEN S0 => IF (x=’1’) THEN
state<= S1;
z<=’1’;

ELSE
z<=’0’;

END IF;
WHEN S1 => IF (x=’1’) THEN

state<=S0;
z<=’0’;

ELSE
z<=’1’;

END IF;
END CASE;

END IF;
END PROCESS;

end arch;

Begin

if clk=’1’ and clk’event

case state

then

end if

else

if x=’1’

S0

if x=’1’

S1

state<=S1

then

z<=’0’

else

state<=S0

then

z<=’1’

else

z<=’1’

end if

z<=’0’

end if

end case

End

R

A A

A

A

A

A

Figure 6. Implicit Memory Elements

the corresponding pair is< Q; 10 >. HenceQ is always deferred
of 10 nsecs.

3.2. Implicit Memory Elements

This section sketches a way to find out implicit memory ele-
ments based on pattern searching in regular expressions. The start-
ing point is again theflow graphof a VHDL process, as defined
in Section 3. We are not interested in searching all thepaths. For
each variable, we define a regular expression summing up the sig-
nificant actions performed on the variable itself. Notice that, in
this case, loops inflow graphsare not a problem. Remembering
regular expression theory, they are simply translated by means of
Kleene stars (*).

According to [3], given a VHDL process, a variable requires an
implicit memory element each time (a) it is read before being as-
signed; (b) it is assigned before await statement; (c) it is assigned
in a clocked process; and (d) it is not assigned in all conditional
branches.

This means that, as to this analysis, we need to take into ac-
count read, write (assignment), and wait operations. These actions
correspond to ar, ana, and aw, respectively, within regular ex-
pressions. Thusar means that the variable has been assigned a
value and the value has been subsequently read.w(rja) states that,
after thewait statement the variable is either read or assigned.

It should be clear now, that looking for implicit memory ele-
ments corresponds to looking for strings within regular expres-
sions. The first two conditions above are easily translated by
stringsra andaw. The third case means looking fora, but it ap-
plies to clocked processes only. Finally, the last rule states that,
looking at possible alternatives, if one is an assignment, then all
the alternatives must be assignments. Hence, the alternatives can

be actually reduced to a single possibility. When the condition
does not hold, an implicit memory element is needed.

Consider, as an example, the VHDL code of Figure 6. It
models a Moore machine by defining a process with a sensitiv-
ity list. No reset signals are used. Designer’s experience can infer
that a flip-flop for the variablestate and one for the outputz
are needed. These memory elements can be uncovered using the
method described so far.

Looking at the correspondingflow graph, shown in Figure 6,
the regular expression for the variablestate is r(a|a) = ra .
It straightfully matches the first condition. Moreover, the expres-
sion for the outputz is (a|a)|(a|a) = a . Since the example
refers to a clocked process, an implicit memory element is inferred
by the third rule.

Due to the nature of the analysis, it must be applied on single
processes only. It would be meaningless trying to extend the ana-
lysis in a hierarchical fashion, as proposed for timings in Sec-
tion 3.1.

3.3. Transparency

Strictly speaking, a variable remains transparent to a process
if it is not used within the process itself. This definition would
imply that transparent variables would uncover only warnings or
inconsistencies in a given specification. A more useful definition
states that a transparent variable is a variable that is only read and
re-assigned to another variable, without being logically or arith-
metically manipulated.

If a variable is transparent for a process, it can be used to
propagate test patterns through the process itself. Being able
to statically identify which variables can be propagated through

MUX_PR: PROCESS(A, B, sel) MUX_PR: PROCESS(A, B, sel)
BEGIN BEGIN

IF (sel=’0’) THEN IF (sel=’0’) THEN
Z<=A; Z<=A+B;

ELSE ELSE
Z<=B; Z<=A-B;

END IF; END IF;
END PROCESS MUX_PR; END PROCESS MUX_PR;

Begin

if sel=’0’

end if

End

Z<=A Z<=B

Begin

if sel=’0’

Z<=A+B Z<=A-B

end if

End

A, BA, B

Figure 7. Transparent variables

which processes provides more control on test patterns and thus is
useful in testing hardware circuits.

Once more, let us consider theflow graph. Each node is as-
sociated with a setV of variables for which the given definition
of transparency does not hold anymore due to the statement in
the node. Moreover, we define another setTV (Transparent Vari-
ables): it will contain the variables still transparent after each step.

At the beginning,TV contains all the variables of the process.
After that, visiting eachflow graphnode, variables inV are sub-
tracted fromTV . At the end, i.e. after having visited all the nodes
exactly once,TV contains the variables that are actually transpar-
ent.

In this case too, we can extend theflow graphto cope with a
set of related processes. As in Section 3.1, a node corresponds to
a whole process. Its setV is simply the difference between all the
variables and the setTV of the invoked process.

As an example, consider the two fragments of VHDL code of
Figure 7 and their associatedflow graphs. In the first case, the
setV of each node is empty. The trivial application of the pro-
posed analysis highlights that both variableA and variableB are
transparent. On the contrary, in the second case, it can be proved
that the two variables are not transparent. They both are used in
arithmetic computations.

4. Conclusions and Future Work

The paper presents a first overview for examining interrelations
between the hardware and software domains, and provided a first
basis for further proposals.

The techniques in this paper gave encouraging results as to the
case studies used to validate them. In particular, in Section 2 we
adapted to VHDL domain the concept of deadlock and presented a
way to discover deadlock conditions within VHDL models. Future
work will try to generalize and formalize the proposals. Moreover,

other, and maybe more significant, case studies will be taken into
account to improve our confidence and to better tailor the proposed
methods.

The work revealed also the two different finalities and inter-
pretations of testing a software program and a VHDL behavioral
specification. In the former case, testing is used to validate pro-
duced code, i.e., to try to correct possible errors in the implement-
ation. In the latter case, testing is not only employed to uncover
problems, lacks or inconsistencies, but also to generate test pat-
terns which will be used during circuit validation [14].

References

[1] A. Balboni, M. Mastretti, and M. Stefanoni. Static Analysis
of VHDL Model Evaluation. InProceedings of Euro-VHDL,
pages 586–591, 1994.

[2] L. Baresi. Software Methodologies in VHDL Code Ana-
lysis. Technical Report 96.010, Politecnico di Milano - Di-
partimento di Elettronica e Informazione, February 1996.

[3] J. Bergé, A. Fonkoua, S. Maginot, and J. Rouillard.VHDL
Designer’s Reference. Kluwer Academic Publishers, 1992.

[4] M. Bombana, G. Buonanno, P. Cavalloro, F. Ferrandi,
D. Sciuto, and G. Zaza. ALADIN: A Multi-Level Testability
Analyzer for VLSI System Design.IEEE Transactions on
VLSI Systems, 2(2):157–171, 1994.

[5] S. Carlson and E. Girczyc. Increasing Design Quality and
Engineering Productivity through Design Reuse. InProceed-
ings of 30th Design Automation Conference, 1993.

[6] E. Dijkstra. Co-operating Sequential Processes. Academic
Press, 1965.

[7] C. Ghezzi, D. Mandrioli, S. Morasca, and M. Pezz`e. Sym-
bolic Execution of Concurrent Systems using Petri Nets.
Computer Languages, 14(4):263–281, 1989.

[8] X. Gu, K. Kuchcinski, and Z. Peng. Testability Analysis
and Improvement from VHDL Behavioral Specifications. In
Proceedings of EURO-VHDL ’94, pages 644–649, 1994.

[9] J. Kam and J. Ullman. Global Data Flow Analysis and Iter-
ative Algorithms.Journal of the ACM, 23:158–171, 1976.

[10] LEDA S.A. LEDA VHDL System - User’s Manual, 1993.
version 3.2.0.

[11] O. Levia. Writing High Performance VHDL Models. In
Proceedings of Euro-VHDL, 1991.

[12] Mentor Graphics.Autologic VHDL Reference Manual, 1993.
version 8.2.

[13] M. Pezzè, R. Taylor, and M. Young. Graph Models
for Reachability Analysis of Concurrent Programs.ACM
Transactions on Software Engineering and Methodology,
4(2):171–213, 1995.

[14] J. Santucci, A. Courbis, and N. Giambiasi. Behavioral Test-
ing of Digital Circuits. Journal of Microelectronic Systems
Integration, 1(1):55–77, 1993.

[15] Synopsys.Synopsys User’s Manual, 1994.
[16] A. Tanenbaum.Modern Operating Systems. Prentice-Hall

International Editions, 1992.
[17] Veda.VHDLCover User’s Manual.

	CDROM Home Page
	1996 Home Page
	EURO-DAC96 Home Page
	Front Matter
	Table of Contents
	Session Index
	Author Index

