
Tobias H. Abthoff† and Frank M. Johannes

Institute of Electronic Design Automation

Technical University Munich

* 4).!: 4).!�is no acronym

† This work was partly funded by TEMIC, Germany within the JESSI project.

Abstract
In this paper a new enumerative algorithm called 4).! is in-

troduced that generates slicing placements optimal in both area
and overall net length. It is designed to automate the task of
placement for analog circuits given a set of modules with multi-
ple realizations, a corresponding net list, and neighborhood
relations. 4).!�reduces the overall net length to nearly one fifth
compared to a net length unaware enumeration algorithm while
using only 1.6% more area and twice the CPU-time.� 4).! is
based on enhanced shape functions that are capable of carrying
net length information. 4).! can be used either as a fully auto-
matic analog placement tool, or as an interactive tool for creating
extremely dense placements from a loose placement provided by
the designer to establish neighborhood relations. In the first case,
another tool, e.g. 0,!#%"/� is used to compute neighborhood
relations. 4).! is able to handle all major analog constraints like
clustering, framing, fixed orientations, fixed realizations, and
symmetries�

1 Introduction and Motivation

Analog placement is a much more complex task than digital
placement mainly because a large number of constraints have to be
considered. The task is further complicated due to the fact that for
a device usually many layout realizations are available, i.e. a large
transistor has several alternative layout realizations depending on

how many times the transistor is folded. For analog layout design
only very few automatic tools were available in the past. This has
changed with the upcoming of powerful module generators. In
analog design it is common to have a huge number of different
modules, e.g. a very big number of transistors with different W/L
ratios and capacitors with different shapes. These modules are very
likely to contain errors if drawn manually by designers. To cope
with this problem many companies have developed module gen-
erators, programs that are able to generate modules like transistors
from given specifications. These module generators guarantee
error free module realizations and are usually able to create many
different realizations (up to 100) for a given specification. Today,
most of the modules in a given circuit are created by module gen-
erators.

Human beings perform surprisingly well in packing modules
with fixed shapes but unfortunately are not very good in choosing
a shape out of a set of given shapes to achieve an optimal packing.
Thus, there is a great need for placement tools to exploit the design
space which is offered by the use of module generators. Analog
circuits are rarely bigger than 100 modules. This results on the one
side from the ability of a human designer to cope with the design
complexity, and on the other side from the fact that there are nearly
no analog function blocks consisting of more than 100 modules.

Taking all this into account, a placement tool for today’s needs
must be able to deal with about 100 modules with an average of 20

4).!
: Analog Placement Using Enumerative Techniques Capable of
Optimizing Both Area and Net Length

EURO-DAC ’96 with EURO-VHDL ’96
0-89791-848-7/96 $4.00 1996 IEEE

different realizations. An analog placement tool should not only be
able to compute a layout of a whole circuit automatically, but also
be able to place modules interactively to assist the designer. The
placement tool must be able to handle the relevant analog con-
straints. A list of these constraints is presented in Section 3.5.

1.1 Review of Previous Work

The placement of analog circuits is in some aspects similar to the
traditional floorplanning problem. Both the placement algorithms for
analog circuits and floorplanning algorithms have to deal with a
fairly small number of elements that differ dramatically in size and
may have several realization alternatives. Many researchers have
studied various aspects of area minimization of slicing floorplans,
which is very similar to our problem. For slicing floorplans, Otten [7]
showed for the first time that the minimization problem can be solved
efficiently. Stockmeyer [6] presented his well known and widely
used algorithm of time complexity O(nd) where n is the number of
modules (basic blocks) and d is the depth of the resulting slicing tree.
Shi [8] presented an algorithm with a time (and space) complexity of
O(n log n) and proved that this is the lower bound for the minimiza-
tion of slicing floorplans. Zimmermann [9] combined the algorithm
of Stockmeyer with a wiring area estimation. More information can
be found in [4].

1.2 Target of Our Work

Our algorithm 4).! performs a combined area and net length
optimization. It does no wiring area estimation, but computes the
overall net length of every realization using half perimeters. Wiring
area is not taken into account since we have focused on BiCMOS
technology where over-the-cell routing is possible.

2 Overview

The placement procedure 4).! is based on enumerative tech-
niques. The input to 4).! consists of a net list, a constraint database,
a shape function for each module to be placed and a set of neighbor-
hood relations between all module pairs.

4).! enumerates all slicing configurations that are compatible
with the given neighborhood relations thereby computing for every
realization the aspect ratio, area, and overall net length. The net
length is measured using the half perimeter model. For every possible
slicing configuration, the resulting shape and the overall net length is
presented to the designer, who chooses the configuration that fits best
to his or her needs. For the chosen configuration, the positions, ori-
entations and realization alternatives are determined for each module.

In the next Section some basic definitions are given including a
complete list of geometrical analog constraints that was, to our
knowledge, never presented before in such completeness. In Section
4 the new algorithm and its data structures are presented. Section 5
contains results regarding CPU-time, memory consumption and
improvement of layout quality.

3 Definitions

3.1 Realization

A realization ϕ is a geometrical representation of one or more

modules. It consists of its bounding box and the set of all terminals.
The size of a realization (bounding box) ϕ is given by (,)x yϕ ϕ .

The internal net length of a realization is given by lϕ . If a realization

ϕ represents only one module, lϕ is always zero, if ϕ represents

several modules, lϕ is the length of all connections between these

modules modeled as half perimeter. In most cases there are several
geometrically different but electrically equivalent realizations for a
module, or a set of modules. Two realizations ϕ1 and ϕ2 are treated

differently if they have different dimensions, or if the coordinates or
dimensions of their terminals are different.

3.2 Terminal

A terminal is a rectangle positioned inside the area of a realization.
A terminal is used to connect a realization with a net. The lower left
corner of a terminal τ positioned on a realization ϕ has the coordi-

nates (,)x yτ τ relative to the lower left corner of ϕ . The dimen-

sions of the terminal τ are (,)x yτ τ . Please note that terminals are

not restricted to realizations of modules. A realization of a set of
modules also has terminals that are not identical with the terminals of
its modules (this is discussed in Section 4.2).

3.3 Modules

A module is an element of an electrical circuit. In this paper a
module µ denotes the set of all realizations ϕ µ∈ of a single circuit

element delivered by its module generator.

3.4 Nets

A net ν is a set of terminals τ ν∈ that have to be connected. A
net ν must not contain more than one terminal from one module.

3.5 Geometrical Analog Constraints

The analog constraints presented in this paper have been formu-
lated within the JESSI AC12 project. All JESSI AC12 partners have
agreed that these rules are sufficient to express all necessary electrical
constraints.

1) Pre-placement:
 Pre-placement of modules is essential. No further common defi-
nition was made. Currently pre-placement is done by specifying
a certain slicing structure for the modules.

2) Orientation/Realization:
• A module has a fixed orientation/realization, or one orienta-

tion/realization out of a set of allowed orientations/realizations.
• Two or more modules have the same orientations/realizations.

3) Distance
• Two modules must be placed as close as possible (clustering).

• Two modules must have a certain minimum/maximum distance.
4) Symmetry

• Two modules of the same type must be symmetrical to each
other with a symmetry axis of 0° or 90°.

• In between the two given symmetrical modules a given group of
other modules (middle group) may be placed.

• Several symmetrical modules must share a common axis and
middle group.

5) Nesting of all previous rules is allowed.

3.6 Neighborhood Relationships

Neighborhood relations are a set of
constraints defining whether the
placement of a certain module is
forbidden in a certain direction of
another module. In Figure 1 neighbor-
hood relations of modules µ µ1 8...

are shown as a global placement, each
point corresponding to a module.
Module µ6 is not allowed to be

placed on top or to the left of module
µ3 . In Figure 2, all allowed slicing

configurations and placements for a cluster of module µ3 , µ6 and

µ7 are shown (each module has only one realization, no rotation

allowed).

This neighborhood information is either delivered by another
placement algorithm, e.g. 0,!#%"/� [1, 2]., or by the designer.
0,!#%"/ computes global placement information by quadratic
optimization. The neighborhood relations have to be in accordance
with all specified analog constraints, including the symmetry con-
straints. Two parts of a symmetry must have identical but mirrored
neighborhood relations. If the module pairs µ3 , µ5 and µ7 , µ8 are

specified to be symmetrical to a common vertical axis in the final
placement, the global placement must reflect this. In the global
placement shown in Figure 1 the corresponding points are placed
symmetrical and therefore comply with such a specification. If a
clustering of certain modules is specified, the neighborhood relations
of all modules have to be set so that a rectangle can be drawn that
covers only the points corresponding to the clustered modules. In
Figure 1, the neighborhood relations are compatible with a clustering
of the modules µ1 , µ2 , and µ4 but e.g. not with a clustering of µ1

and µ4 because a rectangle covering µ1 and µ4 will always cover

µ2 .

4 Algorithm

The new enumeration algorithm 4).! enumerates all possible
placement alternatives for a given set of modules. 4).! computes
the shape function of the circuit and the overall net length of the
corresponding realization of each point of the shape function. The
choice of "best" realization is done either by the designer or by ap-
plying a simple heuristic to trade off desired aspect ratio, area, and

overall net length. Then 4).! computes the position, orientation and
realization for every module to obtain the chosen realization.

4.1 Data Structures

The presented algorithm 4).! is based on the principles of slic-
ing [7], and shape functions [5, 6] and a slicing enumeration algo-
rithm [3]. Shape functions are an efficient data structure to store
several rectangular shapes for a given module or set of modules. For
every shape one point is stored. Two modules or set of modules
having their realization represented as shape functions can be packed
very efficiently. In Figure 3, a shape function for a module with a
quadratic and a rectangular realization is drawn. This shape function
has three points, one for the quadratic shape, one for the rectangular
shape and one for the rotated rectangular shape. All shapes with sub-
optimal area do not appear in the shape functions (sub-optimal
shapes can be seen in Figure 2). Shape functions and packing of
objects represented by shape functions are discussed in detail in [5,
9].

A shape function stores in-
formation about different shapes
for one object. In order to per-
form a combined area and overall
net length optimization the fol-
lowing additional information is
stored for every shape (point of
the shape function):

• The position and bounding
box of every terminal τ of

ϕ .

• Overall accumulated net length inside the realization ϕ . If ϕ
consists of only one module this is zero.

A shape and this additional information is denoted to be a realiza-
tion as defined in Section 3.1.

In Figure 4, the shape functions for three sets of modules -1 ,

-2 , and - - -= ∪1 2 are drawn. The sets -1 and -2 consist

of only one module each. Underneath the shape functions the termi-
nal positions and shapes are drawn for two different realizations (for
-1 the same realization is drawn twice). Please note, that a single

point in the shape functions of one module corresponds to up to

Figure 1 - Global
Placement

Figure 2 - Realizations Compatible with Global Placement

Figure 3 - Shape Function

eight‡ different realizations due to different orientations. For sets of
modules there may be even more different realizations. One single
module has no inside nets, thus the total accumulated net length of all
realizations of -1 and -2 is zero. - consists of more than one

module. The half perimeter of all nets connecting only modules
µ ∈- is stored as the internal net length of the realizations of - .

The construction of realizations of - is discussed in Section 4.2.

4.2 Basic Algorithm For Adding Two Realizations

Two sets of modules -1 and -2 are combined by adding every

realization of -1 with every realization of -2 . For this problem

effective algorithms have been proposed, for example in [8], which
avoid the computation of realizations that are not area-optimal. We
use these algorithms and focus on area optimal shapes (see Figure 2
and Section 4.3). The remaining problem is how to add two realiza-
tions and how to store the net length information efficiently. We are
attacking this problem by the enhanced definition of terminals: If a
set of modules contains two or more modules that have terminals
connected to the same net, a new terminal is created using the
bounding box of all terminals of the modules that are connected to

‡ There might be less than eight realizations if the object is self-symmetric, e.g. a

module with a single quadratic terminal located in its center has one realiza-
tion per shape function point.

the net. This new terminal is used for outside connections of the
module set.

The algorithm performs the following steps to compute a realiza-
tion ϕ of a set of modules - - -= ∪1 2 from one realization ϕ1

of module set -1 and a realization ϕ2 of module set -2 (see

Figure 4):

1. Compute the shape of ϕ from the shapes of ϕ1 and ϕ2 .

2. Compute the overall accumulated net length l l lϕ ϕ ϕ= +
1 2

.

3. Determine all terminals of module -1 that are connected to nets

not connected to -2 and vice versa. Create these terminals in ϕ .

In Figure 4, terminal τ1 of -1 is connected to ν1 . Net ν1 is

not connected to any terminal or sub-net of -2 , thus terminal

τ1 of ϕ is created the with the shape and position of terminal

τ1 of ϕ1 . The same is done for terminal τ6 of ϕ2 , but the posi-

tion of τ6 of ϕ is offset by the width of ϕ1 .

4. Determine all terminals of -1 and -2 that are connected to the

same net and merge them into new terminals of ϕ .

In Figure 4, terminal τ 2 of ϕ1 is connected to the same net ν2

as terminal τ 4 of ϕ2 . These two terminals are merged into a

Figure 4 - Adding Two Realizations

new terminal τ7 of ϕ with the shape and position of the small-

est covering rectangle of the two terminals τ 2 of ϕ1 and τ 4 of

ϕ2 . The same is done with terminal τ3 of ϕ1 and terminal τ5

of ϕ2 , they are merged intoτ8 of ϕ , since they are both con-

nected to net ν3 .

5. Delete all terminals that cover a whole net ν and add their half
perimeter to the overall accumulated net length lϕ of ϕ .

It is assumed in the example that net ν3 consists of only the two

terminals τ3 and τ5 that have been merged into terminalτ8 of

ϕ . Since no other terminals are connected to net ν3 terminal τ8

of ϕ is not stored but the half perimeter of its shape is added to

the total accumulated net length of ϕ ()l l x yϕ ϕ τ τ:= + +
8 8

.

In Figure 4 there also shows an addition of ϕ1 with another reali-

zation ′ϕ2 of -2 . The realization ′ϕ2 corresponds to ϕ2 except that

it is rotated by 90°. Although the shapes of ′ϕ2 and ϕ2 are identical,

the position and bounding boxes of their terminals are quite different.
The internal net length is also different. Since no decision can be
made whether ϕ2 or ′ϕ2 will result in better placements both have to

be stored.

The memory needed for storing net length optimization is mini-
mal since completed nets do not require extra memory. A good
placement will have most of the nets completed on a low level; thus
the total memory consumption is low.

4.3 Identifying Sub-Optimal Realizations

When combining area and net length optimization, it is not possi-
ble to decide whether a certain realization is sub-optimal compared to
other realizations. In the case of area-only optimization a realization
ϕ is sub-optimal compared to another realization ′ϕ if the shape of

ϕ is bigger or equal in both dimensions. Examples are shown in

Figure 2.

If both area and net length optimization are performed, the previ-
ous sub-optimal realization may have a better internal net length or
distribution of its terminals so that it cannot be decided which reali-
zation will lead to a better placement. For simplicity and complexity
we decided to take only area-optimal realizations into account. Sub-
optimal realizations in terms of area will never lead to placements
with optimal area usage. The goal of work however is to deliver
placements with very good area usage and very good net length.

4.4 Handling Analog Constraints

The following analog constraints can be currently handled by
4).!:

Fixed orientations/implementation alternative. Every orienta-
tion/implementation combination of a module is treated by 4).! as
different realization of the module. Thus, deleting certain module

realizations before the enumeration process starts limits the module to
certain orientations or implementation alternatives.

Clustering / Framing. A cluster is treated by 4).! as one object.
All realization alternatives of the cluster are computed before the rest
of the circuit is enumerated. This concept is very flexible and allows
nested clusters. If framing is desired the shape of every realization of
the cluster is enlarged by the frame size in every direction before the
enumeration process starts.

Symmetries. A symmetry consists of three parts, a left-hand
(,), a right-hand (2) side and a center (#) part, as shown in
Figure 5. The symmetry is processed in 5 steps, which is shown for a
symmetry in x-direction, for the y-direction this is done accordingly.
If # is empty, the steps one and two are omitted.

1. All realizations of the center part # are computed (the middle
part is processed like a cluster).

2. A new virtual module µ# is created. The shape of every realiza-

tion of µ# corresponds to a realization of the center part # ex-

cept that the shape is divided by two in x-direction (the right half
is discarded). The shape and positions of the sub-nets and termi-
nals of µ# remain unchanged to # , so that some terminals (or

sub-nets) of µ# may be positioned outside the shape of µ# . In

Figure 5 this is shown in the middle drawing: the gray area
shows the new shape of µ# and the thick line the area where

terminals of µ# may reside.

3. The module µ# is added to , (, , #: { }= ∪ µ) and all reali-

zations of , are computed, with the constraint that µ# must

always be the rightmost module. A resulting realization of ,
looks like the middle drawing in Figure 5, µ# is at the right side,

and some terminals of µ# are located outside the shape of , .

4. The same is done for 2 accordingly; see the right picture of
Figure 5.

5. Now , and 2 are combined by adding every shape of ,
with the corresponding shape of 2 . After this all terminals are
positioned inside the shapes of the symmetries realizations.

5 Results

5.1 Layout Quality

A comparison of the achieved layout quality is very difficult.
First, our algorithm, and all other enumerative algorithms, enumerate
the whole design space that is compatible to the global placement
information so that the found solution will always be optimal. Sec-

Figure 5 - Symmetry Handling

ond, it is not sufficient to compare a single placement determined by
4).! with a single placement obtained by another algorithm, instead
the quality of all presented solutions should be compared, since the
preferences of the designer are not previously known.

To estimate the improvement of layout quality, a comparison to
Stockmeyers algorithm was done, which is well known in literature
(ST). ST delivers 42 different shapes for an industrial OP-amp exam-
ple. The net length aware algorithm (4).!) delivers the same 42
shapes plus an average of 25 different realizations per shape all dif-
fering in their overall net length. 4).! will always implement the
realization with the shortest overall net length for a given shape. ST,
however, has no information about net length, so we assume that it
implements a realization for a given shape with random net length.
The net length of this realization is assumed to be the average net
length of all possible realizations of that shape. Comparing the aver-
age net length of all 42 shapes implemented by 4).! and ST, the
average net length of the realizations computed by 4).! is only half
of the average net length of ST. If a tolerance of the desired aspect
ratio of 10% is allowed, 4).! can choose the best realization of
several shapes within this tolerance, leading to a net length of only
22% compared with ST. On the other hand ST will always choose the
shape with the least area inside the given aspect ratio range, so that
the average area needed by 4).! is 1.6% higher.

One of the most important features of 4).! is the ability to give
the designer the chance to do a trade-off between area and net length.
While this trade-off is not that important in digital circuit design, it is
crucial in the design of analog circuits. The designer has the ability to
choose small area for non-critical parts of his circuit and switch to
small net length in critical high-performance parts of his design. It is
also possible to assign weights to nets so that critical nets can be
handled with special care.

5.2 Run Times

In Table 1, the CPU times are shown for industrial circuits be-
tween 4 and 13 modules. The memory consumption was about 10
MB for the 13 modules. It can be seen that the CPU consumption is
quite low, however the complexity is exponential. 4).! is able to
enumerate circuits with up to 20 modules completely, but is config-
ured to split circuits with more than 10 modules in groups that are

enumerated separately. A set of modules consisting of 10 or more
modules can be realized with many different shapes, so that several
of those module groups can be combined with nearly no slack. Our
experiments have shown nearly no loss of layout quality compared to
enumeration of groups with about 10 modules to a full enumeration.
Thus the complexity of the whole program is nearly linear, so that a
circuit with 100 modules can be placed in less than 20s.

6 Conclusion

We have presented a new approach called 4).! to enumerate
placement alternatives efficiently. Our approach performs a global
area and overall net length optimization in reasonable time for inter-
active work. Compared to a net length unaware enumeration algo-
rithm�4).! reduces the overall net length to nearly one fifth if an
aspect ratio tolerance of 10% is allowed. This is done at the cost of
1.6% area and twice the CPU time. Furthermore, 4).! is able to a
trade overall net length against area and to handle the major analog
constraints including nested symmetries. 4).! can be embedded in
an automatic placement tool or can be used as an interactive and
incremental tool to assist a designer at his daily work.

7 Acknowledgment

The authors want to thank Telefunken microelectonics GmbH
(TEMIC) Ulm, Germany and all other JESSI AC12 partners for their
cooperation and valuable discussions.

8 References

[1] Abthoff, T.H.; Johannes, F.M.: "Analogue Placement using Guided
Enumeration“, International Journal of Circuit Theory and Applica-
tions, Vol. 23, 453-473 (1995)

[2] Abthoff, T.H.; Johannes, F.M.: "PLACEBO: Analog Placement with
Efficient Symmetry Support“, International Journal of Electronics and
Communications, Vol. 49, No. 2, 55-63 (1995)

[3] van Ginneken, L.P.P.P.; Otten, R.H.J.M.: "Optimal Slicing of Plane
Point Placements", Proc. European Conference on Design Automa-
tion, pp. 322-326, 1992

[4] Lengauer, T.: "Combinatorial Algorithms for Integrated Circuit Lay-
out", New York, Wiley, 1990

[5] Otten, R.H.J.M.: "Efficient Floorplan Optimization“, Proc. IEEE Inter-
national Conference on Computers and Design, 1983, pp. 499-501

[6] Stockmeyer, L.: "Optimal Orientations of Cells in Slicing Floorplan
Designs", Information and Control, Vol. 57, pp. 322-326, 1990

[7] Szepieniec, A.; Otten, R.H.J.M.: "The Genealogical Approach to the
Layout Problem", Proc. ACM/IEEE 17th Design Automation Confer-
ence, pp. 164-170, 1980

[8] Shi, W.: "An Optimal Algorithm for Area Minimization of Slicing
Floorplans“, Proc. IEEE/ACM International Conference on Computer
Aided Design, 1995, pp. 480-484

[9] Zimmermann, G.: "A New Area and Shape Function Estimation
Technique for VLSI Layouts“, Proc. ACM/IEEE 25th Design Auto-
mation Conference, 1988, pp. 60-65

Number of
Modules

CPU-Time
without

Net Length

CPU-Time
with

Net Length
13 2.14 s 8.08 s
12 1.09 s 4.19 s
11 0.626 s 2.32 s
10 0.331 s 1.21 s
9 0.193 s 0.708 s
8 0.0818 s 0.271 s
7 0.0578 s 0.174 s
6 0.0314 s 0.0714 s
5 0.0185 s 0.0325 s
4 0.0136 s 0.0202 s

Table 1 - CPU Times on an Intel PPro 150 Processor

	CDROM Home Page
	1996 Home Page
	EURO-DAC96 Home Page
	Front Matter
	Table of Contents
	Session Index
	Author Index

