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Abstract

A flexible and efficient method for analog circuit parti-
tioning and transistor stacking is presented. The method
is based on a novel algorithm dealing with analog specific
constraints and on a set of heuristics for stack generation
using a pattern database. An enhanced set of stacks is ob-
tained with respect to placement constraints. Experimental
results show the effectiveness of the methods described.

1. Introduction

In the last decade, some attempts have been made to de-
velop automation for analog circuit layout design [1, 2, 3, 4].
Since the constraints for analog and digital design are differ-
ent, the techniques for digital circuits cannot be easily ported
to analog design. Analog physical design has to deal with
special requirements for matching, symmetry, parasitics and
for the variety of transistor sizes. The layout objectives in
analog design target layout symmetry and device match-
ing. Typical techniques in analog layout are large device
folding, interdigitated structures for symmetrical pairs, ge-
ometry sharing and device chaining for neigbouring devices
(see Figure 1). All these methods are referred to in liter-
ature as MOS transistor stacking. In [5] a design style is
proposed for fully-stacked layout of analog circuits. That
is, all the transistors in a circuit are stacked and a layout
module is generated for each stack. The goal of this style is
to decrease stray capacitances and to improve the layout of
analog circuits.

In this paper we propose a new automated technique for
transistor stacking in analog MOS circuits. Our aim is to
obtain an enhanced set of stacks for placement and routing.
Since we do not have placement and routing information at
this stage of the design, we will generate an enhanced list
of stacks including trade-offs of the same stack. Among all
these stacks we can choose a suitable set according to layout
specific constraints.

In [1], an algorithm for the automatic generation of full-

stacked layouts in analog CMOS circuits is described. In that
work, circuit partitioning in stacks is made on a "same bulk"
criterion, i.e. with the same substrate potential. Additional
constraints (symmetrical pairs, matching groups) should be
explicitly enforced by the user. Firstly, circuit partitioning is
done and transistors are split into segments. The algorithm
of [6] is used for abutted stack generation, i.e. optimal
transistor chaining. A single set of stacks is generated,
claimed optimum with respect to a sum of critical parasitics
and device area minimization. No placement constraints
are considered. The method described in [1] is based on
stray capacitance minimization. Therefore it will produce
stacks with a big number of transistors (long stacks). The
method will fail to generate useful stacks when the sizes of
the transistor groups are relative prime numbers with respect
to grid size. This may result in tall stacks (equal with the
size of a transistor not folded). Both long and tall stacks
will be difficult to handle by the placer.

Our stacking method attempts to resolve all the short-
comings mentioned above. We propose a flexible method
for generating an enhanced set of stacks, with form factor
(W=L) trade-offs for every stack. By allowing small device
size variation, we can avoid generation of tall stacks. Based
on the set of stacks obtained, better placements are expected.

We propose an automated method for grouping symmet-
rical pairs and current mirrors. Transistors are split into
parallel transistors (called segments) and arranged in a stack
according to predefined patterns for all groups of transistors
in a circuit. This initial list of stacks is enlarged by con-
catenation or by merging stacks in order to create all the
stack candidates needed for a good placement. We allow
device size variation during stacking, within the limits of
circuit specification. By allowing size variation, our ap-
proach solves the problem of transistor stacking irrespective
of initial sizes, while preserving the critical circuit parame-
ters.

Very wide transistors can generate a poor layout, even
when stacked. To avoid this, our program can split one
transistor in two different stacks, adding more freedom for
the placer. This feature is also used for symmetrical pairs,
where centroidal twin stacks can be made. In a centroidal
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Figure 1. Examples of Stacks. (numbers indi-
cate transistor gate connections)

pair of stacks, each of the twin stacks contains half of the
stack segments (see figure 3.b). These structures are useful
in small offset applications.

The full list of stacks is generated together with several
cover sets. They can serve to find a globally optimum set
of stacks according to placement and global routing con-
straints.

This paper is organized as follows. Section 2 is an
overview of the global optimal stack generation method.
In Section 3 we describe the algorithm used for circuit parti-
tioning. The stack generation method is explained in Section
4 and 5, for initial stacks and for the entire list of stacks re-
spectively. Experimental results are shown in Section 6, and
conclusions are drawn in Section 7. The Appendix lists the
definition of several terms used in this paper.

2. Global stacks generation

The generation of MOS Transistors (MOSTs) stack is
achieved in four steps, as follows:

1. In the first step, the circuit is partitioned by finding all
the symmetrical pairs and matching groups of transis-
tors. The remainder MOSTs are single transistors.

2. An initial set of stacks is subsequently generated by
using the elements of the partition, the symmetry in-
formation and the compatibility between transistors.

3. The complete set of stacks is then generated by com-
bining each existing stack pair, provided they have
compatible sizes and the two stacks do not contain
the same MOSTs.

4. Finally, several stack covers for the circuit that can
lead to a good layout are found.

For Step 1 we developed an algorithm that finds all sym-
metrical pairs and current mirrors, based on circuit topology
information in a bipartite adjacency graph. One set of ver-
tices is the set of circuit nets and the other one is the set
of MOSTs terminals. An edge between two vertices exists
if the corresponding net of the start vertex is connected to
the corresponding MOST terminal vertex. The adjacency
graph is obtained by parsing a net-list file with transistor di-
mensions and technology information. This graph structure

helps extracting circuit topology information. Based on the
results of the algorithm, we create a partition of the circuit
containing transistor pairs and matching groups identified
by the algorithm and single transistors not included in the
previous categories.

All the groups in a partition are stacked separately in
Step 2. For each group we use a set of appropriate stack
models, taken from a user-definable database that contains
the generally used patterns (i.e. stack models) in analog
layout design.

During Step 3 the stacks are merged starting from this
list of initial stacks. We enhance the initial set of stacks
with stacks containing three or more MOSTs. These stacks
decrease parasitic capacitances of the nets abutted in the
stack and improve matching between devices. The resulting
stack is evaluated in terms of circuit performance, prior to
insertion in the list.

A circuit evaluation is done in order to test whether the
circuit updated with the generated stack(s) dimensions and
electrical characteristics can lead to a circuit that performs
according to the design specifications. Due to the fact that
MOSTs sizes are changed during the new algorithm, par-
asitics bounds as in [7] are not applicable. An automated
approach for generating the circuit equations (symbolic sim-
ulation)as in [8] or a direct electrical simulation can be used.
We however feel that this circuit dependent analysis has to
be user definable, i.e. based on the specific circuit equa-
tions, for reasons of speed and because a user rarely lays out
a circuit that she cannot model.

An optimum circuit cover by stacks can be found during
Step 4, subject to a cost function as described in [1]. The
quality of the resulting cover may not be satisfactory during
placement and routing. Our solution is to find several covers
using a greedy algorithm. Firstly we apply a circuit evalu-
ation cost function to the initial circuit and the sized stack.
A new stack is selected at each step if it minimizes a cost
function of circuit evaluation together with the previously
selected stacks. The sizes of circuit elements contained in
it are updated in the cost function calculation and a new
greedy step is performed. The greedy algorithm stops when
cover conditions are met. Starting from this cover and the
global stack list, further optimization will take place during
the placement phase.

3. Symmetrical and matching groups

An algorithm capable of recognizing symmetry in a fully
symmetrical electronic network graph was proposed in [9].
Analog circuit design seldom leads to fully symmetrical
circuits (i.e. a perfect mirrored circuit structure relative to
an axis). We propose an algorithm that finds all symmetrical
groups with respect to topology patterns specific for analog
circuitry in general circuit structures.



Algorithm: SYM
INPUT: circuit bipartite graph
FOR A = every net in the circuit graph

FOR B = all MOSTs connected to A
Mirror-Group = WBM(A, B, Cost-Mirror)
Symmetrical-Group = WBM(A, B, Cost-Symmetry)
IF (SymmetricalGroup 6= ;)

AugmentPath(Symmetrical-Group)
END-IF
SAVE Mirror-Group, Symmetrical-Group

END-FOR
END-FOR
OUTPUT Mirror-Group(s) and Symmetrical-Group(s)

END main

AugmentPath(S)
FOR all A = the net pair connected to S

FOR B = all MOSTs connected to A
Symmetrical-Group = WBM(A, B, Cost-Symmetry)
IF (S 6= ;)

Augment(S)
END-IF
RETURN Symmetrical-Group

END-FOR
END-FOR

END augment

Figure 2. The algorithm flow

The following patterns are used:
� simple current mirror pattern: a set of MOSTs with

the gates connected to the same net and the sources
connected to the same net accordingly.

� symmetrical pair: a pair of identical MOSTs con-
nected with the same terminal to the same net, or to
corresponding terminals of another topological sym-
metric pair.

The algorithm is described in Figure 2. We use Weighted
Bipartite Matching (WBM) algorithm in a bipartite adja-
cency graph structure. The bipartite sets of vertices corre-
spond to the list of nets and to the list of MOSTs terminals
respectively. An edge connects a vertex in the first set to a
vertex in the latter if an electrical connection exists between
the corresponding net and MOST terminal. The WBM algo-
rithm will return a nonempty set of MOST only if a pattern
is found. The heuristic functions CostMirror and Cost-
Symmetry determine the edge weights according to the
patterns definitions. WBM results of cost zero are not inter-
esting, since they do not imply a pattern match. The desired
MOSTs groups are derived from the WBM results.

The AugmentPath function will recursively search for
new symmetrical pairs connected at the same terminal of
an already found symmetrical pair. The depth of the re-

cursive procedure is limited to n=2, where n is the number
of MOSTs in the circuit in case the circuit is completely
symmetrical. Our algorithm avoids duplicating symmetri-
cal structures. The maximum number of AugmentPath

calls is therefore n=2. A “clean–up” procedure is necessary
to remove the MOST’s included in both symmetry groups
and matching groups, by removing them from the latter type
of groups. In this way symmetrical pairs are preserved as
much as possible.

4. Initial set of stacks

The heuristics used in generation of the initial stacks nar-
row the big number of possible solutions down to a smaller
number of stacks useful for good layout [1]. The maximum
number of transistors stacked at this level is two (symmetri-
cal pairs). The number of patterns in database will, hence,
be small.

We build the initial set of stacks for each element of a
partition according to the following heuristic rules:

� A stack can have no more than 5 segments per MOST,
except for large form factor (W=L hereafter). Stacks
with more segments per MOST will be very long, con-
sidering also that they have to be linked with other
stacks.

� the segment size is bounded between a minimum size
and a maximum size. At least one stack is made if
all attempts are out of bounds. These bounds help to
preserve the form factor of resulting stacks.

� The single MOSTs are split in simple folded stacks (see
Figure 3.c). If the width of a single MOST exceeds a
certain limit, it can be split in two parallel connected
transistors, stacked separately (see Figure 3.d). This
kind of structures can be used to complete a L-shaped
layout to a rectangle.

� The symmetrical pairs can have an interdigitated struc-
ture, i.e. single (see Figure 3.a) or twin (see Figure 3.b)
or a normal folded structure, separated by an insulat-
ing dummy segment. The dummy segment is either a
MOST biased in its off state or a space between diffu-
sions. The choice depends on the design rules.

� The folded structure with dummy segment is allowed
only if the MOSTs to be stacked have no direct con-
nection between sources or drains.

� The mirror groups are stacked transistor by transistor
and the resulting stacks are merged if possible.

� Each stack is tested by the circuit evaluator prior to list
insertion.

For each element of the partition (transistor or group of
transistors) we search in the database for a class of appro-
priate patterns. Stacks are generated for all these patterns
and according to the above mentioned rules.
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Figure 3. Examples of Stack Patterns

At least one stack is generated for each element. That
is, if the size of the MOST is smaller than the lower bound,
a stack with one segment per MOST is generated. If the
MOST size exceeds the upper bound, then a stack with 5
segments per MOST is generated. A special case are single,
large W=L MOSTs. These MOSTs will be split in two
stacks.

The pattern database contains a collection of patterns,
selected by analog design experts. The user can add or dis-
card patterns to/from the database. Examples of patterns
used are given in figure 3. We use the Euler Path algorithm
and the heuristics mentioned in the beginning of this sec-
tion in building the database. We add dummy edges in the
multi-graph corresponding to the electrical structure of the
pattern until it becomes an Euler graph. Dummy edges will
be dummy transistor segments in the resulting stack. Any
Euler path in this graph is equivalent with an electrically
correct stack. The selection of proper solutions among all
the possible ones is made at the end of the algorithm.

Other solutions were considered for building initial
stacks. The algorithm described in [1] generates all the
cliques. Another possibility was to find all Euler paths in a
multi-graph [10] G(V, E) where V is the set of nets and E are
the transistor segments. This algorithm proved to be faster
than using cliques. The chosen solutions were not different
from the patterns from the database. None of the trade-offs
that were presented in this paragraph can build twin stacks
for full centroidal design. They cannot have the freedom to
split a very wide transistor in two and stack the two parts
separately. The algorithmic approach proved to be slower
and less flexible that the pattern database search.

As stated before, our approach does not preserve exact
initial transistor sizes. When splitting a MOST, the size of
the segments have to fit the technology grid. Considering
only an integer grid, we change both sizes of the element in
this step as follows:

Wsegment = RoundInteger(
WMOS

n
)

Lsegment = RoundInteger(LMOS �
Wsegment � n

WMOS

)

where W;L are the transistor dimensions of the segment or
MOST as the indices indicate, n is the number of segments
per MOST and RoundInteger(a) is a function returning
the integer closest to a. In case of an integer grid, for n � 5
the size (length and width) variation is at most 8% (at 5
segments per stack). This variation should be acceptable
with respect to specifications of correctly designed circuits.
The stacks are evaluated in terms of circuit performance. In
case size variation is unacceptable, they are rejected.

This procedure preserves W=L almost invariable. Small
variation in the form factor can occur because the sizes are
rounded to an integer value. The theoretical variation is
maximally 4%. In practice, an average variation of 1.5% is
observed.

By allowing size variation we increase the flexibility of
the stack generation. Without size variation, the solution
set obtained by stacking will be small and uninteresting for
placement, unless “friendly” sizes are imposed during the
circuit sizing phase. Our approach can build correct stacks
irrespective of initial transistor sizes, without changing the
critical circuit parameters.

5. Extended set of stacks

Starting from the initial stack list we try to merge pairs
of existing stacks using the following set of rules:

1. Both stacks must have the same type and the same bulk
connection.

2. None of the two stacks have segments from the same
MOST.

3. The widths difference of the stacks in a pair is accept-
able.

For the first rule we check whether we can place both
stacks on the same diffusion island. The second rule prevents
overlapping, i.e. the same MOST should not appear twice
in the same stack.

A pair of twin stacks existing in the initial stack list
are referred to as native twin stacks. Native twin stacks
are excepted from the second rule, because a combination
between them will produce an already existing stack. Once
one stack in a twin pair is merged with another stack it
becomes eligible for merging with its twin or its descendants.
Two dimensional centroidal structures can be obtained only
by two stacks, each of them containing one or both native
twin stacks.

Rule 3 checks if the relative difference in size (i.e. seg-
ment width)between the two stacks is acceptable. A relative
size variation of 10% can generate stacks that are usually
accepted by the circuit evaluator.

The new stacks are generated in 3 ways: (1) by concate-
nation, (2) by insertion or (3) by re-generation. Concatena-
tion is applied in case two external segments of the stacks
are connected to the same net (figure 4.a) and by inserting
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Figure 4. Examples of stack merging

a dummy segment between the two stacks. Insertion of a
stack in another is used in case the dummy segment in one
stack can be replaced by the second stack. Insertion can be
also used in case the connecting net is in internal position in
one stack and in external position at both ends for the other
stack (figure 4.b).

Real life cases are generally resolved by the first and
second method. Regeneration uses the Euler Path algorithm
for the trail generated by the graphs of the two stacks.

We modify the sizes of the segments in the new stack
choosing a suitable combination of the following methods:
� keep each segment at either L = constant or at
W=L = constant and

� modify the first, the second or both input stack sizes.
The newly generated stack is optimistically evaluated by the
circuit evaluator. That is, the cost function evaluates the cir-
cuit with the transistors obtained from the new stacks. All
other transistors have their original sizes. If the specifica-
tions hold, then the new stack is accepted, and inserted in
the list.

This procedure is iterated several times, until no new
stack is generated or a maximal iteration count is reached.
All our tests were convergent after at most three steps (i.e.
no new stack was generated).

6. Results

Our new method of transistor stacking was implemented
in the Atlast (Analog Transistor LAyout STacking) program
using the “C” programming language. The stack pattern
database was generated automatically and then improved by
analog designers. The circuit evaluator, which depends on
circuit topology, is described by the user using a “C” library
targeted for circuit modelling. This approach will probably
be changed in the future to an equation evaluator, even if the
current solution leads to short run time.

Atlast program was run on several medium size circuits

MP1-MP1-MP2-MP2

MP2-MP2-MP1-MP1

MP16-MP14

MP15-X-MP9-MP10-MP10-MP9

MP7-MP7 MP8-MP8

MP11

MP11

MN13-x-MN5-MN5-MN3-MN4-MN4-MN3-x-MN6-MN6-x-MN12-MN12

a)

b)

Figure 5. Stacking Results for a Two Stage
OPAMP

(10 : : :20 MOSTs) and the resulting solutions were placed
using heavy stacking and centroidal patterns. The solutions
were tested, when possible, against manual layout. One top
covering stack set was identical to the manual solution in all
cases.

Figure 5 shows some results generated by Atlast for a
16 MOSTs, folded, two stage OPAMP ( 5.a) from a low
voltage circuit. In the cover shown in figure 5.b , one can
notice a stack that contains all NMOS transistors and two
dummies. This was possible by transistor size modification
during the run even if the greatest common divisor of the
transistor widths is one. The resulting stack width is 20�m.

The input pair MP1,MP2 can be placed using a centroidal
scheme using the two stacks at middle-left. Transistors MP7
and MP8 were laid out separately due to their different bulk
connection. The MP11 MOST was split in two stacks (right-
top) so that, together with the missing components: C1,
RP1 and RP2, it can offer higher flexibility in the placement
phase. The pair of stacks for MP1-MP2 MOSTs, the pair
for MP11 and the NMOS stack can be now generated with
our method. The previous approach of [1] can not handle
such structures due to limitations in terms of initial MOSTs
sizes and stacking strategy.

Table 1 summarizes some of the electrical characteristics



Electrical Pessimistic Optimistic Optimistic Final

Parameter initial initial final simulation
simulation estimation estimation
(SPICE) (Atlast) (Atlast) (SPICE)

Gain-Bandwidth

Product[MHz] 1.30 1.50 1.41 1.38

Phase Margin [deg] 62 75 68 67

Noise Corner
Frequency [kHz] 10.1 6.1 7.5 8.2

Slew Rate
[V=�� second] 1.3 1.5 1.4 1.3

Table 1. Comparative Electrical Characteris-
tics

of the circuit as simulated with SPICE and estimated during
the Atlast run. The estimator used a code based on hand
design and modelling procedures.

The initial, pessimistic simulation was done using max-
imal source-bulk and drain-bulk capacitances. This is a
usual, pre-layout procedure in the industry. Optimistic esti-
mation takes into account minimal or real node capacitances.
One can see that there is room for performance degrading
during the routing phase before the pessimistic simulation
results are reached.

7. Conclusions

An original approach for generating stacks of MOS tran-
sistors for analog circuit layout design was presented. Using
the new, heuristics based method it is possible to generate
stacks similar to the manual analog layout. These contain
2D centroidal structures, folded devices, chained devices
and large devices that are split in two stacks.

The method is based on a symmetry finding algorithm,
pattern based stack generation, stack merging and cover
finding. The electrical circuit characteristics are checked
at each new stack using an optimistic evaluator. A circuit
example has been reported showing the flexibility of the
results that can be obtained with this method.

The authors would like to thank (a) their Internet
providers that enabled the virtual work environment and
(b) their friends - analog designers. This research has been
partially supported by STW contract no. EEL 33.3157 at
TUDelft and grant no. TB-63/5001C by Romanian Ministry
of Education and Science.

Appendix

The following are definitions of several terms used in this
paper.

Definition 1 ( segment) is a layout entity corresponding to
a part of a MOS transistor layout. A transistor is split in

some transistor segments connected in parallel. If a single
MOST is split in n segments (hereafter Sg), then we have
the following rules:

LSgi = LMOS and
Pn

i=1 WSgi = WMOS

where WSgi is the width of segment i and L is the length
of the MOST or of the segment, as given by the indices.

Definition 2 (stack) a chain of segments which partially
builds an electrically correct layout for a set of MOS tran-
sistors in the circuit. (see Figure 1 )

Definition 3 (cover) a set of stacks S of a given circuit with
the set M of MOST, each M 2 M split in segments SgM
is a cover if:
8SgMa

2 S1; SgMb
2 S2 [ S1 6= S2 ) Ma 6= Mb ] :

non-overlapping condition and
8M 2 M; 9S 2 S [ 8SgM 2 M ) SgM � S ] :

injectivity condition.
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