
Timing Optimization by an Improved Redundancy Addition
 and Removal Technique

Luis A. Entrena*, José A. Espejo*, Emilio Olías*, Javier Uceda**

* Area de Tecnología Electrónica
Universidad Carlos III de Madrid

c/Butarque, 15 28911 Leganés, Madrid, SPAIN
{entrena, ppespejo, olias}@ing.uc3m.es

** División de Ingeniería Electrónica (DIE)
Universidad Politécnica de Madrid

c/ José Gutiérrez Abascal, 2 28006 Madrid, SPAIN
uceda@upmdie.upm.es

Abstract

Redundancy Addition and Removal (RAR) uses
Automatic Test Pattern Generation (ATPG) techniques to
identify logic optimization transforms. It has been applied
successfully to combinational and sequential logic
optimization and to layout-driven logic synthesis for
FPGAs. In this paper we present an improved RAR
technique that allows to identify new types of optimization
transforms and it is more efficient because it reduces the
number of ATPG runs required. Also, we apply the RAR
method to timing optimization. The experimental results
show that this improved RAR technique produces
significant timing optimization with very little area cost.

1. Introduction

Redundancy Addition and Removal (RAR) has been
shown to be a powerful logic optimization method by
several authors [1-7]. With this method, a logic network is
optimized by iteratively adding and removing
redundancies that are identified using Automatic Test
Pattern Generation (ATPG) techniques. If the addition ofk
redundant wires/gates creates more thank redundant
wires/gates elsewhere in the network, the removal of the
created redundancies will result in a smaller area. Also, if
the addition of redundant wires/gates creates redundancies
in the critical path of the circuit, the removal of the created
redundancies will result in a smaller circuit delay.

The RAR approach is illustrated with the example in
Fig. 1 (taken from [1]). This is an irredundant circuit. In
this circuit a connection can be added from the output of
g5 as a new input tog9 without changing the logic
functionality of the network. In other words, the added
connection is redundant. By adding this connection, two
connections,g1-g4 andg6-g7 become redundant and can
be removed. The resulting network contains less gates and
a shorter critical path.

The identification and selection of optimization
transforms is a complex problem because of the large

number of possible transforms that must be checked. One
approach to check for valid transforms uses a combination
of fault simulation and test generation [1], [12]. In another
approach [2-7], that we follow in this work, the search for
valid transforms is guided by the mandatory assignments
obtained during test generation.

The original RAR method as it was proposed in [1][2]
considered only the addition of single connections to
create new redundancies. Multiple wire addition and gate
function substitution techniques were proposed in [3][4].
New extensions for sequential logic optimization that
consider the addition of redundancies across time frames
were also proposed in [7]. The basic idea underlying these
approaches can be summarized as follows. A wire is
selected and tested for stuck-at fault. If no test is possible,
then the wire is redundant and can be removed. Otherwise,
the mandatory assignments (those assignments that are
required for a test to exist) obtained during test generation
suggest the additions that will force the tested wire to
become redundant. However, it is not known whether
these additions can be performed without changing the
network functionality. This must be further verified by
performing additional tests. In this paper we propose an
efficient technique that allows to identify which

g1

g2

g3

g4

g5

g6 g7 g8 g9

o1

o2

a

b

c

d

e

d

b

c

f

Figure 1. Example of redundancy addition and
removal

added redundancy
created redundancy

EURO-DAC ’96 with EURO-VHDL ’96
0-89791-848-7/96 $4.00 1996 IEEE

connections/gates can be certainly added to the input of an
existing gate in the network with a single test run. This
technique is also extended to multiple wire addition,
allowing to identify a bigger set of logic optimization
transforms than with previous approaches.

RAR has been applied in the past to area optimization
of combinational and sequential circuits. It is also well
suited for optimization at the technology-dependent level
[3]. In this work, we apply this technique to timing
optimization of combinational logic networks. Logic
restructuring techniques for timing optimization have been
proposed based on other optimization methods [10], [11].
These techniques are commonly used in combination with
other timing synthesis techniques [9]. We show that the
improved Redundancy Addition and Removal technique
proposed produces significant timing optimization with
very little area cost.

This paper is organized as follows. Section 2 gives
some definitions for the rest of the paper. Section 3
describes the improved transform identification technique.
Section 4 describes how this technique is extended with
the addition of redundant gates. Section 5 describes the
timing optimization algorithm based on this approach.
Section 6 presents the experimental results. Finally,
section 7 presents the conclusions of this work.

2. Notation and definitions

We note a connection as a triple (S, D, P), where S is
the source node, D is the destination node and P is the
polarity (1 for inverted and 0 for non-inverted). An input
to a gate G has acontrolling value Cont(G) if this value
determines the output of the gate G regardless of the other
inputs. The controlling value of an AND(OR) gate is 0(1).
The inverse of the controlling value is called the
sensitizing value Sens(G). The sensitizing value of an
AND(OR) gate is 1(0).

Mandatory assignments are unique values that are
required at certain nodes for a test to exist. If the
mandatory assignments for a stuck-at fault on a connection
cannot be consistently justified, the stuck-at fault is
untestable and the connection is redundant. When using
recursive learning to compute the set of mandatory
assignments (SMA), we callExtended Set of Mandatory
Assignments (ESMA) a set of mandatory assignments that
is not restricted to recursion depth 0. A set of branches
p1, ..., pn of the recursion tree is calledsupplementary if
the union of them gives the entire ESMA.

3. Improved Transform Identification

The techniques developed so far to identify logic
optimization transforms by redundancy addition and
removal [1-7] can be called “one-way”, because the
redundancy test of a fault allows to identify candidate
connections for addition, but it is not known whether they

can be certainly added without changing the circuit
functionality. Consider for example the circuit shown in
Fig. 2 and the faultg6 stuck-at 1. When this fault is tested,
a mandatory assignmentg5 = 0 is obtained; in other
words, all input vectors that are able to test this fault put a
logic value 0 at the output ofg5. This result suggests the
addition of a new connection fromg5 as a new input ofg9
(dashed line in Fig. 2), because when this wire is added, it
blocks the propagation of the faultg6 stuck-at 1, which
thus becomes redundant. However, we do not know if this
new connection can be added without changing the circuit
functionality, i.e., if it is a redundant connection. In order
to check this, an additional redundancy test is required.

In this section, we will describe how the connections
that can be certainly added to a destination node can be
identified with a single redundancy test. The optimization
transforms are obtained by comparing the results of this
redundancy test with the SMA of the removal candidate.
We call this technique “two-way” transform identification.

Note that all connection faults that have the same
destination node have the same mandatory observation
assignments and only differ in the mandatory control
assignment. Let D be a node and c be the controlling value
of D. Suppose that we perform the implication of the
mandatory observation assignments that are common to all
connection faults that have the same destination node D. If
a mandatory assignmentv is obtained this way in a node
N, such thatv = c’, then the connection C = (N, D, 0) is
redundant and therefore it can be added without changing
the circuit’s functionality. The demonstration of this
statement is simple: the fault associated to the added
connection is C stuck-atc’ and the mandatory control
assignment for this fault is N =c, which is incompatible
with the previous assignment N =v. Analogously, if a
mandatory assignmentv is obtained in a node N, such that
v = c, then the connection C = (N, D, 1) is redundant and
therefore it can be added without changing the circuit’s
functionality.

Example. Consider again the example in Fig. 2. The
mandatory observation assignments for all connection
faults whose destination node isg9 are:g8 = 1, f = 1. By
implication, using recursive learning [8], we get the

g1

g2

g3

g4

g5

g6 g7 g8 g9

o1

o2

a

b

c

d

e

d

b

c

f

Figure 2. An irredundant circuit

stuck-at 1

mandatory assignmentsb = 1, g6 = 1 andg5 = 1. Since
Cont(g9) = 0, we obtain that the connections (b, g9, 0),
(g6, g9, 0) and (g5, g9, 0), can be added without changing
the circuit’s functionality. It can be easily verified that
their associated stuck-at faults are not testable because the
mandatory control assignment is inconsistent with the
mandatory observation assignments obtained previously
for these connections.

The subset of mandatory assignments that are common
to all candidate connection faults that have the same
destination node D coincide with the SMA for the fault D
stuck-at Cont(D). We will call the test for the fault D
stuck-at Cont(D) theredundancy test of the destination
node. The optimization transforms are easily identified by
comparing the mandatory assignments that are obtained in
each node of the network by the redundancy test of the
destination node and the redundancy test for each fault
dominated by the destination node. If a node N has
mandatory assignments of different value for each of these
tests, then it is possible to add one connection from N to
the destination node to eliminate at least one connection.
Thus, for the previous example, we have the following
mandatory assignments: (i)g5 = 1 obtained from the
redundancy test of the destination node (faultg9 stuck-at
0); (ii) g5 = 0 obtained from the redundancy test of the
target wire (faultg6 stuck-at 1). Then, the addition of
connection (g5, g9, 0) allows to eliminate connection (g6,
g7, 0).

The two-way algorithm is able to identify all the
transforms that can be identified with the one-way
algorithm as long as all mandatory assignments can be
found. However, this is only possible if recursive learning
is used. Generally, it is not possible to know beforehand
what is the maximum recursion depth to obtain equivalent
results to one-way identification. For instance, the
transform of the previous example can be identified using
a one-way algorithm with a maximum recursion depth
equal to 0, while a two-way algorithm requires at least a
recursion depth equal to 2.

4. Adding Gates

In this section, we explain how the two-way
identification technique can be generalized to the addition
of gates. Note that a node may have a mandatory
assignment even though its predecessors and successors
do not. This is because the higher level mandatory
assignments do only propagate to the next inferior level
when they do all coincide. The key to identify more
general transforms is the information contained in
mandatory assignments of a level higher than 0. The
following example illustrates this concept.

Example. Consider the example in Fig. 3. This circuit
is the same of Fig. 1, except for the absence of nodeg5.

The redundancy test of the destination node stuck-at 0

is shown below. The recursivity level is indicated by the
indentation.

g9 = 1 => g8 = 1, f = 1
g8 = 1 => Recursivity level = 1

 Justification of g4 = 1
g4 = 1 => c = 1, g1 = 1
g1 = 1 => b = 1, d = 1
c = 1 => g2 = 0
d = 1 => g6 = 1

 Justification of g7 =1
g7 = 1 => g6 = 1, g3 = 1
g3 = 1 => a = 1, b = 1
g6 = 1 => Recursivity level = 2

Justification of g2 = 1
g2 = 1 => e = 1, c = 0
c = 0 => g4 = 0

Justification of d = 1
d = 1, b = 1 => g1 = 1

b = 1 <=
g6 = 1 <=

As it can be observed, there is not a level-0 mandatory
assignment neither ing1 nor ing2. However, all branches
in the recursivity tree have a mandatory assignmentg1 = 1
or g2 = 1. Hence, consider a gate such that its output is 1
wheng1 = 1 org2 = 1. Such a gate is an OR gate whose
inputs areg1 andg2. This gate is redundant and can be
added to the circuit without changing its functionality,
since it shows a level-0 mandatory assignment in the
redundancy test of the destination node. The following
theorem characterizes the addition of a two-input gate.

Theorem. Let A, B, D nodes in a network. Let T be a
transform that involves making a faultf untestable by the
addition of an elementary two-input gate G with one
output. The inputs of G are connected to nodes A and B,
and the output of G is connected to the destination node D.
Let ESMAf and ESMAD be the extended sets of
mandatory assignments corresponding to fault f and to the
redundancy test of the destination node, respectively. Let
v(A, 0) andv(B, 0) the level-0 mandatory assignments at A
and B in one of these extended sets, andv’(A, p1), ...,v’(A,
pn), v’(B, p1), ...,v’(B, pn) the mandatory assignments at A

g1

g2

g3

g4

g6 g7 g8 g9
o2

a

b

c

d

e

d

b

c

f

Figure 3. Addition of a gate

and B for a set of supplementary branchesp1, ...,pn of the
other set, i.e., either

v(A, 0), v(B, 0)∈ SMAf
v’(A, pi) ∈ ESMAD (pi) i = 1, ..., n
v’(B, pi) ∈ ESMAD (pi) i = 1, ..., n
SMAD= ESMAD(p1) ∩ ... ∩ ESMAD(pn)

or
v’(A, pi) ∈ ESMAf(pi) i = 1, ..., n
v’(B, pi) ∈ ESMAf(pi) i = 1, ..., n
SMAf = ESMAf(p1) ∩ ... ∩ ESMAf(pn)
v(A, 0), v(B, 0)∈ SMAD

A sufficient condition to guarantee that this transform does
not change the circuit’s functionality is
∀ pi, i = 1, ..., n v(A, 0)≠ v’(A, pi) or v(B, 0)≠ v’(B, pi)

Proof. The theorem will be demonstrated for the first
set of premises. The demonstration is analogous for the
second set. The demonstration is constructive, i.e., it
determines exactly the types of the gate and the
connections of the transform T. Without loss of generality,
we will take G∈ {AND, OR}. The connections between
A, B and G are of the following types

(A, G, 0) if v(A, 0) = Sens(G)
(A, G, 1) if v(A, 0) = Cont(G)
(B, G, 0) if v(B, 0) = Sens(G)
(B, G, 1) if v(B, 0) = Cont(G)
With this connections, we havev(G, 0) = Sens(G).

From the sufficient condition of the theorem, at least one
of the G inputs has a controlling value for eachpi, i = 1, ...,
n. Therefore

v’(G, pi) = Cont(G) ∀ pi, i = 1, ..., n
Since the value of G is the same at all supplementary

branches of the recursivity tree, we have
v’(G, 0) = v’(G, pi) ∩ ... ∩ v’(G, pn) = Cont(G)≠ Sens(G)

This demonstrates that the value of G is different for
each of the sets of mandatory assignments SMAf and
SMAD. Therefore T is a valid transformation. The polarity
of the connection from G to the destination node D
depends on the controlling value of D. The polarity is not
inverted ifvf(G) = Cont(D), and inverted otherwise.

Example. Let’s take the previous example shown in

g4

g5

g3

g2

c
a

d
c

g1a
b

d
a

e

g6

g7

stuck-at 1

Figure 4. Example circuit

Fig. 3. We have the mandatory assignmentsg1 = 0 and
g2 = 0 for the faultg6 stuck-at 1. Selecting G as and OR
gate, we have

v(g1, 0) = Sens(G) = 0
v(g2, 0) = Sens(G) = 0

and the connections fromg1 to G andg2 to G are non-
inverted. If we perform such connections, we have
v(G) =0.

The redundancy test of the destination node was shown
in a previous example. It was demonstrated that there is a
mandatory assignmentg1 = 1 org2 = 1 in all branches of
the recursivity tree for this test. Therefore,v’(G) = 1. Since
v(G) ≠ v’(G), the addition of G allows to make faultf
redundant. To complete the transform it is necessary to
determine the polarity of connection G tog9. This
connection is non-inverted, sincevf(G) = Cont(g9).

In some particular cases it is possible to identify
multiple-wire addition transforms without considering
recursive learning [4]. However, this cannot be
generalized. For instance, consider the interesting example
shown in Fig. 4.The redundancy test of the target faultg5
stuck-at 1 does not suggest any interesting candidate
connection. Hovewer, by performing the redundancy test
of the destination nodeg6 stuck-at 0, we find that the
connections (g2, g6, 0) and (g7, g6, 0) can be added
without changing the network functionality.

If we compare the SMA of the destination node test
with the SMA of the target fault, the two-way transform
condition is not met because there is not a level-0
mandatory assignment neither ing2 nor in g7. However,
all branches in the recursivity tree have a mandatory
assignmentg2 = 0 org7 = 0 for the fault shown. Hence,
consider a gate such that its output is 0 wheng2 = 0 or
g7 = 0. Such a gate is an AND gate whose inputs areg2
andg7. In other words, the addition of (g2, g6, 0) or (g7,
g6, 0) separately does not cause the target fault to be
redundant, but the addition of both of them at the same
time does. Note that this transform cannot be identified
with previous approaches.

5. Timing Optimization

Redundancy addition and removal techniques can be
applied to timing optimization [1]. If the addition of
redundant wires/gates to a circuit causes some
connection(s) in the critical path to be redundant, then the
transform will result in a faster circuit.

For timing optimization, the selection of optimization
transforms is performed according to the following criteria
(see Fig. 5):
- The destination node of the connection/gate added

belongs to the critical path. Although this is not strictly
required to create redundancies in the critical path, it is
very unlikely that redundancies may be created in the
critical path otherwise and the search would require a

much larger computational effort.
- The arrival time of the output of the connection/gate

added (tN) must not be greater than the arrival times of
the inputs of the destination node (ti) plus the delay
increase produced by adding an extra input to the
destination node. In this way, the timing of the network
is not degraded by this addition.

The selection of a transform among the possible
transform candidates is based in a cost function that
estimates the delay reduction. The cost of a connection/
gate is defined as the circuit delay reduction that can be
obtained by removing/adding the connection/gate. From
this definition, the cost of a critical connection can be
obtained as the delay difference between the fault-free and
faulty circuits associated to the connection. The cost of a
non-critical connection is 0. Also the cost of adding a
connection following the above mentioned criteria is 0.

Note that when a connection is added to remove at least
another connection in the critical path, the area of the
circuit does not increase. Therefore, with this type of
transforms the length of the critical path can be reduced
without augmenting the circuit area. If a gate is added then
the area will be augmented.

The timing optimization algorithm follows a greedy
approach based on the cost function. We focus on critical
path segments in order to apply the transform
identification techniques presented in the previous
sections. We define a critical path segment (CPS) as the
portion of the critical path between two multiple fanout
nodes. The timing optimization algorithm iterates over the
critical path segments in decreasing order of its cost
function. The cost associated to each segment and each
connection is computed at the time the critical path is
identified.

For each CPS we try to add a connection/gate as a new
input of a node in the CPS to eliminate at least a
connection in the critical path. If a transform is found, the
algorithm starts again by identifying the new critical path
and the critical path segment with the highest cost.

We consider three types of transforms: (1) adding one
connection to eliminate at least 1 connection/gate in the
critical path (area cost 0); (2) adding 2 connections to
eliminate at least 1 connection/gate in the critical path; and
(3) adding a 2-input gate to eliminate at least 1
connection/gate in the critical path. These transforms are
applied successively in the given order.

D

Ncritical path
tN < ti

ti

AAAAA

A
A
A
A
A

AAAAA

Figure 5. Timing optimization approach

6. Experimental Results

In this section we will present experimental results of
timing optimization with the improved Redundancy
Addition and Removal technique. The optimization was
made before mapping for simplicity. However, the
redundancy addition and removal technique can be
similarly applied after technology mapping [12], where
more precise estimations of area and delay are available.

In the experiments carried out we used a unit delay
model with a fanout factor of 0.2. The critical path was
determined by static timing analysis.

Table 1 shows the results for the benchmark circuits.
The initial circuits were obtained after strong area
optimization with RAMBO [2] and SIS. The final results
where obtained with the proposed algorithm using a
maximum recursion depth of 3. For each example the
number of connections (#C), the number of nodes (#N),
the estimated delay before mapping (D) , the delay after
mapping (Dm) and the CPU time consumption in a Sun
Sparcstation 2 (T) are presented. The examples were
mapped to the example libraryexample.genlib with the
default SIS commandmap -n 1 -AFG.

The timing improvement is significant in most of the
examples. The greatest speed-ups are obtained forfrg2 (3/
1.9 before/after mapping),k2 (2.4/2.7) andvda (2.5/2.2).
The discrepancies in the figures before mapping and after
mapping are due to the difference between the simple
delay model used and the delay of the library cells. The
average speed-up factor was 1.4 before mapping and 1.38
after mapping.

Note that the area (estimated by the number of nodes
and connections) is not degraded by applying one
connection addition transforms. With more complex
transforms, the area may be degraded as we add more
connections/gates than we remove. However, except in
one case (vda), the estimated area increase is less than
1.5%. With this same exception, the final area increase
after technology mapping (not shown in the table) falls
between a range of -3.5% to +4%, which can be
considered as a negligeable variation introduced by the
technology mapping process. This result shows that the
proposed technique is able to keep area increase under
control.

There is heavy CPU time consumption in some cases.
This is because when a transform is found, the critical path
must be recomputed and the search for new transforms
must start all over again. The CPU time consumption will
be greatly reduced in a future implementation by reusing
previous computations and eliminating repeated runs over
already optimized critical path segments.

7. Conclusions And Future Work

We have proposed an improved transform
identification technique for Redundancy Addition and

Table 1: Experimental results

Name
Initial Final

#N #C D Dm #N #C D Dm T
C1355 376 798 31.0 37.9 376 802 29.6 36.8 187.4
C1908 316 712 44.8 56.1 316 718 37.0 52.1 695.5
C2670 599 1316 46.2 50.4 596 1320 33.0 37.6 1476.3
C432 84 221 33.8 45.8 83 221 26.8 44.8 65.9
C499 376 798 31.0 37.1 376 802 29.6 36.0 182.8
C5315 1217 2671 62.6 66.5 1208 2673 44.6 53.2 2609.6
C6288 1871 3787 131.0 167.7 1871 3787 126.0 166.0 1009.4
C7552 1433 2992 217.0 207.7 1424 2975 159.4 119.3 2826.5
C880 246 603 49.4 66.4 274 613 39.8 41.7 261.8
alu4 372 910 61.0 72.1 370 906 50.4 62.0 1979.9
apex6 436 1096 29.8 37.5 437 1103 19.0 26.1 35.9
apex7 141 354 24.4 30.4 141 358 18.2 21.5 20.6
dalu 439 1073 45.4 53.4 443 1087 24.8 33.2 901.5
frg2 460 1145 62.0 44.8 458 1156 21.0 23.2 110.8
k2 381 1162 65.0 110.9 381 1161 26.6 40.5 4903.5
pair 936 2335 70.4 79.5 929 2335 39.4 50.3 656.5
rot 385 953 33.8 35.4 385 953 32.6 32.8 50.4
term1 85 206 16.0 22.0 83 208 13.0 20.0 27.6
ttt2 100 254 25.6 33.0 99 253 20.6 26.9 28.0
vda 186 645 52.2 87.0 187 684 21.2 39.0 4541.0
x1 147 414 11.6 15.2 150 424 9.2 13.1 6.9
x3 455 1122 20.0 23.9 456 1134 14.2 20.7 69.0
x4 221 571 28.0 22.0 220 570 12.2 15.8 6.7
9symml 110 282 20.0 24.7 109 280 14.2 19.6 4091.5
TOTAL 11372 26420 1212.0 1427.4 11372 26523 862.4 1032.2

1.00 1.00 1.40 1.38

Removal. This technique allows to efficiently identify the
set of redundant connections that can be added to a logic
network without changing its functionality by reducing
dramatically the number of test generation runs required.
This technique has also been extended for the addition of
gates, obtaining new transformations that could not be
identified with previous approaches.

Previous work in Redundancy Addition and Removal
only considered area optimization. In this paper, we have
extended this technique to timing optimization and
obtained promising results. These results show that this
technique allows to reduce circuit delay significantly with
very little area increase and therefore is well suited for
timing optimization when there is not much room to trade
area for speed. In the future, we plan to experiment with
more accurate delay models and to extend the improved
RAR technique with the addition of several gates at a time,
in order to obtain additional timing optimization, although
at bigger area cost.

References

[1] K.-T. Cheng, L. A. Entrena. “Multi-Level Logic
Optimization by Redundancy Addition and Removal”. Proc.
EDAC-93, p. 373-377. Feb., 1993.

[2] L. A. Entrena, K.-T. Cheng. “Sequential Logic
Optimization by Redundancy Addition and Removal”. Proc.
ICCAD-93, p. 310-315. Nov., 1993.

[3] S. C. Chang, K.-T. Cheng, N.-S. Woo, M. Marek-
Sadowska. “Layout Driven Logic Synthesis for FPGAs”.
Proc. 30th DAC, p. 308-313. June, 1994.

[4] S. C. Chang, M. Marek-Sadowska. “Perturb and Simplify:
Multi-level Boolean Network Optimizer”. Proc. ICCAD-94,
p. 2-5. Nov., 1994.

[5] W. Kunz, P. R. Menon. “Multi-level Logic Optimization by
Implication Analysis”. Proc. ICCAD-94, pp. 6-13. Nov.,
1994.

[6] L. A. Entrena, K.-T. Cheng. “Combinational and Sequential
Logic Optimization by Redundancy Addition and
Removal”. IEEE Transactions on CAD, vol.14, n. 7, p. 909-
916. July, 1995.

[7] U. Gläser, K.-T. Cheng. “Logic Optimization by an
Improved Sequential Redundancy Addition and Removal
Technique”. Proc. ASP-DAC. Sept., 1995

[8] W. Kunz, D. K. Pradhan. “Recursive Learning: an attractive
alternative to the decision tree for test generation in digital
circuits”. Proc. ITC, p. 816-825. October 1992.

[9] J. P. Fishburn. “LATTIS: An Iterative Speedup Heuristic
for Mapped Logic”. Proc. 29th DAC, p. 488-491. June
1992.

[10] K. J. Singh, A. R. Wang, R. K. Brayton, A. Sangiovanni-
Vincentelli. “Timing Optimization of Combinational
Logic”. Proc. ICCAD-88, p.282-285, Nov. 1988.

[11] K. C. Chen y S. Muroga. “Timing Optimization for Multi-
Level Combinational Networks”. Proc. 27th DAC, p. 339-
344. June 1990.

[12] B. Rohfleisch, B. Wurth, K. Antreich. “Logic Clause
Analysis for Delay Optimization”. Proc. 32nd DAC, p. 668-
672. June 1995.

	CDROM Home Page
	1996 Home Page
	EURO-DAC96 Home Page
	Front Matter
	Table of Contents
	Session Index
	Author Index

