
A High-Level Synthesis Approach to Optimum Design of Self-Checking Circuits

Anna Antola, Vincenzo Piuri, Mariagiovanna Sami
Dipartimento di Elettronica e Informazione, Politecnico di Milano

piazza L. da Vinci 32, 20133 Milano, Italy
email {antola,piuri,sami}@elet.polimi.it

Abstract

We present an innovative solution to design of self-
checking systems implementing arithmetic algorithms.
Rather than substituting self-checking units in system
synthesized independently of self-checking requirements,
we introduce self-checking in high-level synthesis as a
requirement already for scheduling the DFG. Rules
granting error detection allow optimum partitioning of
the DFG; minimum-latency, resource-constrained
scheduling is performed with the support of such
partitioning so as to optimize the number of checkers as
well as that of other resources.

1. Introduction

High-level synthesis has been a subject of research and
development since several years now; starting from an
algorithmic description of a specific device's
computation, techniques have been defined to derive an
intermediate graph description and to perform a number
of operations and optimizations leading ultimately to
scheduling, allocation and binding [1,2]. Main figures of
merit are latency, throughput and resources; even though
the final product of high-level synthesis consists of an
RT-level datapath and of a transition table for the control
FSM, such figures of merit can be evaluated, at least
roughly, on the basis of parameters characterizing the
library cells used for the subsequent architectural
synthesis.

A particular problem, not usually taken into account,
concerns design of self-checking systems; this feature is
usually accounted for at a lower level, e.g., by introducing
suitable modifications in the state table and coding in the
state assignment phase of an FSM [3,4] or by adopting
coded data and related self-checking operating units in
the datapath [5]. Such solutions are adopted a posteriori,
after high-level synthesis has been completed, and thus
are not optimized with respect to the specific computation
performed by the ASIC. Let us focus on data path
synthesis; the conventional approach leads to excessive
area increase, since it tends to protect the individual

operation rather than to exploit the characteristics of the
coding approach with respect to the computation to be
performed. For the same reason, there is also a
deterioration in both latency and throughput since the
control step must now accommodate checking as well as
nominal operation. It appears worthwhile to introduce
self-checking requirements already in the initial steps of
high-level synthesis, modifying the synthesis approach so
as to optimize area and performances even while granting
autonomous error detection.

We consider, in particular, data path synthesis for
systems described by arithmetic operations only. This
restriction while not forcing basic limitations of our
approach, allows us to consider simpler structures
adopting a single and cost-effective coding solution
throughout the whole circuit and thus avoiding insertion
of transcoding operations in the algorithmic flow. We
achieve self-checking by use of arithmetic codes, e.g.,
AN codes or residue codes [5]; for such codes it has been
already proved that - for some specific computations such
as convolution - it is possible to drastically reduce the
number of checkers without impairing the detection
capability [6,7].

In the present paper, we consider general arithmetic
data flow graphs, with unconstrained topology; our scope
is to optimize the number of checkers to be inserted, so
that:
• detectability of errors is maintained (error assumptions

such as, e.g., single error will be related to error
confinement within suitable subgraphs of the DFG);

• area overhead with respect to the non-self-checking
circuit is kept as low as possible, while keeping
minimum computation latency;

• length of the control step is kept as limited as possible.
In the following sections, we analyze first of all
propagation of detection capacity through a DFG,
identifying conditions that lead to aliasing (reference will
be made to a sample code, although the approach is
totally general). Based on these conditions, the concepts
of Detectable Subgraphs and of Maximum Detectable
Subgraphs is introduced and techniques for extracting
these subgraphs from the DFG are presented; properties

EURO-DAC ’96 with EURO-VHDL ’96
0-89791-848-7/96 $4.00 1996 IEEE

of such subgraphs are discussed, allowing to consider
creation of an optimal partition of a given DFG
minimizing the number of checkpoints. We extend also a
minimum-latency, time-constrained scheduling algorithm
to account for optimum scheduling of checkers.

2. A code-related analysis of DFGs

In the present paper, we refer as a running example to
single-error detecting arithmetic codes, such as 3N code
and residue code in base 3, all capable of detecting single
errors in additions, subtractions and multiplications; only
these types of operations will be allowable in the DFGs
here examined. While for additions and subtractions
detection capacity extends to errors present in one of the
input operands as well as in the operator, for
multiplication it holds with the assumption of correct
input operands (i.e., errors are restricted to the operator)
[5, 8].

The final architecture supporting the computation
consists of arithmetic circuits, of registers storing
operands and results and of a switched interconnection
network (either multiplexer-based or bus-based); we
insert checking operations in the clock cycle following
loading of a result in a register, so that an error in a
register will be considered as equivalent to an error in the
arithmetic circuit generating the result. The
interconnection network will be considered fault-free, as
in most of the current literature (further considerations on
this point, relaxing such restriction, will be discussed in
section 5).

Data flow graphs here examined are all DAGs
(Directed Acyclic Graphs): it has been proved that it is
always possible to represent a computation by such a
graph, transferring conditions that determine presence of
cycles to the Control Flow Graph. A DFG consists of
nodes representing operations (each node oj contains a
mark identifying the operation type) connected by edges
representing data dependencies: there is an edge eij from
oi to oj if and only if results produced by operation oi
constitute an input for oj. Particular edges (provided with
a source node and no sink node) denote primary outputs;
results produced by a node can be simultaneously primary
outputs and inputs to other nodes. Whenever the results
produced by a node are used by more than one successor
nodes, rather than introducing multiple edges we will use
a fan-out type of graphical representation.

Our first goal is to identify the conditions - related
both to topology of the DFG and to operations performed
by the nodes - that lead to aliasing, with respect to the
adopted error model (in our case, a single error). In other
words, considering a single error located in any node of
the DFG, and as a consequence of propagation along the
paths departing from this node, we wish to determine if at

any given point along such path it becomes impossible to
detect the error, even though the result produced is not
correct. Aliasing, as a consequence of which an error-
affected result is still a codeword and as such cannot be
detected by a checker, should not be confused with
masking, by which the result produced by a fault-affected
unit is still correct.
Conditions for aliasing derive from the specific error
syndrome detected by the code; in the examples here
chosen, errors on the output of a faulty arithmetic device
have the form ± 2i. Aliasing in a network of arithmetic
circuits occurs whenever - in the presence of a single fault
- the error syndrome for a result affected by the error is
divisible by 3; this may occur either if one input to a
multiplier is faulty (it is sufficient for the other input to be
divisible by 3) or if reconvergent paths in the DFG lead to
a final error syndrome divisible by 3.

The presence of reconvergent paths in the DFG is not
a sufficient condition for aliasing; for example, if two
paths transferring the same error converge on the inputs
of one adder, the result produced by this adder will be
affected by an error ± 22i, which is still detectable.
Conversely, aliasing occurs if the two paths to the adder’s
inputs are affected by the syndromes ± 2i and ± 2i+1.

To prevent aliasing, and thus grant the self-checking
property to a system implementing the DFG, checking has
to be performed at suitable points within the computation
and corresponding restrictions have to be adopted in
scheduling and allocation.
We identify first the necessary checking points in the
DFG, i.e., the points where it is necessary to verify
correctness of the computation in order to guarantee the
detectability of all errors in the whole DFG for the
adopted error model and code. We define the output of an
operation oj to be explicitly checked if it is verified by a
checker. It is implicitly checked with respect to a
explicitly-checked operation oi if any error (considered
by the adopted coding technique) at the output of oj itself
is propagated without aliasing to the output of oi.
Assuming the primary inputs to be error free, necessary
checking points must be placed:

• at each primary output of the DFG, since its
correctness must be certified as soon as the output is
generated in order to guarantee the use of correct data
in the activities following the DFG computation;

• at the output of an operation if and only if aliasing
occurs at the output of at least one immediate
successors of such an operation.

Due to the chosen coding techniques, the second
condition requires that the inputs of all multiplications (if
they are not primary inputs) must be checked, as well as
the output of any addition/subtraction which induces
aliasing in at least one addition/subtraction in its
immediate successors.

To identify the minimum number of checking points
and their position, we formalise the following concepts.
The Detectable Subgraph DS(oj) associated with node

oj of the DFG is a subgraph having k inputs and one

checked output given by the output of operation oj , such

that, assuming the inputs to be checked, any single error

within the subgraph is detected by checking the output of

oj . A DS may have any number of outputs, but the

detection property is asserted with respect to the output of

oj only.
A Maximum Detectable Subgraph MDS is a DS not
completely contained in any other DS. Extending at least
one input-output path in an MDS, i.e., including one
additional operation, would lead to aliasing. As a
consequence, to grant correctness of the output of an
MDS, it is mandatory to insert a checking point on such
output, being the MDS inputs checked.
The single-error assumption within a DS or an MDS
implies that any operation (operand) appearing in one DS
(MDS) is mapped onto a separate operator (register). This
does not exclude reuse of operators (registers) in
independent DS's, provided each instance of use is
separately checked.

Creation of all MDS's in a DFG can be obtained by:

Algorithm 1: MDS's creation.
a) create a levelized DFG, where

• all primary inputs have level 0;
• for any node oj , if lj

1 and lj
2 are the levels of its

immediate predecessors, level lj is computed as
max(lj

1, lj
2)+1.

b) for each level l (starting with l=1) and for each node

oj
l in level l, build the subgraph DSM(oj

l) which

completely includes all the possible DS(oj
l)'s. Since

primary outputs and multiplier inputs compel

checking, when building DSM(oj
l) these points are

considered as if they were primary inputs: i.e.,

backward propagation of a path from oj
l stops when

reaching such points. Otherwise, propagation stops as

soon as addition of a further node ok
m creates aliasing.

c) for each DSM(oj
l) such that oj

l does not generate a

primary output, check if it is completely included in at

least one other DSM(oi
h): in such a case, DSM(oj

l)

cannot be an MDS and is marked in consequence.

d) unmarked DSM(oj
l)'s constitute the set of all possible

MDS's for the given DFG.
Note that, due to the definition of step b, the primary
outputs are outputs of MDS's.

MDS's are not necessarily disjoint. As a consequence,
checking the outputs of all MDS's may be redundant to
detect the presence of errors. Therefore, the number of
MDS's constitutes an upper bound to the number of
necessary checking points.
Theorem 1. Let DS(o1) and DS(o2) be two DS's such that
DS(o1) ∩ DS(o2) ≠ ∅ . Consider DS* = DS(o1) -

DS(o1) ∩ DS(o2). The following can be proved:
1. the inputs to DS* coming from DS(o1) ∩ DS(o2) are

implicitly checked,
2. DS* is a detectable subgraph provided DS(o2) (or a

DS completely including it) is checked as a whole.
Proof. Let e' be an edge connecting DS* with DS(o2); by
the rules defining both the DFG and the DS's, e' comes
from a node oj in DS(o1) ∩ DS(o2) belonging

simultaneously to at least one path ending on o1 in
DS(o1) and one path ending on o2 in DS(o2). If DS(o2) is
checked as a whole, an error on the output of oj is

detected in the checked output of DS(o2) itself.
Conversely, if the checker associated with o2 does not
signal any error, the data flowing on e' are correct.
Therefore, by definition, the output of the operation oj

(i.e., input e') is implicitly checked. Since all inputs of
DS* are either explicitly or implicitly checked, by the
definition of detectable subgraph, DS* is a DS.

The construction rules for DS's grant that data flowing
on e' will not re-enter DS(o2) from DS*. Theorem 1 can
be applied to deal with any number of non-mutually
disjoint DS's: it is sufficient to apply it iteratively to pairs
of DS's, until disjoint subgraphs are created.

3. Optimum partitioning of the DFG with
respect to detection

To guarantee error detection in the DFG, the output of
each operation must be checked explicitly or implicitly,
i.e., each operation must belong to at least one DS.
Lemma 1. A cover C of the DFG consisting of a set of
DS's (not necessarily disjoint) covering the whole DFG
(i.e., such that all nodes of the DFG belong to at least one
DS in C) allows detection with respect to any single error
within each DS in the cover. It thus constitutes a
detectable cover.
Proof: Consider any DS*∈C: its inputs are either primary
inputs, multiplier inputs, fan-outs of primary outputs - and
as such explicitly checked - or else they are fan-outs of
nodes belonging to another DS', and as such implicitly
checked by checking the output of DS'. The checked
output of DS* is explicitly checked with respect to any
error occurring inside DS*; as for all other outputs of
DS*, by construction, they derive from fan-out on nodes
in DS* belonging to a path checked by the output of DS*,

and are implicitly checked. The DFG being a DAG, no
checking ambiguity can occur and each node is checked
with respect to single errors within (at least) one DS.

The number of checking points associated with a
detectable cover is the cardinality of the cover itself.
A minimum detectable cover (mdc) is a detectable cover
having minimum cardinality among all possible covers.
The minimum number of checking points required by a
DFG is thus the cardinality of an mdc of the DFG itself.
Minimum detectable covers are in general not unique, i.e.,
there may exist different covers characterized by the same
cardinality Nc but differing in at least one DS.

Identification of an mdc should imply the exploration
of all possible combinations of DS's covering the DFG.
To reduce the search complexity, we prove:

Theorem 2. There is always a minimum detectable cover
mdc composed exclusively by MDS's.
Proof: Consider an mdc* in which at least one DS is not
an MDS. Substitute this DS with an MDS completely
including it, i.e., such that each operation in the DS
belongs to the MDS. By construction, such an MDS
always exists. Substitution does not modify the detecting
capacity of the cover since all errors detected at the
checked output of the DS are still propagated and
detected at the output of the considered MDS, by its
definition. The substitution does not increase the
cardinality of the detectable cover: as a consequence, the
new detectable cover is still minimum.

From this theorem, we can derive several
consequences. First of all, the covering algorithm
identifying the mdc's of the DFG needs to explore the
covers composed by MDS's only. Besides, it is possible to
specify more clearly and relax the requirement on
checking the multiplication inputs: in fact, inputs to a
multiplication need to be either implicitly checked by a
DS (in the chosen cover C), which is different from the
DS* to which the multiplication belongs, or else they
must be explicitly checked. Anyway, the DS* including
the multiplication cannot include any of its predecessors.

The positions of the necessary checking points for a
given mdc C are the outputs of all MDS belonging to C.

Analysis of the mdc's is relevant also with respect to
identification of the minimum number of operators of
each type strictly required to guarantee detectability,
assuming that minimum-latency scheduling is
implemented. Within every DS of the mdc, each resource
(operator or register) must be used only once to avoid
aliasing; referring in particular to operators, if a DS
contains k instances of an operation of type α, the
operations will have to be mapped onto k different
operators of type α. However, a single operator can be
used for mapping two operations belonging to two
disjoint DS's without affecting the detection capacity,
since a possible error due to a fault in each instance is

viewed (and detected independently) as an error in each
of the two DS's and does not constitute a multiple not
identifiable by the adopted code. This holds for multiple-
error detecting codes, by scaling the requirements.
Similar reasoning applies to variables an registers.
As a consequence, in an mdc composed by disjoint DS's,
the minimum number of instances of a given type of
resource is equal to the maximum number of instances of
such a resource required in any DS of the mdc.

If the MDS's constituting the cover are all disjoint,
scheduling may begin without further processing. If some
MDS's are not disjoint, an mdc composed only by disjoint
DS's is derived by applying the Theorem 1. This disjoint
partitioning is necessary since - when scheduling the DFG
- each operation will be scheduled in one definite control
step and thus it will be associated with one DS only. The
mdc modified so as to consist of disjoint DS's will be used
for scheduling the DFG. Guidelines to perform
partitioning of non-disjoint MDS's into disjoint Ds's need
to take into account the minimization of the number of
resources for each type of operation required in the given
mdc.

As an example, consider the DFG shown in Fig. 1 (see
[1,2]). We characterize each node i of the DFG with a
subscript denoting the operation's nature (addition,
subtraction, multiplication) and a superscript denoting the
MDS to which the operation belongs. The MDS's are:

A: { }1*
A B: { }2*

B C: { }6*
C

D: { }3 4 5 7* *, , ,D D D D
− − E: { }8 9+ −

E E, F: { }10 11* ,F F
−

The covering table of the DFG has a column for each
node and a row for each MDS. In our example, it is:
• all MDS's act as "essential implicants" in a cover; the

mdc is thus unique and it requires six checking points;
• all MDS's are mutually disjoint; thus, each node is

attributed to one and only one MDS and the mdc
consists of all and only the MDS's.

As a consequence of these characteristics and of the fact
that within each distinct DS used in the final partitioning
of the DFG each operation must be instantiated by a
distinct physical operator (operators may be reused
between different DS's), the minimum number of
resources is 2 multipliers, 2 subtractors and 1 adder.

* *1*
A 2*

B
1

* 3*
Dl 2

l 3

l 4

l 0
R1 R2 R3 R4

6
C

R5 R6

- 4-
D

R7

* 7*
D

R8

- 5-
D

A B

C

D

+8+
E

R9 R10

- 9-
E

R11

E
10

F

R12 R13

+ 11+
F

R14

F

check

l

check check

check check

check

Figure 1 - A simple levelized DFG.

4. Scheduling the DFG with the detectable
capability

The scheduling approach we suggest is an extension of
a time-constrained scheduling algorithm that takes into
account the further constraints introduced by the mdc and
the associated DS's. To this purpose, we need to introduce
a basic assumption on the control step in which the
checking operation associated with the output of an
operation oj is scheduled. If the output of oj is a primary
output, the checking operation must be scheduled in the
same control step as oj; otherwise, it is scheduled in the
control step immediately following that in which oj itself
is scheduled. In other words, there is no freedom on the
relative positioning of oj and of its checking.

The number Nc of checking points in the mdc is the
upper bound for the number of checkers. To identify a
lower bound nc for this number, we explore of the
original DFG; there need to be at least as many checkers
as the maximum number of checking points located at the
same level on the critical paths (i.e., input-output paths of
maximum length).

A problem of obvious interest concerns the relation
between the number Nc of checking points and the
number nc of checkers after the scheduling has been
completed. To this effect, we can prove:
Theorem 3. Given two mdc's mdc1 and mdc2, being Nc
their cardinality, denoting by S the number of control
steps for minimum-latency scheduling and by ν the
number of checkers required by mdc1, if Nc=νS then
mdc2 cannot generate a scheduling with a lower number
of checkers.
Proof: The proof is by contradiction. Assumption Nc=νS
means that all checkers are used in each control step. To
reduce the number of checkers, mdc2 should use at most
ν-1 checkers in each control step. Since the number of
checking operations is still Nc, we have Nc≤(ν-1)S, which
contradicts the assumption.

For the example in Fig. 1, it is Nc=6; there are two
critical paths (from 1 to 5 and from 2 to 5) with two
checking points at level 2 (on the inputs of node 3), thus
nc=2. The length of the critical paths is 4.
To proceed with scheduling, we perform first both ASAP
and ALAP schedulings, by taking into account the
checking points together with the other operations. The
symbol denoting an operation is in bold if a checking
point is associated with that operation. Si denotes the i-th
control step; each line gives the operation scheduled on
the same control step. The ASAP scheduling is:
S1: 1 2 6*

A
*
B

*
C 8 10+

E F
*

S2: 3 7* *
D D 9 11E F

− +

S3: 4−
D

S4: 5D
−

The cost is 4 multipliers, 2 subtractors, 1 adder, and 3
checkers. The ALAP scheduling costs 2 multipliers, 2
subtractors, 1 adder, 3 checkers, being given by:
S1: 1 2*

A
*
B

S2: 3*
D 6*

C

S3: 4−
D 7*

D 8 10+
E F

*

S4: 5D
− 9 11E F

− +

Mobility is evaluated for all operations, including
checking. At this point, a force-directed scheduling
algorithm is adopted, by taking into account checking as
well as all other operations and by adopting the lower
bounds derived from the MDS's and from the DFG as
limit goals for the number of resources. This leads to:
S1: 1 2*

A
*
B

S2: 3*
D 6*

C 10*
F

S3: 4 7−
D D

* 8+
E 11F

+

S4: 5D
− 9E

−
The final cost amounts to 2 multipliers, 2 subtractors, 1
adder and 2 checkers - i.e., the minimum theoretical cost
possible, as seen previously. It is worthwhile noting that
the minimum cost without error detection would have

amounted to 2 multipliers, 1 adder and 1 subtractor [2];
inserting checkers on the structure defined in a
conventional way would have required one checker for
each operator, thus a total of four checkers. Given circuit
complexity of the operators involved, addition of one
subtractor by use of our technique is well offset by
reduction by two of the number of checkers.

Consider the more complex example of Fig.2, in which
all problems discussed in the present paper are examined.
The MDS’s derived from this DFG are:

A: { }2 6 9* , ,− + B: { }2 3 6 10* *, , ,− − C: { }4 7 11− + −, ,

D: { }1 2 5 8 12 14* *, , , , ,+ + − + E: { }4 7 13 15− + +, , ,*

Again, all MDS's are essential and the minimum cover is
unique: Nc=5. Since there are two primary outputs at the

* *1*
D 2*1

5+
Dl 2

l 3

l 4

l 0
R1 R2 R3 R4 R5 R6

8+
D

R7 R8

- 12-
D

D

+

3*
B

R9 R10

- 10-
B

R11

A

* 4-

R12 R13

+7+

R14

l

l 5 14+
D

+

+ -
6-

+ 9+
A

* 13*
E

15+
E+

-

- 11-

R15

C

C

B

E

check

check

check

check

check

Figure 2 - A levelized DFG with a non-disjoint mdc.

end of critical paths (no other checking points at the same
level on critical paths are found), it is nc=2.
We have here a complex case of intersecting MDS's:
several disjoint covers can be considered. The first one
adopts MDS's A and C, and the following DS's:
B’ : { }3 10* , − D’ : { }1 5 8 12 14* , , , ,+ + − + E’ : { }13 15* , +
The minimum-latency scheduling requires five control
steps; the minimum operator cost, derived exclusively
from the chosen DS's, amounts to 1 multiplier, 2
subtractors, and 3 adders. Examining the DFG allows to
increase the minimum number of multipliers to 2, since
there are two multipliers at level 1 on critical paths. The
results of our scheduling is:

S1: 1 2 4* *
D A C

−

S2: 3 5 6 7*
B D A C

+ − +

S3: 8+
D 9 10A B

+ −

S4: 12 13−
D E

* 11C
−

S5: 14 15D E
+ +

The total cost amounts to 2 multipliers, 2 subtractors, 3
adders, and 2 checkers, namely, the theoretical minimum
for the chosen self-checking solution.

Consider now a second cover, consisting of A, B’, D’,
as before, while E is taken in full and C’’ ={ }11− is
adopted. A scheduling requiring only 1 adder but 3
checkers can be identified: the cost can be considered
equivalent to that of the previous one.

Note that an optimum scheduling unconstrained by
detectability requires 2 multipliers, 2 adders and 1
subtractor; adding individual checkers would have
introduced 5 checkers. Again, the MDS-based solution
lowers the total cost.

5. Conclusions

The approach for high-level synthesis of arithmetic
DFG's has been discussed here with reference to adoption
of single-error detecting codes; in this frame, the single-
error assumption is restricted to appearance within the
individual DS (and, when allocation is performed, within
the unit implementing it). Extension to multiple-error
detecting solutions is straightforward, following the same
guidelines (in particular, the error model will again be
related to the individual DS).

Initially, we introduced a fault assumption by which
only errors located in arithmetic devices and in registers
were taken into account. Actually, most errors affecting
the interconnection network can be considered as well, by
a proper fault collapsing. In fact:
1. faults affecting the wiring between registers and

adders/subtractors are implicitly checked as if they
affected the register or the arithmetic device;

2. faults affecting the wiring from the output of a
multiplier to a register may be associated either with
the register or with the multiplier; errors on the wiring
from the checked inputs to a multiplier are not checked
- thus, they constitute part of the system's hard-core;

3. if a multiplexer-based approach is adopted for the
interconnection network, faults can be collapsed as in
the previous points; faults affecting a multiplexer on a
multiplier's input can be collapsed with faults in the
source register provided checking is performed at the
outputs of the multiplexer instead than at the outputs of
the register.

All the above, obviously, involves extending the single-
error assumption to a suitably defined subsystem,
including, together with operators and registers associated
with each DS, segments of wiring as well.

Choice of coding influences area required by
arithmetic devices and registers as well as clock cycle. In
general, the choice is between separate and non-separate
codes. Usually, separate codes require larger area but
preserve the cycle length requested by non-checking
operations; conversely, non-separate codes are often
supported by lower-complexity circuits but - by
increasing the width of the word upon which the
arithmetic device operates - lead to increase of the clock
cycle length.

Further problems to be studied concern first of all
considering different operation latencies (in particular, for
adders/subtractors with respect to multipliers); extension
of our approach to arithmetic/logical DGF's, involving
choice of different codes and ensuing conditions for
detectability, is also being examined. Finally, the impact
of the self-checking solution on allocation must be
examined, in view of optimal allocation. Work is at
present going on along these lines.

References

[1]D.Gajski, N.Dutt, A.Wu and S.Lin: High-Level Synthesis,
Kluwer Academic Publishers, Boston, MA, 1992

[2]G. de Micheli: Synthesis and Optimization of Digital
Circuits, McGraw-Hill, New York, NY, 1994

[3]N.K.Jha, S-J.Wang: "Design and Synthesis of Self-Checking
VLSI circuits", IEEE Trans. on CAD of Integrated Circuits
and Systems, vol. 12, No.6, pp.879-887, June 1993

[4]C.Bolchini, R.Montandono, F.Salice, D.Sciuto: "Self-
checking FSM's based on a constant-distance state
encoding", proc. IEEE DFT 95, Lafayette, USA, Nov. 1995

[5]T.R.N. Rao: Error coding for arithmetic processors,
Academic Press, NY, 1974

[6]V. Piuri: "Fault-tolerant systolic arrays: an approach based
upon residue arithmetic", Proc. ARITH-8, Como, Italy, 1987

[7]V. Piuri: "Fault-tolerant array processors: an approach based
upon A*N codes", Proc. ISCAS'88, Helsinki, Finland, 1988

[8]M.Annaratone, R. Stefanelli: "A multiplier with multiple
error correction capability", in Proc. IEEE Arith 6, 1983

	CDROM Home Page
	1996 Home Page
	EURO-DAC96 Home Page
	Front Matter
	Table of Contents
	Session Index
	Author Index

