
EURO-DAC ’96 with EURO-VHDL ’96
0-89791-848-7/96 $4.00 1996 IEEE

Component Selection in Resource Shared and Pipelined

DSP Applications y

Smita Bakshi, Daniel D. Gajski, and Hsiao-Ping Juan

Department of Information and Computer Science

University of California, Irvine, CA, 92717-3425, USA

Abstract

In general, high-performance DSP designs are heavily

pipelined and, in order to reduce the pipeline cost, these de-

signs employ techniques such as component selection and

resource sharing to select the appropriate number and type

of components. In this paper, we present an algorithm to

perform the three tasks of pipelining, resource sharing and

component selection, so as to minimize design cost for a

given throughput constraint. Experiments conducted on sev-

eral examples demonstrate the superiority of performing all

three tasks, rather than just a combination of any two of

these tasks, as done in previously published algorithms.

1 Introduction

Designers of high-performance systems have focused
their e�orts on satisfying the conicting goals of high-
performance and low-cost. In general, high-performance
constraints are met by pipelining the design into several
concurrently executing stages, such that at any given time
each pipe stage operates on a di�erent sample from the
stream of incoming samples. This concurrency or increased
parallelism has two e�ects: �rstly, it increases the through-
put of the design, since a larger number of operations are
now computed in parallel. Secondly, to handle these con-
current operations, it contains a larger number of compo-
nents, thereby increasing the cost of the design. It is possi-
ble, however, to reduce this design cost by using techniques
such as resource sharing and component selection that to-
gether select the number and type of resources that will
satisfy constraints at minimal cost.

Resource sharing, also known as scheduling, refers to
utilizing the same resource to perform several di�erent op-
erations over di�erent time-steps. Since one resource can
now potentially do the job of many, a fewer number of such
resources are required, resulting in a lower cost. The design
cost can be further reduced by combining resource shar-
ing with component selection, which refers to the selec-
tion of operator implementations from a library containing
multiple implementations per operator type. In general,
by allowing multiple implementations within a design, fast
components can be selected for critical operations, and at

yThis work was supported by the Semiconductor Research
Corporation (grant #94-DJ-146) and by the National Science
Foundation (grant CDA-9422095).

DFG

*
*

+

+

*

a

b

c d

e

1

2

3

4

a

b

c

d

e

*
*
*
+

+

cost: 1 fast adder
 1 fast multiplier

perf : 4 clocks perf : 2 clocks
cost: 1 fast adder
 1 fast multiplier
 1 slow multiplier

Scheduling & Pipelining

perf : 2 clocks
cost: 1 fast adder
 2 fast multipliers

1

2

a

b

cd*
*

*
e+

+

stage 1 stage 2

1

2

a

b

cd

*
*

*
e+

+

stage 1 stage 2

(a) (b) (c) (d)

Scheduling, Pipelining
& Component Selection

stage 1
stage 2

Only Scheduling

Figure 1: E�ect of combining pipelining, scheduling, and

component selection.

the same time, the slower and cheaper ones can be used for
non-critical operations.

In this paper, we present an algorithm that combines
all the three design tasks, pipelining, resource sharing and
component selection, so as to satisfy high-performance re-
quirements at low costs. If we only schedule the design we
obtain a high resource utilization, but low concurrency, and
consequently a low throughput. By introducing pipelining
we increase the throughput, and by introducing compo-
nent selection we further improve the resource utilization
and hence reduce design cost.

In Figure 1, we demonstrate the bene�t of performing all
three tasks, rather than just a combination of two, for the
data ow graph in Figure 1(a). The fastest design obtain-
able by only resource sharing or scheduling (Figure 1(b))
requires 4 clocks, assuming that all components have an
execution delay of just 1 clock. If we now pipeline the de-
sign into 2-stages, where nodes a, b and d are executed in
the �rst pipe stage and nodes c and e in the second stage,
the fastest design obtainable will have a delay of only 2
clocks. However, this now requires 2, instead of 1, unit-
delay multipliers (b can share the multiplier with either d
or c; similarly, a and e can share the same adder). If we
now allow component selection in the design (Figure 1(d)),
we can select a slower multiplier for operation d, thus bring-
ing down the total design cost, while maintaining the same
delay.

The rest of the paper is organized as follows. In the next
section, we discuss related research and also explain how
we di�er from it. Sections 3 and 4 present our de�nition
of the problem and the algorithm we have used to perform
pipelining, scheduling and component selection. Finally,
we present results in Section 5, and conclude the paper in
Section 6.

2 Previous work

Related research can be classi�ed into three categories
with respect to scheduling, pipelining and component selec-
tion. The �rst category consists of algorithms that pipeline
and schedule a given DFG so as to optimize either the cost,
the latency, or the throughput of the DFG, while at the
same time, satisfying either performance or resource con-
straints. However, these algorithms do not perform com-
ponent selection, that is, they use restricted libraries that
contain only single implementations of components. The
designs are thus forced to use the same component on non-
critical and critical paths, resulting in designs that are inef-
�cient and more costly. Examples that fall in this category
are the algorithms in the Sehwa tools [1] and the tools from
the GE Corporate R&D Laboratories [2].

The second category of algorithms perform scheduling
using multiple implementation libraries; however, they do
not pipeline the DFG, and hence are unable to obtain high
throughput designs. Pipelining can give orders of magni-
tude higher throughput, which these algorithms are unable
to achieve. Examples of such algorithms are TBS [3] and
the algorithm by Timmer et al. [4].

The third category of algorithms perform pipelining
and component selection without any resource sharing
or scheduling. Thus, designs obtained from these algo-
rithms have a one-to-one mapping between components
and nodes in the DFG. Though these designs can satisfy
high-throughput constraints, they may not be cost-optimal
since they do not support resource sharing. Examples of
such algorithms are the ILP approach presented in [5] and
a heuristic-based selection technique presented in [6].

The algorithm presented in this paper di�ers from all
the algorithms mentioned above since it performs resource
sharing (or scheduling), pipelining and component selec-
tion, and hence it results in designs that not only satisfy
high-throughput constraints, but do so cost-e�ciently by
sharing resources amongst operators and by using fast com-
ponents on critical paths and the slower components wher-
ever possible on non-critical paths.

3 Problem statement and de�nitions

In this section, we �rst de�ne the terms Clock, PS delay

and Latency and then follow it with the de�nition of our
problem.

De�nition 1: Clock is the maximum delay of any sched-
uled state.

De�nition 2: PS delay is the maximum delay of any pipe
stage that also represents the sample inter-arrival delay,
that is the delay between the arrival of two consecutive in-
put samples. Furthermore, PS delay is a multiple of the
clock delay (m�clock, for an m-state per stage pipeline),
since a pipe stage contains an integer number of sched-
uled states, each of which has a delay equal to the clock.
Throughput, which is often the prime constraint on DSP
systems, is the inverse of the PS delay.

De�nition 3: Latency is the total execution time (n�PS
delay, for an n-stage pipeline), that is, the time between the

Mpy1

Mpy3

Mpy2

Add1

Add2

Add3

100

Area DelayComp.
 Type

Comp.
Name

*
*
*
+

+

+

200

150

20

30

50

20

100

40

10

30

50

*

*

+

+

DFG

*

a

b

c d

e

Constraints
Clock = 10 ns
PS delay = 50 ns
 (5 clock states/pipe stage)
Latency = 100 ns
 (2 pipe stages)

Design Metrics
*

*

+

+

*

a

b

c d

e

Stage 1

Stage 2

Schedule, Pipeline, and Component Selection for DFG

Component Library (CL)

Stage 2Stage 1

state 1

state 2

state 3

state 4

state 5

a

b

cd

e

Add2

Add2

Mpy1

Mpy3

Mpy3

Output

Input

(Gates) (ns)

Clock = 10 ns
PS Delay = 50 ns (5 states)
Latency = 100 ns (2 pipe stages)
Cost = 350 Gates

Figure 2: An example illustrating the inputs and outputs

of the component selection and pipelining algorithms.

arrival of an input sample and the availability of the corre-
sponding output. The latency is thus a multiple number of
PS delays.

Our problem may be de�ned as follows:

Given a data ow graph, DFG(V;E), where V

represents a set of vertices, and E � V �V a set of
directed edges, a component library, CL, compris-
ing a set of three tuples hComponentType, Area
and Delayi, and constraints on clock, PS (Pipe
Stage) delay, and latency, pipeline the DFG into
blatency/PS delayc stages of delay � PS delay,
schedule each pipe stage into bPS delay/clockc
states of delay � clock, and select components

so as to minimize cost (given by the sum of the
area of datapath components).

The example in Figure 2 illustrates the problem. Given
are a DFG, a CL, and constraints on the clock (10 ns),
PS delay (50 ns) and latency (100 ns). These constraints
imply that there can be no more than two pipe stages,
where each pipe stage has at most 5 states of delay at most
10 ns each. The output consists of a scheduled, pipelined
and \mapped" DFG, where each node is assigned to a state
within a pipe stage and is also assigned a component of
the corresponding type from the component library. For
instance, in the example, nodes a, b and d belong to the �rst
pipe stage, while nodes c and e belong to the second pipe
stage. Each pipe stage is scheduled into 5 states allowing
resource sharing between operators that may or may not
be in the same pipe stage. Thus, nodes a and e share the
same adder, and nodes b and c share the same multiplier.
The �nal component selection consists of one component
each of Mpy1, Mpy3, and Add2 bringing the total cost of
the design to 350 gates.

4 Algorithm
For a given DFG, CL, and set of constraints, our al-

gorithm performs pipelining, scheduling, and component

Any
improvement?

Modify pipeline

Yes

Step 1

Step 2

Step 3

No

Stop

Obtain initial non−scheduled
 pipeline

for all pipe stages
Schedule & select components

for all pipe stages
Schedule & select components

Figure 3: Pipelining, resource sharing, component selec-

tion: algorithm overview.

selection, in the sequence presented in Figure 3.

We �rst obtain an initial non-scheduled pipeline, in
which each pipe stage is of delay PS delay. In the next step
we schedule each pipe stage into bPS delay/clockc states,
so as to allow resource sharing between operators within
and across pipe stages. Component selection is also per-
formed at this step. The pipeline is then modi�ed with the
aim of reducing its cost, and the scheduling and selection
is re-done for the new pipeline. The pipeline modi�cation
and re-scheduling is repeated till there is no further cost
reduction.

In the following sections, we explain the three steps
of the algorithm, namely, obtaining the initial pipeline,
scheduling each pipe stage, and modifying the pipeline.

4.1 Obtaining the initial pipeline

The algorithm used to obtain the initial pipeline has been
presented, in detail, in [6]. Due to space limitations we will
not elaborate on it, except to mention that the input to the
algorithm consists of the DFG, the CL and the PS delay

constraint, and the output consists of a mapped and par-
titioned DFG where each node is mapped to a component
of the corresponding type and the DFG is partitioned into
blatency/PS delayc concurrent pipe stages, each of delay no
larger than PS delay. The aim of this step is to satisfy the
latency and PS delay constraints with the lowest cost, ob-
tained without resource sharing, but with component selec-
tion. By going through the component selection phase, we
attempt to obtain the best possible non-scheduled pipeline
for the given DFG and component library. This represents
a good starting point for the scheduling step, since it con-
tains equal delay stages and since it has already undergone
some cost optimization.

In order to further reduce the cost of this initial pipeline,
in the next step, we schedule each stage of the initial
pipeline so that resources may be shared by multiple oper-
ations. In other words, we replace several slow components
in the non-scheduled pipeline by a smaller number of faster
components, that have a lower overall cost.

Any
improvement?

Yes

No

Stop

Step 2(1)

Step 2(2)

Step 2(3)

Modify allocation

Resource−constrained scheduling

Time−constrained scheduling
(to obtain initial allocation of
min. # of fastest components)

Modify & Verify

(to verify that performance
 constraints are satisfied)

(component selection)

Figure 4: Approach for resource sharing & component

selection.

4.2 Resource sharing & component selec-
tion

Our approach for resource sharing starts with a time-
constrained scheduling step (Figure 4) from which we ob-
tain an allocation in terms of the smallest number of fastest
components required to satisfy constraints. We then mod-
ify this allocation (Step2(2)) by replacing a component with
one or more slower ones, such that the cost of the modi�ed
allocation is less than the cost of the initial allocation. The
modi�ed allocation is then used as an input to a resource-
constrained scheduling approach to ensure that the mod-
i�ed allocation still satis�es constraints (Step2(3)). The
steps of modifying the allocation towards lower costs and
ensuring the satisfaction of constraints is repeated till no
further cost reduction is possible.

4.2.1 Time-constrained scheduling

The aim of this step is to obtain the smallest number of
fastest components required to schedule the pipelined DFG
into bPS delay/clockc states. In order to do this, we use
the force-directed scheduling algorithm [7] with a reduced
library containing only the fastest components of each type,
instead of the complete library which contains multiple im-
plementations per component type. This is demonstrated
in Figure 5 for the example from the previous section. All
pipe stages of the DFG are to be scheduled concurrently
as shown in Figure 5(a). The component library is reduced
to contain only Mpy3 and Add3, the fastest multiplier and
adder respectively. This DFG, reduced component library,
and performance constraint of �ve 10 ns states is given as
an input to the force-directed scheduling algorithm. The
output of the algorithm, shown in part (b) of the �gure,
consists of a schedule that gives the minimum number of
components to satisfy the performance constraints, which,
in this case, is 2 multipliers and 1 adder.

4.2.2 Modify & Verify

Having obtained the minimum number of fastest compo-
nents, the next step is to try and replace each component

Stage 2Stage 1

state 1

state 2

state 3

state 4

state 5

b

e

aAdd3 c
Mpy3

Add3

Mpy3

d
Mpy3 1 Add3, 2 Mpy3

Initial Allocation

*

+
a

b

Stage 1

Clock = 10 ns
5 clock states

*
d

+

*
c

Stage 2

e

Fastest Implementations Only

(a)

(b)

Mpy3

Add3

*
+

200 20

100 10

Comp
Type

Comp.
Name

Area Delay
(Gates) (ns)

Figure 5: Demonstrating the input and output of the

time-constrained scheduling step.

with one or more slower (and hence cheaper) components
that still satisfy constraints and, at the same time, reduce
the overall cost. The algorithm for modifying this initial
allocation is outlined in Figure 6. The inputs to this al-
gorithm consist of the pipelined DFG, the complete com-
ponent library CL, the initial allocation obtained from the
force-directed scheduling step, and constraints on the clock
and the number of states.

As the �rst step, for each component type, t, we deter-
mine the oor of the cost ratio between the most and the
least expensive component. This is denoted as Rt. Thus,
for the example in Figure 5, R? is 2 (b200/100c) and R+ is
3 (b100/30c). Next, for each component type, t, we deter-
mine a list, Lt of all component subsets of length at most
Rt, and of smaller cost than that of the most expensive
component of that type. Lists L? and L+ are shown in
Figure 7 for the given component library. The lists, called
the component substitution lists, are sorted in increasing
order of cost as shown in the �gure.

After generating the component substitution lists, Cur-
rent allocation is initialized to the initial allocation ob-
tained from the force-directed scheduling algorithm. This
is the minimum number of fastest components that are re-
quired to schedule the DFG within the speci�ed number of
states. Next, for each component in Current allocation, we
�nd the lowest cost component set from the substitution list
with which the component could potentially be replaced.
From these component and replacement component pairs
we select the pair <c, Rc> that has the highest cost di�er-
ential. As an example, consider the initial allocation shown
in Figure 5(b) and the substitution lists in Figure 7. The
lowest cost replacement for Mpy3 is Mpy1 with a cost dif-
ferential of Cost(Mpy3) - Cost(Mpy1) = 200 � 100 = 100
and for Add3 the lowest cost replacement is Add1 with a
cost di�erential of 70. The pair <c, Rc>, for this example,
is then <Mpy3, Mpy1>.

In the next step, we obtain a New allocationby replacing
the component c with the component set Rc. We then check
to see if performance constraints (clock and number of
states) are satis�ed with the New allocation. For this we use
a list-scheduling algorithm, explained in more detail in [8].
If constraints are satis�ed, we keep the New allocation, else
we go back to the old allocation, which is maintained in

1. For each component type, t, determineRt and Lt.
2. If (8t, Lt is empty)
3. exit the program.
4. Else

5. Current allocation = initial allocation obtained from
force-directed scheduling algorithm.

6. Loop

7. For all components in Current allocation
determine the pair <c, Rc> that has the
highest cost di�erential.

8. New allocation = Current allocation
after replacing c with Rc.

9. If (New allocation satis�es constraints)
10. Current allocation = New allocation
11. else

12. \Mark" component c with Rc.
13. End if

14. Until (no component can be replaced with a
cheaper component without a violation of constraints)

15. End if

Figure 6: Algorithm for modifying the initial allocation

and verifying that constraints are satis�ed.

the variable Current allocation. We also mark the compo-
nent c with the component set Rc to ensure that in future
iterations c is not replaced with Rc or with any compo-
nent that appears above Rc in the component substitution
lists. Steps 6 to 14 are repeated till no component in Cur-

rent allocation can be replaced, either due to a violation of
constraints or because slower components are unavailable
in the library.

Mpy1

Mpy3

Mpy2

Add1

Add2

Add3

100

Area DelayComp.
 Type

Comp.
Name

*
*
*

+
+
+

200

150

20

30

50

20

100

40

10

30

50

Component Library

Components Area

L +

Components Area

L *

Add1
Add2
Add1, Add1
Add1, Add2
Add1, Add1, Add1

 30
 50
 60
 80
 90

Mpy1
Mpy2

100
150(Gates) (ns)

Figure 7: Creating the component substitution lists.

4.3 Modifying the pipeline

We now come to the third step of the algorithm (Figure 3)
in which the pipeline obtained from Step 1 is modi�ed and
the scheduling step is repeated for the modi�ed pipeline.
Step 1 produces a \good" pipeline in that it tries to equalize
the delay of all pipe stages; however, it does not consider
the e�ects of scheduling, and hence it is possible that the
pipeline is not optimal with respect to scheduling.

The algorithm for modifying the pipeline essentially
moves nodes lying on the border of a pipe stage into the
adjoining pipe stage (which may be either one pipe stage
higher or lower), one at a time, evaluating each move. The
move with the lowest \cost" is kept and the scheduling al-
gorithm (Step 2) is repeated for this new pipeline. The

cost of a move is evaluated as the \probable cost" of the
new pipeline that is obtained after the move. The probable
cost of a pipeline is given by the sum of the probable cost
of all operators (we consider the cost of the fastest imple-
mentation at this point), a cost function similar to the one
used in the force-directed scheduling algorithm. For more
details please refer to [8].

5 Experiments

We have implemented the algorithm using \C" on a SUN
SPARC 2 station. The complexity of the algorithm is
O(N2SlogNCk), where N is the total number of nodes in
the DFG, C is the maximum number of implementations
of any component type in the library, S is the number of
states per pipe stage, and k is the maximum of the cost ra-
tios between the most and the least expensive component
of any component type.

We conducted two types of experiments: in the �rst ex-
periment, we compare our algorithm with previously pub-
lished ones and, in the second experiment, we study the
impact of resource sharing and of component selection on
the cost of a design.

5.1 Experiment 1: comparison

As discussed in Section 2, algorithms presented in the
past either combine scheduling and pipelining, or pipelin-
ing and component selection, or scheduling and component
selection; however no algorithm performs all three tasks.
Our comparison with related research is thus limited, since
we can only compare the quality of any two tasks while
keeping the third constant. This comparison thus serves
as more of a sanity check rather than as a good means of
verifying our algorithm's quality.

TABLE 1
COMPARISON WITH TBS

Delay FU Area (gates) % di�erence

(ns) TBS Our Alg. our�TBS

TBS

1800 20600 20800 + 1.0
1900 17000 19300 + 13.5
2000 14500 14000 - 3.5
2100 16000 11000 - 10.6
2200 10500 9300 + 4.8
2300 9000 9000 + 3.3
2400 9000 8000 0.0
2500 8500 8000 - 5.9
2600 8000 8000 0.0
2700 8000 8000 0.0
2800 8000 8000 0.0
2900 8300 6000 - 27.7
3000 7800 6000 - 23.1
3100 7800 5000 - 35.9
3200 8500 5000 - 41.1
3300 8300 4800 - 42.2
3400 7500 4800 - 36.0
3500 7800 4800 - 38.0
3600 4800 4800 0.0
3800 4000 4300 + 7.5
3900 4000 4300 + 7.5

We compare our algorithm with the TBS algorithm [3]
which performs only scheduling and component selection.

For this purpose we use the component library given in
Figure 3 (page 94) of their paper. Since TBS does not
pipeline the DFG, we set the number of pipe stages in our
designs to one.

The comparison is conducted for the elliptic �lter bench-
mark. Results produced by both algorithms, given in Ta-
ble 1, have a �xed clock of 100 ns and a total delay re-
quirement as shown in the �rst column. On an average,
our algorithm performs approximately 10% better than the
TBS algorithm - this is largely due to the fact that for de-
lays between 2900 and 3500 our algorithm selects one fewer
multiplier than the TBS algorithm hence bringing down the
design area signi�cantly. We would like to iterate that this
comparison should be considered as more of a sanity check
rather than a measure of our algorithm's quality since it has
been conducted for only one example and since we have not
pipelined the DFG.

5.2 Experiment 2: design quality

This section addresses the impact of resource sharing and
of component selection on the design cost of four examples:
the elliptic wave �lter (EWF) benchmark [9], the di�eren-
tial heat release computation (DHRC) example [10], the
di�erential equation solver (DES, also known as the HAL
benchmark) [9], and the blurring (BLUR) benchmark [11].
For all experiments we have used the component library
shown in Table 2 for multiplier and adder/subtractor com-
ponents. Component cost is in terms of the number of
equivalent ND2 (2-input NAND) gates from the LSI Logic
Library, while component delay is in ns.

TABLE 2
COMPONENT LIBRARY

Type: ? Type: +/-
Name Delay, Cost Name Delay,Cost

(ns, gates) (ns, gates)

Mpy1 57.97, 2368 Add1/Sub1 25.80, 62
Mpy2 44.21, 2400 Add2/Sub2 20.00, 125
Mpy3 36.21, 2600 Add3/Sub3 13.50, 187
Mpy4 32.98, 2710 Add4/Sub4 10.00, 250
Mpy5 28.57, 2978 Add5/Sub5 5.50, 375
Mpy6 25.00, 3500 Add6/Sub6 3.00, 500
Mpy7 22.50, 4000
Mpy8 20.50, 4500

Impact of resource sharing

In the �rst set of experiments we compare designs ob-
tained with and without resource sharing, that is designs in
which only the pipelining and component selection tasks are
performed versus designs in which all three tasks are per-
formed. Figure 8 presents results for the EWF and DHRC
examples. In both graphs, points along the bold lines in-
dicate designs without any resource sharing (that is with
only 1 state per pipe stage) while the points on the dashed
lines indicate those obtained with resource sharing.

For the 1-stage designs of the EWF example, resource
sharing results in about a 50% area reduction and for the
2-stage designs about a 30% area reduction. For the 2-stage
pipelined designs of the DHRC example the area reduction
obtained by resource sharing is as high as 200%. Simi-
lar conclusions can be reached for the di�erential equation

0 2000 4000 6000 8000
Area (ND2 gates)

100

300

500

700

900

1100

P
S

 D
el

ay
 (

ns
)

Elliptical Wave Filter

1 stg, 1 st/stg
1 stg, 2 st/stg
1 stg, 3 st/stg
1 stg, 4 st/stg
2 stg, 1 st/stg
2 stg, 2 st/stg
2 stg, 3 st/stg

250 1250 2250
Area (ND2 gates)

35

135

235

335

435

535

635

P
S

 D
el

ay
 (

ns
)

Differential Heat Release Computation

1 stg, 1 st/stg
1 stg, 2 st/stg
1 stg, 3 st/stg
1 stg, 4 st/stg
2 stg, 1 st/stg
2 stg, 2 st/stg
2 stg, 3 st/stg
3 stg, 1 st/stg

Figure 8: The e�ect of resource sharing on the cost of a

pipeline for the EWF and DHRC examples.

solver and the blurring benchmark where the area reduction
with resource sharing is between 10 and 50% for di�erent
PS delay and latency values.

0 1000 2000 3000 4000 5000 6000
Area (ND2 gates)

200

300

400

500

600

700

800

900

1000

P
S

 D
el

ay
 (

ns
)

Differential Equation Solver

with comp. selection
without comp. selection

0 1000 2000 3000 4000 5000
Area (ND2 gates)

0

100

200

300

400

500

600

700

800

P
S

 D
el

ay
 (

ns
)

Blurring Benchmark

with comp. selection
only Add4
only Add5
only Add6

M1 A6 S6

M2 A1 S1

M3 A6 S6

M5 A1 S1

Figure 9: The e�ect of component selection on the cost of

a pipeline for the DES and BLUR examples.

Impact of component selection

Next, we briey demonstrate the impact of component
selection on the design cost of the di�erential equation
solver and the blurring benchmark in Figure 9. We compare
designs obtained with and without component selection, by
keeping constant all design parameters other than the com-
ponent library. For the di�erential equation solver, we set
the design parameters to 2 stages and 2 states per stage and
then run our algorithm with the complete library shown in
Table 2 and also with a number of reduced libraries some of
which are annotated in the graph. These reduced libraries
contain just one implementation per component type which
were selected from the predominant ones in the designs ob-
tained with component selection. For the entire range of
PS delay values from 200 to 900 ns, the lowest-area de-
signs are those obtained with component selection (shown

as circles). The designs without component selection were
as much as 50% higher in area and no reduced library could
consistently give low area designs over the entire range of
PS delay values. Similar experiments were conducted for
the blurring benchmark, and, like in the previous example,
the designs with component selection formed a lower bound
on design area and none of the reduced libraries could pro-
duce low area designs over the entire range of PS delay

values.

6 Conclusions
In summary, we have presented a design strategy that

attempts to achieve high-throughputs at low costs by com-
bining pipelining with scheduling and component selection.
Though a combination of two features, pipelining and com-
ponent selection, or pipelining and scheduling, can be used
to achieve high-throughput values at low costs, it is the use
of all three features that further minimizes the cost for a
given throughput.

We conducted several experiments to demonstrate the
impact of component selection and of scheduling on the
cost of a pipelined design. From these experiments, we note
that, for all the examples, the cheapest designs obtained for
a given throughput are those that combine pipelining with
resource sharing and component selection.

References

[1] N. Park and A. C. Parker, \Sehwa: A software package for
synthesis of pipelines from behavioral speci�cations," IEEE
Transactions on Computer Aided Design, vol. 7, pp. 356{
370, Mar. 1988.

[2] K. S. Hwang, A. E. Casavant, C.-T. Chang, and M. A.
d'Abreu, \Scheduling and hardware sharing in pipelined
data paths," in Proceedings of the IEEE International Con-
ference on Computer Aided Design, pp. 24{27, 1989.

[3] L. Ramachandran and D. D. Gajski, \An algorithm for
component selection in performance optimized scheduling,"
in Proceedings of the IEEE International Conference on
Computer Aided Design, pp. 92{95, 1991.

[4] A. H. Timmer, M. J. M. Heijligers, L. Stok, and J. A.
G.Jess, \Module selection and schedulingusing unrestricted
libraries," in Proceedings of the European Design Automa-
tion Conference, pp. 547{551, 1993.

[5] S. Note, F. Catthoor, G. Goossens, and H. D. Man,
\Combined hardware selection and pipelining in high-
performance data-path design," IEEE Transactions on
Computer Aided Design, vol. II, pp. 413{423, Apr. 1992.

[6] S. Bakshi and D. D. Gajski, \A component selection al-
gorithm for high-performance pipelines," in Proceedings of
EURO-DAC, pp. 400{405, 1994.

[7] P. Paulin and J. Knight, \Force-directed scheduling for the
behavioral synthesis of asics," IEEE Transactions on Com-
puter Aided Design, vol. 8, pp. 661{679, June 1989.

[8] S. Bakshi, D. D. Gajski, and H.-P. Juan, \Component se-
lection in resource shared and pipelined dsp applications,"
Tech. Rep. 95-15, Dept. of Information and Computer Sci-
ence, University of California, Irvine, 1995.

[9] N. D. Dutt and C. Ramachandran, \Benchmarks for the
1992 High-Level Synthesis workshop," Tech. Rep. 92-107,
Dept. of Information and Computer Science, University of
California, Irvine, 1992.

[10] F. Catthoor and L. Svensson, Application-Driven Archi-
tecture Synthesis. P.O. Box 17, 3300 AA Dordrech, The
Netherlands: Kluwer Academic Publishers, 1993.

[11] J. S. Lim, Two-dimensional image and signal processing.
Prentice Hall Signal Processign Series, 1990.

	CDROM Home Page
	1996 Home Page
	EURO-DAC96 Home Page
	Front Matter
	Table of Contents
	Session Index
	Author Index

