
EXPLORER :

An Interactive Floorplanner for Design Space Exploration

Henrik Esbensen�

Avant! Corporation

1208 East Arques Avenue

Sunnyvale, CA 94086, USA

esbensen@avanticorp.com

Ernest S. Kuh

Department of EECS

University of California

Berkeley, CA 94720, USA

Abstract

An interactive oorplanner based on the genetic algo-
rithm is presented. Layout area, aspect ratio, routing
congestion and maximum path delay are optimized si-
multaneously. The design requirements are re�ned in-
teractively as knowledge of the obtainable cost tradeo�s
is gained and a set of feasible solutions representing al-
ternative, good tradeo�s is generated. Experimental re-
sults illustrates the special features of the approach.

1 Introduction

When determining the oorplan of an integrated cir-
cuit (IC) the objective is to �nd a solution which is
satisfactory with respect to a number of competing cri-
teria. Most often speci�c constraints have to be met for
some criteria, while for others, a good tradeo� is wanted.
The approach taken by virtually all existing tools is to
minimize a weighted sum of some criteria subject to con-
straints on others. I.e., if k criteria are considered, the
objective is to minimize the scalar-valued cost function

c =

jX
i=1

wici s. t. 8 i = j + 1; : : : ; k : ci � Ci (1)

for some j, 1 � j � k. Here ci is the cost of the solution
with respect to the i'th criterion and the wi's and Ci's
are user-de�ned weights and bounds, respectively.

However, at the oorplanning stage of the design pro-
cess, the expected values of the cost criteria are based
on relatively rough estimations only. Furthermore, the
available information on obtainable tradeo�s, e.g. the
relationship between area and delay, is very limited or
non-existent. Since the notion of a \good" solution in-
herently depends on which tradeo�s are actually obtain-
able, the overall design objective is rarely clearly de�n-
able. Consequently, it may be very di�cult to specify a
set of weight and bound values that makes a tool based
on the formulation (1) �nd a satisfactory solution.

Even when assuming a clear notion of the overall de-
sign objective, the use of (1) causes serious di�culties :

�This work was done while the author was at Department of

EECS, University of California, Berkeley, CA 94720, USA.

If the bounds are too loose, perhaps a better solution
could have been found, while if they are too tight, a so-
lution may not be found at all. Furthermore, the mini-
mum of a weighted sum can never correspond to a non-
convex point of the cost tradeo� surface, regardless of
the weights [5]. In other words, if the designers notion
of the \best" solution corresponds to a non-dominated,
but non-convex point, it can never be found using (1).

Our work is motivated by the need to overcome these
fundamental problems. A oorplanning tool called Ex-
plorer is presented, which performs explicit design space
exploration in the sense that 1) a set of alternative so-
lutions rather than a single solution is generated and
2) solutions are characterized explicitly by a cost value
for each criterion instead of a single, aggregated cost
value. Explorer simultaneously minimizes layout area,
deviation from a target aspect ratio, routing congestion
and the maximum path delay. Guided interactively by
the user, Explorer searches for a set of alternative, good
solutions. The notion of a \good" solution is gradu-
ally re�ned by the user as the optimization process pro-
gresses and knowledge of obtainable tradeo�s is gained.
Consequently, no a priori knowledge of obtainable val-
ues is required. From the output solution set, the user
ultimately chooses a speci�c solution representing the
preferred tradeo�. Since the use of (1) is abandoned
the above mentioned problems concerning weight and
bound speci�cation are eliminated.

Explorer has three additional signi�cant characteristics:

1) The maximum routing congestion is minimized,
thereby improving the likelihood that the generated
oorplans are routable without further modi�cation.

2) The delay minimization is path based, while most
timing-driven oorplanning and placement approaches
are net-based and therefore may over-constrain the
problem [7].

3) Explorer is based on the genetic algorithm (GA),
since it is particularly well suited for (interactive) design
space exploration [6]. We are only aware of one previous
GA-based approach to oorplanning [2] which, however,
does not consider delay or routing congestion or explores
the design space.

The work presented in this paper is based on signi�cant
extensions of the approach described in [3].

EURO-DAC ’96 with EURO-VHDL ’96
0-89791-848-7/96 $4.00 1996 IEEE



2 Problem Formulation

Section 2.1 presents our de�nition of the oorplanning
problem while Section 2.2 describes the speci�cation of
a \good" solution.

2.1 The Floorplanning Problem

A oorplanning problem is speci�ed by the following :

1) A set of blocks, each of which has k � 1 alternative
implementations. Each implementation is rectangular
and either �xed or exible. For a �xed implementation,
the dimensions and exact pin locations are known. For a
exible implementation, the area is given but the aspect
ratio and exact pin locations are unknown.

2) A speci�cation of all nets and a set of paths. Capac-
itances of sink pins, driver resistances of source pins,
internal block delays and capacity and resistance of the
interconnect is also needed to calculate path delays.

3) Technology information such as the number of rout-
ing layers available on top of blocks and between blocks.

Each output solution is a speci�cation of the following :

1) A selected implementation for each block.

2) For each selected exible implementation i, its
dimensions wi and hi such that wihi = Ai and
li � hi=wi � ui, where Ai is the given area of implemen-
tation i and li and ui are given bounds on the aspect
ratio of i, which is assumed to be continuous.

3) An absolute position of each block so that no pair
of blocks are closer than a speci�ed minimum distance.
Since multi-layer designs are considered, it is assumed
that a signi�cant part of the routing is performed on
top of the blocks.

4) An orientation and reection of each block. The term
orientation of a block refers to a possible 90 degree rota-
tion, while reection refers to the possibility of mirroring
the block around a horizontal and/or a vertical axis.

IO-pins/pads are also handled by Explorer, but for
brevity this aspect is not discussed.

2.2 What is a \Good" Tradeo� ?

Let � be the set of all oorplans and <+ = [0;1[.
The cost of a solution is de�ned by the vector-valued
function c : � 7! <

4
+, c(x) = (c(x)1; c(x)2; c(x)3; c(x)4),

which will be described in Section 3.2. This Section
describes how to specify what a \good" cost tradeo� is,
and how to compare the cost of two solutions without
resorting to a scalar-valued cost measure.

Instead of weights and bounds, the user de�nes
a goal and feasibility vector pair (g; f) 2 G, where
G=f(g; f) 2 <n

+1 � <
n
+1 j 8i : gi � fig; <+1=[0;1].

For the i'th criterion, gi is the maximum value wanted,
if obtainable, while fi speci�es a limit beyond which
solutions are of no interest. For example, the 3'rd cri-
terion minimized by Explorer is path delay. g3 = 5 and
f3 = 18 states that a delay of 5 or less is wanted, if it
can be obtained, while a delay exceeding 18 is unaccept-
able. A delay between 5 and 18 is acceptable, although
not as good as hoped for.

A   : acceptable solutions

S   : satisfactoryg
solutions

f

(0,0)

infeasible solutions

cr
ite

ri
on

 2

criterion 1

f

g

g f

2

1 1

2

Figure 1: The sets of satisfactory and acceptable solu-
tions, illustrated in two dimensions.

For (g; f) 2 G, let Sg = fx 2 � j 8i : c(x)i � gig and
Af = fx 2 � j 8i : c(x)i � fig be the set of satisfac-
tory and acceptable solutions, respectively, cf. Fig. 1.
Sg � Af � �, i.e., a satisfactory solution is also accept-
able. The values speci�ed by (g; f) are merely used
to guide the search process and in contrast to tradi-
tional, user-speci�ed bounds, need not be obtainable.
Furthermore, as will be discussed in detail in Section 3.3,
(g; f) are de�ned interactively at runtime. Therefore,
the speci�cation of the (g; f) vectors do not cause any
of the practical problems caused by traditional weights
and bounds, cf. Section 1.

In order for the algorithm to compare solutions, a notion
of relative solution quality is needed, which takes the
goal and feasibility vectors into account. Let x; y 2 �.
Then x dominates y, written x <d y, if and only if
(8 i : c(x)i � c(y)i) ^ (9 i : c(x)i < c(y)i). For a given
(g; f) 2 G the relation x is preferable to y, written
x � y, is then de�ned as follows, depending on how
c(x) compares to g : If x satisfy all goals, i.e., x 2 S g,
then

x � y , (x <d y) _ (y 62 Sg) (2)

If x satis�es none of the goals, i.e., 8 i : c(x)i > gi then

x � y , (x <d y) _ [(x 2 Af ) ^ (y 62 Af)] (3)

Finally, x may satisfy some but not all goals. Assum-
ing a convenient ordering of the optimization criteria,
9 k : (8 i < k : c(x)i � gi) ^ (8 i � k : c(x)i > gi). Then
x � y if and only if

[(8 i � k : c(x)i � c(y)i) ^ (9 i � k : c(x)i < c(y)i)] (4)

_

[(x 2 Af ) ^ (y 62 Af )] (5)

_

[(8 i � k : c(x)i = c(y)i) ^ (6)

f((8 i < k : c(x)i � c(y)i) ^ (7)

(9 i < k : c(x)i < c(y)i))

_

(9 i < k : c(y)i > gi)g] (8)



This de�nition of � assures that a satisfactory solution
is always preferable to a non-satisfactory solution and
an acceptable solution is always preferable to an unac-
ceptable solution. Furthermore, from (4) it follows that
when two solutions satisfy the same subset of goals, they
are considered equal with respect to these goals, regard-
less of their speci�c values in these dimensions. Hence,
when goals are satis�ed, they are \factored out", focus-
ing the search on the remaining, unsatisfactory dimen-
sions.

The above de�nition of � is introduced in [4] and ex-
tends the de�nition �rst introduced in [6] by adding the
feasibility vector f and the concept of acceptable solu-
tions.

Using � the solutions of a given set � can be
ranked : r(�;�) = jf 2 �j � �gj is the rank of
� with respect to �, i.e., the number of solutions
in � which are preferable to �. Furthermore, let
�0 = f� 2 �jr(�;�) = 0g � �, i.e., �0 is the subset of
best solutions in � with respect to �. Explorer outputs
a set of distinct rank zero solutions �0, i.e., the best
found cost tradeo�s. As a special case, if g = (0; 0; 0;0)
and f = (1;1;1;1) the algorithm searches for (a
sample of) the Pareto-optimal set.

3 Description of Explorer

An overview of the GA used in Explorer is given in
Section 3.1, while Section 3.2 focus on the key issue of
the algorithm : the representation of a oorplan and its
interpretation, as de�ned by the decoder. Section 3.3
describes how the user controls the optimization pro-
cess interactively. For brevity, familiarity with GAs is
assumed. An introduction to GAs can be found in [8].

3.1 Overview of Algorithm

The speci�c GA used in Explorer is outlined in Fig. 2.
The population � = f�0; �1; : : : ; �N�1g is initially con-
structed by routine generate (line 1) from random in-
dividuals. One iteration of the repeat loop (lines 2-12)
corresponds to the simulation of one generation.

In each generation, two parent individuals �1 and �2 are
selected for crossover (line 3). Each parent is selected at
random with a probability inversely proportional to its
rank, thereby enforcing the principle of survival-of-the-
�ttest. The crossover operator generates the o�spring  
(line 4), which is then subjected to random changes by
routine mutate (line 5) and inserted into � by routine
insert (line 6), replacing a poor solution. The insertion
scheme ensures that a solution  can never replace � if
� �  . Hence, in the sense inferred by � the set of best
solutions �0 is monotonically improving.

There are four types of interaction through the graph-
ical user interface, gui (lines 7, 9, 11, 12). The update
and optimization operations (lines 7-8 and 9-10) as well
as the display function (line 11) are described in Sec-
tion 3.3. The optimization process continues until the
user selects termination (line 12), at which time �0 is
the output set of solutions (line 13).

01 generate(�);
02 repeat :
03 select �1; �2 2 �;
04 crossover(�1; �2;  );
05 mutate( );
06 insert(�;  );
07 if gui(update) :
08 adjust (g; f);
09 if gui(optimize) :
10 hillclimber(�, k, (g 0; f 0));
11 gui(display);
12 until gui(terminate);
13 output �0;

Figure 2: Outline of the algorithm.

3.2 Representation and Decoder

The representation of a oorplan having b blocks consist
of �ve components a) through e) :

a) A string of b integers specifying the selected imple-
mentations of all blocks. The i'th integer identi�es the
implementation selected for the i'th block.

b) A string of real values specifying aspect ratios of se-
lected exible implementations. The i'th value speci�es
the aspect ratio of the i'th selected exible implemen-
tation.

c) An inverse Polish expression of length 2b � 1 over
the alphabet f0; 1; : : : ; b � 1;+; �g. The operands
0; 1; : : : ; b�1 denotes block identities and +; � are opera-
tors. The expression uniquely speci�es a slicing-tree for
the oorplan, as �rst introduced in [11], with + and �
denoting a horizontal and a vertical slice, respectively.

d) A bitstring of length 2b representing the reection of
all blocks. The reection of the i'th block is speci�ed
by bits 2i and 2i+ 1.

e) A string of integers specifying a critical sink for each
net, used when routing the nets. The i'th integer iden-
ti�es the critical sink of the i'th net.

Given a representation of the above form, the de-
coder computes the corresponding oorplan and its cost
c = (carea; cratio; cdelay; ccong) in eight steps as follows :

1) The dimensions of each selected exible block is com-
puted from its aspect ratio and its �xed area. The di-
mensions of all blocks are then known.

2) From the slicing-tree speci�ed by the Polish expres-
sion the orientation of each block is determined such
that layout area is minimized. An algorithm by Stock-
meyer [10] is used, guaranteeing a minimum area layout
for the given slicing-structure.

3) Absolute coordinates are determined for all blocks by
a top-down traversal of the slicing-tree.

4) The layout is compacted, �rst vertically and then
horizontally. The area carea is computed as the smallest



rectangle enclosing all blocks and the aspect ratio cost
is computed as cratio = jractual � rtargetj, where ractual
is the actual aspect ratio of the layout and rtarget is a
user-de�ned target aspect ratio. Fig. 3 illustrates the
�rst four steps of the decoding process.

0

1

2

3
4

5

6
7

8
9

0

1

2

3
4

5

6
7

8
9

Figure 3: Given 10 blocks and the Polish expression
1 2 + 6 � 9 0 + + 3 4 + + 5 � 7 8 + �, the oorplan
on the left is the result of step 3. No blocks are moved
when attempting vertical compaction, but subsequent
horizontal compaction moves blocks 8,7,5,9 and 0 to-
wards the left, so that blocks 2,6,7 now determine the
width of the layout. The oorplan to the right is the
result of compaction (step 4).

5) A global routing graph G = (V;E) is constructed,
forming a uniformly spaced lattice, covering the layout.
Each pin is then assigned to the closest vertex in V .
When computing this assignment, the exact pin loca-
tions are used for pins of �xed implementations, while
pins of exible implementations are assumed to be lo-
cated at the center of the block.

6) The topology of each net is approximated by a Steiner
tree embedded in G. Each Steiner tree is computed inde-
pendently by the SERT-C algorithm (\Steiner Elmore
Routing Tree with identi�ed Critical sink") introduced
in [1]. For each net, SERT-C minimizes the Elmore de-
lay from the source to the critical sink speci�ed by the
representation.

7) The maximum path delay cdelay is determined by
computing all path delays. For each net segment of a
path, its Elmore delay is calculated in the correspond-
ing Elmore-optimized Steiner tree and the appropriate
internal block delays are added to obtain the total path
delay. Since the Steiner trees are a very accurate estima-
tion of the net topologies, cdelay is an accurate estimate.

8) The maximum routing congestion is estimated as

ccong = 100�max

�
max
e2E

�
usage(e) � cap(e)

cap(e)

�
; 0

�

where cap(e) denotes the capacity of edge e (depending
on possible blocks at that location) and usage(e) is the
number of nets using e. I.e., ccong is the maximum per-
centage by which an edge capacity has been exceeded.
The smaller ccong is, the fewer nets needs to be rerouted
to obtain 100% global routing completion.

The crossover operator as well as the mutation operator
(lines 4 and 5 of Fig. 2) operates on each of the �ve
components of the representation independently. While
the Polish expressions are handled by highly specialized
operators introduced in [2], the remaining components
are handled by standard operators extensively studied
in the GA literature and described in e.g. [8].

A crucial property obtained by the representation, the
decoder and the genetic operators is that feasibility is
preserved. I.e., only feasible representations, which can
be interpreted by the decoder, are ever generated.

3.3 Interactive Control of the Search

Explorer provides the user with continuously updated
information on the current state of the optimization
(line 11 of Fig. 2). The information is visualized in
the form of graphs showing the cost tradeo�s of the so-
lutions obtained so far. An example graph is shown in
Fig. 4. Based on this information the user can alter the
optimization process at any time as described in the
following.

1.3
1.4

1.5
1.6

1.7

4.52

4.54

4.56

4.58

4.6

4.62
0

20

40

60

80

100

Area (mm2)Delay (ns)

C
on

ge
st

io
n 

(%
)

Figure 4: An example graph showing 3 dimensions of
a set of current best solutions. All solutions are non-
dominated in the 4-dimensional cost space.

As the optimization progresses and knowledge of ob-
tainable cost tradeo�s is gained, the user can adjust
the values of (g; f) (lines 7 and 8 of Fig. 2), thereby
re-de�ning the notions of satisfactory and acceptable
solutions. When doing so, the ranking of all solutions
will be updated, which in turn a�ects the selection for
crossover, i.e., the sampling of the search space. Con-
sequently, when re-de�ning (g; f), the focus of the ex-
ploration process will change accordingly, allowing the
user to \zoom in" on the desired region of the space.

The user can also execute a hillclimber on a speci�ed
individual � (lines 9 and 10 of Fig. 2). The hillclimber
simply tries a sequence of k mutations on �. Each mu-
tation yielding �0 from � is performed if and only if
:(� � �0). The hillclimber also takes a goal and feasi-
bility vector pair (g0; f 0) as argument, which de�nes the



preference relation � to use when deciding which mu-
tations to actually perform. This allows hillclimbing to
be direction-oriented in the cost space.

4 Experimental Results

It is inherently di�cult to fairly compare our 4-dimen-
sional optimization approach generating a solution set
to existing 1-dimensional approaches generating a single
solution. However, comparisons to simulated annealing
and random search have been established.

4.1 Test Examples and Method

The characteristics of �ve of the circuits used for eval-
uation are given in Table 1. xeroxF, hpF, ami33F and
ami49F are constructed from the CBL/NCSU building-
block benchmarks xerox, hp, ami33 and ami49, respec-
tively, aiming at minimal alterations of the original spec-
i�cations. All blocks are de�ned as exible and the re-
quired timing information is added. spertF is an MCM
designed at the International Computer Science Insti-
tute in Berkeley, California.

Circuit Type Blocks Pins Nets Paths

xeroxF IC 10 698 203 86

hpF IC 11 309 83 88

ami33F IC 33 522 123 230

ami49F IC 49 953 408 116

spertF MCM 20 1,168 248 574

Table 1: Main characteristics of test examples.

Explorer is implemented in C and executed on a DEC
5000/125 workstation. Performance is compared to that
of a simulated annealing algorithm, denoted SA, and a
random walk, denoted RW. Both algorithms uses the
same oorplan representation and decoder as Explorer.
The RW simply generates representations at random,
decodes them and stores the best solutions ever found
(in the � sense). The SA generates moves using the
mutation operator of Explorer and the cooling schedule
is implemented following [9].

Since RW does not rely on cost comparisons, it can use
the same 4-dimensional cost function as Explorer, al-
lowing the two approaches to be directly compared. In
contrast, the traditional SA algorithm relies on absolute
quanti�cation of change of cost, which therefore has to
be a scalar. Using a SA cost function of the form (1), it
is far from clear how to fairly compare the single solu-
tion output by the SA algorithm to the set of solutions
output by Explorer. Therefore, comparisons of Explorer
to SA is based on optimizing one criterion only, in which
case the output of Explorer reduces to a single solution.

4.2 One-Dimensional Optimization

One-dimensional optimization for area and delay was
performed, for which Explorer uses the goal vectors
g = (0;1;1;1) and g = (1;1; 0;1), respectively.
Explorer is executed non-interactively.

Fig. 5 illustrates the results. For each circuit and each
of the two criteria, the three algorithms was executed 10

delayarea delayarea delayarea delayarea delay

0.80

RW

Explorer, non-interactive

SA

area

xeroxF hpF ami33F ami49F spertF

1.00

0.95

0.90

0.85

Figure 5: Comparison of the performance of Explorer,
SA and RW for one-dimensional optimization.

times each and the result indicated by a bar. The center
point of each bar indicates the average result obtained
in the 10 runs and the height of each bar is two times
the standard deviation. For each circuit and criterion,
the average result of RW is normalized to 1.00.

The SA was executed �rst, and the consumed average
CPU-time enforced on Explorer and RW as a CPU-time
limit. The exact same average time consumption is thus
obtained for all algorithms, at the cost of giving the SA
approach an advantage. Average CPU-time per run var-
ied from 39 seconds for area optimization of xeroxF to
about 65 minutes for delay optimization of ami49F. As
expected, both Explorer and SA performs signi�cantly
better than RW in all cases. Overall, the performance
of Explorer and SA is very similar, indicating that the
e�ciency of the genetic algorithm used by Explorer is
comparable to that of SA.

4.3 Four-Dimensional Optimization

Optimizing all four criteria simultaneously, interactive
and non-interactive executions of Explorer are com-
pared to RW. Explorer uses the target aspect ratio
rtarget = 1:0, the goal vector g = (0; 0:2;0; 50) and the
feasibility vector f = (1:5B; 0:5;1; 400), where B is the
sum of the areas of all blocks of the circuit in ques-
tion. For each circuit, RW is executed 10 times using
a 5 CPU-hour time limit. In non-interactive mode, Ex-
plorer is also executed 10 times per circuit, but using a
1 CPU-hour limit. In interactive mode, a single execu-
tion was performed for each circuit, de�ning the time
limit as 1 hour, wall-clock time, i.e., including the time
spent using the interface.

The results are shown in Table 2. The set quality values
are obtained using the set quality measure introduced
in [4], which accounts for the (g; f) values speci�ed.
A smaller value means a higher quality. The output
sets obtained by Explorer in 1 hour are always signi�-
cantly better than those obtained by RW in 5 hours.
But more interestingly, all of the �ve sample execu-



Output set size Set quality

Circuit interact non-interact RW interact non-interact RW

xeroxF 40 39.5 (1.6) 49.3 (10.1) 0.572 0.741 (0.073) 0.888 (0.045)
hpF 40 39.6 (1.0) 59.1 (14.5) 0.605 0.638 (0.033) 0.822 (0.029)

ami33F 21 34.0 (11.1) 9.7 (3.9) 0.690 0.759 (0.058) 1.152 (0.048)

ami49F 21 36.2 (4.2) 11.4 (4.5) 0.641 0.676 (0.093) 1.197 (0.052)

spertF 10 39.7 (0.7) 57.2 (17.0) 0.096 1.886 (0.640) 2.178 (0.010)

Table 2: Performance comparison of the interactive ('interact') and non-interactive ('non-interact') modes of Ex-
plorer and the RW. Each entry for RW and the non-interactive mode of Explorer is the average value obtained and
the value in brackets is the standard deviation. For Explorer, the output set size is limited to 40.

tions of Explorer in interactive mode yields better re-
sults than the average non-interactive execution. Fur-
thermore, the number of decodings performed in inter-
active mode averages only about 78 % of that of the
non-interactive mode because of the idling processor
during user-interaction. Hence, using Explorer inter-
actively signi�cantly improves the search e�ciency.

This performance gain is especially signi�cant for the
spertF layout. Feasible solutions were obtained inter-
actively by executing direction-oriented hillclimbing on
solutions outside but close to Af . Only one of the sets
generated non-interactively contained feasible solutions.

5 Conclusions

An interactive oorplanner based on the genetic algo-
rithm has been presented, which minimizes area, path
delay and routing congestion while attempting to meet
a target aspect ratio. The key feature is the explicit de-
sign space exploration performed, which results in the
generation of a solution set representing good, alterna-
tive cost tradeo�s.

The inherent problem of existing approaches wrt. speci-
�cation of suitable weights and bounds is solved by elim-
inating these quantities, and the need for iterations of
oorplanning and global routing is signi�cantly reduced
by explicitly minimizing routing congestion.

The experimental work includes results for a real-world
design. It is shown that the e�ciency of the search pro-
cess is comparable to that of simulated annealing and
the required runtime is very reasonable from a practical
point of view. Furthermore, the mechanisms provided
for user-interaction are observed to improve the search
e�ciency signi�cantly over non-interactive executions.

Acknowledgments

Dongsheng Wang at University of California, Berke-
ley, CA, implemented the simulated annealing algo-
rithm. The research was supported by SRC contract
no. 95-DC-324, NSF contract no. MIP 91-17328 and the
Danish Technical Research Council.

References

[1] K. D. Boese, A. B. Kahng, G. Robins, \High-
Performance Routing Trees With Identi�ed Crit-
ical Sinks," Proc. of the 30th Design Automation
Conference, pp. 182-187, 1993.

[2] J. P. Cohoon, S. U. Hedge, W. N. Mar-
tin, D. Richards, \Distributed Genetic Algo-
rithms for the Floorplan Design Problem," IEEE
Transactions on Computer-Aided Design, Vol. 10,
pp. 484-492, April 1991.

[3] H. Esbensen, E. S. Kuh, \An MCM/IC Timing-
Driven Placement Algorithm Featuring Explicit
Design Space Exploration," Proc. of the IEEE
Multi-Chip Module Conference, pp. 170-175, 1996.

[4] H. Esbensen, E. S. Kuh, \Design Space Exploration
Using the Genetic Algorithm," Proc. of the IEEE
International Symposium on Circuits and Systems,
Vol. IV, pp. 500-503, 1996.

[5] P. J. Fleming, A. P. Pashkevich, \Computer Aided
Control System Design Using a Multiobjective Op-
timization Approach," Proc. of the IEE Control '85
Conference, pp. 174-179, 1985.

[6] C. M. Fonseca, P. J. Fleming, \Genetic Algorithms
for Multiobjective Optimization: Formulation, Dis-
cussion and Generalization," Proc. of the Fifth
International Conference on Genetic Algorithms,
pp. 416-423, 1993.

[7] T. Gao, P. M. Vaidya, C. L. Liu, \A Perfor-
mance Driven Macro-Cell Placement Algorithm,"
Proc. of the 29th Design Automation Conference,
pp. 147-152, 1992.

[8] D. E. Goldberg, Genetic Algorithms in Search,
Optimization, and Machine Learning, Addison-
Wesley, 1989.

[9] M. D. Huang, F. Romeo, A. Sangiovanni-
Vincentelli, \An E�cient General Cooling Sched-
ule for Simulated Annealing," Proc. of the 1986
International Conference on Computer-Aided De-
sign, pp. 381-384, 1986.

[10] L. Stockmeyer, \Optimal Orientations of Cells in
Slicing Floorplan Designs," Information and Con-
trol, Vol. 57, pp. 91-101, 1983.

[11] D. F. Wong, C. L. Liu, \A new algorithm for oor-
plan design," Proc. of the 23rd Design Automation
Conference, pp. 101-107, 1986.


	CDROM Home Page
	1996 Home Page
	EURO-DAC96 Home Page
	Front Matter
	Table of Contents
	Session Index
	Author Index


