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Abstract

In this paper, we present an accurate delay estimation algo-
rithm at the register transfer level. We introduce \resource
binding" as an important source of false paths in a register
transfer level structure. \Path mismatching" between two path
segments may create another type of false paths when the data-
path and controller interact. The existence and creation of such
paths and their e�ect in delay analysis are discussed. We also
introduce the Propagation Delay Graph (PDG), whose traver-
sal, for delay analysis, is equivalent to the traversal of sensiti-
zable paths in the datapath.

1. Introduction

1.1 Motivation

High level synthesis (HLS) �lls the gap between the behav-
ioral level and the layout level by automatically generating
a register transfer level (RTL) realization from a behavioral
description. The actual circuit layout can be generated later
from the datapath using a silicon compiler. A common charac-
teristic of most HLS systems is the lack of consideration to the
logic and layout synthesis aspects during the high level syn-
thesis process. The designs generated by these systems may
or may not satisfy the initial design requirements (e.g. area,
performance) and thus the design may need to be changed and
modi�ed. One method to address this de�ciency is to use esti-
mation during HLS, speci�cally for time delay and layout area
[1].
Estimation at the RT level can be done faster than at other

levels, such as logic, because of dealing with fewer components
and easier access to the control information. The delay esti-
mators at the RT level, in particular, can be used for di�erent
purposes such as: performance analysis (e.g. �nding the up-
per bound speed) and performance improvement (e.g. using
pipelined ALUs to reduce critical path delay).
False path detection at the logic level has been investigated

in depth. However, the notion of false paths at the RT level did
not raise much attention due to: 1) ambiguity in sources that
may create false paths; and 2) lack of a clear understanding
as to how time analysis at three design levels, RTL, logic and
layout, relate to each other. The nature of false paths at the
RT level is, in general, di�erent from false paths at the logic
level. The false path problem at the logic level is a data-
oriented phenomenon. In spite of this di�erence in nature,
the e�ect of false paths at both levels is the same, that is, the
accuracy of the time estimators may be heavily a�ected by the
existence of such paths.
In this paper, we propose an accurate delay estimation al-

gorithm for cell-based designs at the RT level. The main
contribution of our work is twofold. First, we introduce false
paths at the RTL caused by resource binding (in datapath) and
signal path mismatching (in datapath{controller interaction)
and their e�ect in delay estimation, i.e. register-to-register
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and multi-cycle critical paths. Second, we present an e�-
cient delay estimation process based on a Propagation De-
lay Graph (PDG) model with annotated information from the
structural level (RTL). The estimator computes the structure-
based (static) and behavioral-based (multi-cycle) critical delay
of sensitizable paths and determines the minimum period of
the system clock.

1.2 Related Works

Time prediction techniques based on false path analysis are
widely used at the logic design level (logic synthesis). Works
by [2] and [3], for example, discuss the use of false path detec-
tion in time analysis of logic circuits. Works presented in [4]
and [5] are two attempts to expand the notion of false path
to the RT level by identifying the false paths through the se-
quences of conditional operations, and false loops through re-
source sharing, respectively.
The works presented in [6] and [7] are attempts to couple


oorplanning and high level synthesis by taking wire delay into
account when making the synthesis decisions. A timing model
for clock estimation is proposed in [8] to integrate control and
wire delays and several technology factors. Work presented in
[9] combines topological and functionality based delay estima-
tion using a layout-driven approach.
Reference [10] used area-time models to predict design trade-

o�s from the DFG graph. However, their model considers only
functional units at the scheduling level and does not include
RTL components such as registers, multiplexers and ALUs.
SPAID [11] also determines the clock period by considering
delay of components and �nding the worst datapath delay,
but it does not take into account the wiring delay. In BUD
system [12] the wire lengths are obtained from a 
oorplanner
and the wiring delay is computed using a simple RC model.
CHIPPE [13] estimates the clock period by examining control
delay using a PLA model, but wiring delay is ignored.
This paper is organized as follows: The existence and cre-

ation of false paths, in register-to-register delay estimation,
caused by resource sharing are discussed in section 2. Section
3 presents the multi-cycle false paths caused by resource bind-
ing. Timing model for the control unit and the interaction of
datapath and controller in terms of delay are discussed in sec-
tion 4. In section 5, we describe the delay estimation algorithm
in which we prohibit the possible inclusion of false paths dur-
ing delay estimation. The experimental results are presented
in section 6. Finally, concluding remarks are in section 7.

2. False Paths in Register-to-Register
Delay Analysis

2.1 The Importance of Detecting False Paths

If we search a datapath purely based on the delay of com-
ponents and connections, we may erroneously identify a false
path as the critical path and inaccurately determine the per-
formance. This is due to the fact that to achieve higher speed
most delay analyzers perform a value-independent search by
simply checking all possibilities in a node and picking the
worst.
VLSI manufacturing technology scale factor (�) of 0.8 mi-

cron is quite normal these days. This implicitly means the
propagation delay of components, including wires, are getting
closer and closer to each other. The closeness of delays shows



that wrong inclusion or exclusion of components and wires
changes the result of performance analysis dramatically.

2.2 False Paths Caused by Resource Binding

An RTL datapath realizes a behavior through register-to reg-
ister data transfer. The sequence of these transfers is deter-
mined by a CDFG. Fig. 1 shows a typical register-to-register
path. The data pass through two interconnection networks,
before and after the functional unit. If some of the com-
ponents in these two interconnection networks (e.g. multi-
plexers, buses and wires) are shared, there is a high pos-
sibility of creating false paths. Assume two values should
be read from registers D1 and D2, manipulated by FU1 and
FU2 and �nally stored in output registers O1 and O2, respec-
tively. Fig. 2 shows two scenarios for these data transfers.
In Fig. 2(a), there are only two paths and both are sensitiz-
able since there are no shared components between N11;N12

in fD1 ! N11 ! FU1 ! N12 ! O1g path and their coun-
terparts N21;N22 in fD2 ! N21 ! FU2 ! N22 ! O2g

path. In Fig. 2(b), however, there are some shared components
(shaded area). During analysis of register-to-register delays of
Fig. 2(b), we confront 8 paths, out of which only two are sen-
sitizable. Note that only two false paths (broken and dotted
lines) are shown in this �gure.
In what follows, we present six situations under which false

paths may be created. Each case is explained by a small ex-
ample. Let T funccomp denote the propagation delay of component
comp when it performs function func. For example, T+

(+�>)

is the propagation delay of (+� >) (i.e. a multi-function
ALU) when it performs addition and T sR5 (T eR5) shows the
setup (transition) time of register R5. All delay values of com-
ponents used in these examples are based on a 4-bit implemen-
tation of cells using a 0.8 micron CMOS library [14]. Note that
for simplicity, we have ignored the wire delays in these exam-
ples. Also, we use Pf and Ps to refer to false and sensitizable
paths, respectively.
To show that these cases can happen in practice, when it

was possible, we have selected (or created using the same archi-
tectural style) some examples reported in the literature. Due
to lack of information about components or constraints which
resulted in those datapaths, certain assumptions will be made
to show the falsehood of a speci�c path.

2.2.1 Example 1: Certain Binding Decisions

Most HLS systems use heuristics for binding in the allo-
cation phase to optimize component and/or interconnection
cost. Some of these decisions may create false paths. Fig. 3
is a datapath for HAL benchmark, selected from [19]. The
multiplier is a two stage pipelined multiplier. Assume reg-
ister R�, has been installed between two stages with delay

of
T�
(�)

2
each. Suppose for the multi-function ALU we have:

T
�
(+�>) > T

+
(+�>) > T>(+�>) >

T�
(�)

2 . Assuming the propaga-

tion delays of all registers are the same, the critical register-
to-register path is as follows:8>>><
>>>:

False Path: T (Pf ) = Te
R�

+

T�
(�)
2 + TBUS1 + T

�
(+�>)

+ Ts
R2

Sensitizable Path: T (Ps) = Te
R1

+ TMUX3 + T
�
(+�>)

+ Ts
R5

Error: �T = jT (Pf ) � T (Ps)j = j

T�
(�)
2 + TBUS1 � TMUX3j

� 5:48ns

2.2.2 Example 2: Multi-Function ALU's

Fig. 4 is a datapath for HAL benchmark, selected from [20].
Assume that we use a fast two stage pipelined multiplier and

a slow adder/subtracter such that: T�
(+�)

> T+
(+�)

>
T�
(�)

2
. Let

all registers have the same propagation delay and R5 provide
data for subtraction only through BUS4. Considering the fact
that there is a register between the two stages of the multiplier,
the critical register-to-register path occurs through (+�):

8<
:

False Path: T (Pf ) = Te
R3

+ TBUS2 + TBUS4 + T
�
+�

+ Ts
R6

Sensitizable Path: T (Ps) = Te
R3

+ TBUS2 + TBUS4 + T
+
+�

+ Ts
R6

Error: �T = jT (Pf ) � T (Ps)j = jT
�
(+�)

� T
+
(+�)

j � 1:52ns

2.2.3 Example 3: Testable Datapaths

There are many applications in which we need to use di�er-
ent type of registers in a design. Two of such applications are:
1) using a combination of normal (latch-based) and master-
slave registers for Level Sensitive Scan Design (LSSD) [21];
and 2) di�erent registers in a testable design, such as Built In
Self Testing (BIST). Depending on the test methodology, there
are di�erent type of test registers, such as: BILBO, TPGR and
MISR [21].
As an example, we selected the datapath of the FACET ex-

ample (introduced �rst in [22]) presented in [23]. The sched-
ule and datapath are shown in Fig. 5(a) and (b), respectively.
Note that the data for division come from R5 and R7. Con-
sider two design styles: In the �rst, registers R1;R3; R4;R5
are master-slave and R2; R6;R7 are normal. In the second
style, we have a testable design based on the BIST methodol-
ogy. Note that registers R2 and R5 are normal, R6 and R7 are
TPGR, R3 is MISR and R1 and R4 are BILBO. The setup and
transition time for di�erent type of registers, given in Fig. 5,
are based on COMPASS implementations. Assume that the
critical register-to-register delay occurs through divider:8><
>:

False Path: T (Pf ) = Te
R6

+ TMUX3 + T
=

(=)
+ TMUX4 + Ts

R4

Sensitizable Path: T (Ps) = Te
R5

+ TMUX3 + T
=

(=)
+ TMUX4 + Ts

R4

Error (style 1): �T = jT (Pf ) � T (Ps)j = jTe
R6

� Te
R5

j � 2:58ns

Error (style 2): �T = jT (Pf ) � T (Ps)j = jTe
R6

� Te
R5

j � 1:21ns

2.2.4 Example 4: Chaining

Consider the datapath shown in Fig. 6(b). The scheduled
CDFG is shown in Fig. 6(a). By examining this schedule, in
which chaining of addition and subtraction is allowed, we see
that the path shown by broken lines in Fig. 6(b) is false since
the result of multiplication from the �rst fan-out branch (m1)
is never followed by the subtraction (s1). The two longest
sensitizable paths are shown in Fig. 6(b) using dotted lines.
Depending on the length of wires between components (esti-
mated or measured in the physical layout), one of them will
be the sensitizable critical path. Assuming all registers have
identical structures, the register-to-register delays of paths are:8>>>>>><
>>>>>>:

False Path: T (Pf ) = Te
R3

+ T�
(�)

+ TMUX3 + T
�
(�)

+ Ts
R2

Sensitizable Path 1: T (Ps1) = Te
R4

+ T�
(�)

+ TMUX3 + Ts
R1

Sensitizable Path 2: T (Ps2) =

Te
R5

+ TMUX1 + T
+
(+)

+ TMUX3 + T
�
(�)

+ Ts
R2

Error (Path 1): �T1 = jT (Pf )� T (Ps1)j = jT�
(�)

j � 3:51ns

Error (Path 2): �T2 = jT (Pf )� T (Ps2)j =

jT�
(�)

� T
+
(+)

� TMUX1j � 3:86ns

2.2.5 Example 5: Redundant Components

Heuristics for binding may introduce redundant components
into a design. Fig. 7 shows such an example. Assume we use
an iterative binding scheme which assigns operations and data
to the hardware components sequentially (e.g. one functional
unit at a time). In the �rst time step, b is passed through
MUX2 and fed to both ALUs. So, the connection W1 is con-
sidered. In the second step, no wire sharing to pass b and
c through MUX2 is possible and so a new connection (W2)
has been made to pass b to the multiplier. The datapath is
pictured in Fig. 7(b). Assuming the delay of registers are the
same and T �(�) > T+(+), we have:(

False Path: T (Pf ) = Te
R3

+ TMUX2 + TMUX3 + T�
(�)

+ Ts
R6

Sensitizable Path: T (Ps) = Te
R3

+ TMUX3 + T�
(�)

+ Ts
R6

Error: �T = jT (Pf )� T (Ps)j = jTMUX3j � 1:11ns



Of course, a re�nement process can remove the redundant
gate (MUX3) to generate the datapath of Fig. 7(c). However,
in reality the designs are very complex and such re�nement
can be very expensive without guaranteeing the optimality of
the result.

2.3 Exclusion of False Paths Caused by Resource
Binding

To prohibit the possible inclusion of false paths during delay
estimation of RTL datapath, we use CDFG whose edges are
augmented by weighting values, annotating the delay informa-
tion of datapath and CDFG simultaneously. For brevity, we
call the augmented CDFG Propagation Delay Graph (PDG).
By weighting the edges in CDFG, we bind data 
ow informa-
tion in CDFG with the component/connection delay informa-
tion in the datapath. Figure 6(a) is the CDFG corresponding
to the datapath in Fig. 6(b) explained before. Fig. 8(a) shows
the corresponding PDG. RRi denotes register-to-register delay
between two CDFG node. Fig. 8(b) computes this delay for
RR5. We will show that the PDG traversal for delay estima-
tion, e.g. to �nd critical paths, is equivalent to the traversal of
sensitizable paths in the datapath. We never traverse the false
paths caused by resource binding since by the PDG traversal,
we follow only the paths which actually transfer data.

3. False Paths in Multi-Cycle Analysis

For some applications such as testable designs and non synthe-
sized datapaths in addition to the longest register-to-register
delay, it can be very useful to have multi-cycle critical sensi-
tizable paths. By de�nition, a multi-cycle critical path is a
sequence of register-to-register transfers from primary inputs
to the primary outputs, derived by analysis of a datapath and
scheduled DFG simultaneously. Our work is really an exten-
sion of multi-cycle false path detection at the logic level intro-
duced in [16]. in which the authors have shown that the notion
of false paths, traditionally de�ned for combinational logic cir-
cuits, can be extended to the sequential context by considering
the operation of the circuit over multiple clock cycles.

3.1 Structure-Based Versus CDFG-Based Analysis

Depending on user's objectives, for delay estimation there are
two choices. In the structure-based (static) delay estimation,
the design is swept from inputs to outputs and the longest
input-to-output delay is found without considering any feed-
back or activity sequence of components. In contrast to the
static delay estimation, a CDFG-based (multi-cycle) delay esti-
mation evaluates the overall execution time, at the RTL, logic
or gate level by considering the activity sequence (e.g. control
steps in a scheduled DFG) of components.
Static and multi-cycle delay estimations are important for

evaluation and modi�cation of a design, especially at the lower
levels. For example, the placement of the cells may be modi�ed
or long wires may be broken based on static delay estimation
to achieve higher performance. Multi-cycle delay estimation,
in particular, can provide useful guidelines for performance-
driven synthesis tools (e.g. layout generators) to balance the
cycle time and improve the overall performance.

3.2 Multi-Cycle False Paths Caused by Binding

Using the method presented in section 2.3 for register-to-register
delay analysis, we can avoid the false paths caused by resource
binding when doing multi-cycle delay analysis.

3.2.1 Example 6: Resource Binding

Fig. 9 is a datapath for HAL benchmark, selected from [19].
Let all registers have the same delay and ignore wire delays.
In the search of critical multi-cycle path in the datapath, we
have:8>>>><
>>>>:

False Path: T (Pf ) = T�
ALU2

+ TR1 + T
�
ALU4

+ TR2 + TBUS3+

T�
ALU1

+ TR3 + TBUS1 + T
+
ALU3

+ TR5 + T>
ALU5

Sens. Path: T (Ps) = TBUS3 + T�
ALU1

+ TR3 + TMUX2 + T�
ALU2

+

TR1 + T
�
ALU4

+ TR2 + TBUS3 + T
�
ALU4

+ TR2

Error: �T = jT (Pf )� T (Ps)j = T
+
ALU3

+ T>
ALU5

+ TBUS1�

T
�
ALU4

� TMUX2 � TBUS3j � 3:39ns

3.3 Multi-Cycle False Paths Caused by Conditions

The work presented in [4] described a heuristic algorithm for
the detection and elimination of false paths during path-based
scheduling. However, as explained in [4], this heuristic has
shortcomings when used in delay estimation. Due to lack of
space, we do not pursue this issue here.

4. Timing Model for the Control Unit

The control unit commands the components in datapath what
to do (according to their functionality) and when to do (ac-
cording to the scheduled DFG). The control signals can be
described as a control-state table, state diagram or a FSM
chart that speci�es the next-state and control signals (out-
puts of controller) as a function of present states and condi-
tional/status signals (inputs of controller). In practice a num-
ber of optimization procedures, such as state minimization,
state assignment (encoding) and �nite state machine parti-
tioning are applied in order to improve the performance of the
control logic. Some works such as [8] consider a �x simpli�ed
model (e.g. random logic)and estimate the delay of the control
unit. The main shortcoming of this strategy to estimate the
controller delay is that it's simply too restrictive. The timing
model depends heavily on the design optimization procedures,
in general, and chosen architecture, in particular, and may not
be generalized.

4.1 A Uni�ed Timing Model for Datapath and
Controller

As explained before, the basic tool of delay estimation in our
approach is the PDG traversal. To consider the control delay
in PDG, we need a uni�ed timing model for datapath and
controller. Fig. 10 shows how we join these two delays together.
For brevity, we have shown only one component (M) of the
datapath.
Let's consider the delay of this unit drawn again in Fig. 11(a).

Although the propagation delay of this component (see Tp in
Fig. 11(b)) is available in the library, it does not include the
delay of control lines. In fact, Tp has been computed with the
assumption that input lines x and control lines c are ready
simultaneously. In reality, we have to di�erentiate between
these signals (x and c) since they are generated by di�erent
circuits (i.e. datapath and controller) through di�erent paths
and Fig. 11(b) is an oversimpli�ed model hiding the important
role of control delay. A more realistic model is pictured in
Fig. 11(c) showing that the delay of a component with control
lines is Tp+Tc where Tc is the delay of the circuit (controller)
which generates control signals.
The clock period Tclock should be determined by considering

Tc and Tp simultaneously. In a scheduled DFG all operations
are synchronized by clock cycles (time step). The duration of
this clock not only depends on propagation delay of the compo-
nents contributing in a speci�c time step but also depends on
the controller delay. The important advantage of using PDG in
conjunction with a delay analyzer of controller is that we don't
pessimisticly estimate Tclock as MAXfTcig+MAXfTpig over
di�erent time steps i. Instead, we use the estimate of control
path delay at step i (Tci) obtained by a gate level analyzer,
to modify overall delay of components (augmented edges in
PDG). This realistic view leads to MAXfTci + Tpig over dif-
ferent time steps i as more accurate estimate of Tclock. Tpi
is obtained from data sheets (library of components) and Tci
can be obtained accurately (by analyzing the controller for the
corresponding path(s)) or roughly (by considering the critical
path in controller).

4.1.1 Example 7: Path Mismatching

As we have shown the datapath and controller both con-
tribute to the overall delay estimation of the system clock pe-
riod (Tclock). However, the datapath and controller interact
with each other in a speci�c order based on the CDFG 
ow
and their structures. In other words, their interaction follows



a speci�c ordered pair of matching path segments which in-
cludes components/connections in the datapath and the con-
troller. Arbitrary selection of pair of segments (or selection
based on the individual critical path) may lead to an impossi-
ble ordering and path mismatching, (a false interaction path)
and consequently lead to an unrealistic delay analysis.
Fig. 12 shows an example. Because of the multiplication

(slowest operation) in Fig. 12(a) we have to �nd the frequency
bound based on the activities in step 5. Random logic imple-
mentation of the controller by COMPASS toolset [15] shows a
mismatch between the paths. Speci�cally, the critical delays of
generating R2 load and R3 load are 0.62 and 1.92 nanosecond,
respectively. Intuitively, the decoding part to generate control
signals for adder and it's surrounding components (MUX1,
MUX2, R3 and R4) is larger (more logic gates/levels) than
the multiplier and it's surrounding component (R2). Thus,
considering only the activities at time step 5 and also assum-
ing the delay of registers are the same and T �(�) > T+(+), we

have:8<
:

False Path: Tclock (Pf ) = Te
R1

+ TcR3 load
+ T�

(�)
+ Ts

R2

Sensitizable Path: Tclock (Ps) = Te
R1

+ TcR2 load
+ T�

(�)
+ Ts

R2
Error: �T = jTclock (Pf )� Tclock(Ps)j =

jTcR3 load � TcR2 loadj � 1:30ns

Note that this means almost 15% error in estimating the Tclock
lower bound.

5. Delay Estimation Process at RT Level

� Inputs: The required data for the RTL delay estimation pro-

cess are: DFG/CDFG, datapath, connection matrix C show-
ing the connection length between components and technology
parameters, including: 1) parasitic factors for components, i.e.
Cin, Rout and Tcomp; and 2) wire parameters, i.e. Rs, �, W
and t.
� Outputs: The output of the algorithm is the sensitizable
critical paths (register-to-register, static and multi-cycle) and
their corresponding delay values.
The delay estimation algorithm analyzes the RTL datapath

in the following four steps:

� Step 1: Construct the PDG (Propagation Delay Graph).
PDG is really CDFG augmented by adding register-to-
register delay to its edges. We add a source node, con-
nected to all primary inputs (i.e. nodes with no predeces-
sors), and a sink node, connected to all primary outputs
(i.e. nodes with no successors). The delay value associ-
ated to an edge in CDFG is the summation of propagation
delays of components and wires through which the signal
passes between two operation nodes.

� Step 2: Identify the critical path in datapath.

To �nd the critical path (register-to-register, static and
multi-cycle), we apply the Depth First Search (DFS) al-
gorithm to the PDG graph, using the delays found in the
previous step.

� Step 3: Compute the frequency bound for the system
clock.
The clock period is determined as the worst register-to-
register (RR) delay in a design. As we mentioned before,
in a PDG we augment every edge by a weight equal to
the delay of the path between two registers. Let TRRk

denote the propagation delay of a typical RR node with
the source srck and destination destk:(

(Tclock )min = Maxf[(1=ck) � T
srck!destk
RRk

] + Tck
g ; 1 � k � m

(fclock)max = 1
(Tclock)min

6. Experimental Results

The delay estimation algorithm described in the previous sec-
tions has been implemented in C on a SUN SPARC-IPC work-
station. The delay estimation results, in nanoseconds, for dif-
ferent experiments are tabulated in Tables 1, 2 and 3. All

datapaths for these examples, except the �rst two in Table
1, have been produced by our synthesis tool, SYNTEST [17].
Note that the datapaths in the two tables are produced with
di�erent set of options and are not structurally equivalent. We
used our own layout estimator at the RT level to estimate the
wire lengths between the components [18].
The examples are HAL [19], FACET [22] and four digital �l-

ters including the �fth order elliptical �lter chosen as a bench-
mark for the 1988 High-Level Synthesis Workshop. They have
been widely used in the literature as benchmarks. The CPU
time for running the delay estimator is less than four seconds
for these examples. The wall clock time is about ten sec-
onds. For comparison, we have implemented these designs (4-
bit width) based on the 0.8 micron CMOS library [14] within
COMPASS [15] on a SPARC-IPC workstation with 32M RAM.
The ASIC synthesizer tool in COMPASS takes a datapath cir-
cuit description in VHDL and generates the complete layout,
for these benchmarks, in a few minutes.
To show the importance of false path exclusion in delay esti-

mation, we have selected datapaths which contain register-to-
register false paths and are traceable by hand, shown in Table
1. The �rst two examples are selected from [19] and [23], re-
spectively. The other two examples have been generated by
us. This table highlights the importance of false paths in de-
lay estimation. By excluding the false paths (the 6th column
in Table 1), the estimated results are realistic, not pessimistic.
That's why the estimated delays are usually less when we ex-
clude shortly. For quality comparison, the worst case timing
behavior was obtained by running QTV, the timing veri�er in
COMPASS on the layout. The results reported by QTV are
assumed to be very close to the actual delay of the designs im-
plemented in silicon. QTV can neither detect the false paths
nor consider the number (or sequence) of component activi-
ties and thus can not compute the overall execution time di-
rectly. To be fair in our comparison, we compare the results of
register-to-register and static delays separately. Table 2 com-
pares the result of register-to-register and static (critical path)
delays provided by the estimator and QTV. Estimated delays
are within 14% accuracy of those reported by QTV.
In Table 2, we also present the multi-cycle delay analysis.

In this analysis, the number of times that a component or a
wire is active, and also the sequence of execution of operations,
are considered. The PDG graph used in our delay estimator
considers all of these factors. Multi-cycle analysis by QTV
is not possible because every loop has to be broken and ev-
ery register-to-register path has to be searched manually to
compute the cumulative delay.
The experiments for datapath{controller interactions is tab-

ulated in Table 3. The last column of this table (TDP&C ) shows
the most accurate and realistic estimate of register-to register
delay (lower bound of clock period) by considering the sensi-
tizable critical path of datapath and controller for all possible
path mismatching when the datapath and controller interact.
To show the importance of false paths and path mismatching in
delay estimation we have performed additional analysis. The
third column (TDP ) shows the critical path in the datapath
only while the fourth column shows the pessimistic analysis
of critical path without considering false paths and path mis-
matching. As these two examples show realistic values (last
column) are 10-15% less than pessimistic estimation.

7. Conclusion
An e�cient RTL delay estimation algorithm has been pre-
sented, to be used after the generation of a datapath circuit.

Table 1: Register-to-register (R-R) delay estimation

Design Sch. # of RTL Comp. With Without
Name Step ALUs MUXs REGs Excl. Excl.

HAL 8 2 4 9 16.29 20.29

FACET 4 3 4 7 16.75 18.94

AR Filter 13 4 7 37 14.29 19.20

Wave Filter 17 6 10 28 14.58 20.68



The cornerstone of our work is the PDG graph annotating
the timing information of schedule and datapath in its nodes.
To achieve higher accuracy, RTL false paths caused by re-
source binding are avoided during register-to-register, static
and multi-cycle delay estimation. We have also incorporated
the controller delay in the estimation process by careful ex-
amination of the datapath{controller interaction and avoiding
path mismatching.
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Table 2: Comparison with QTV (COMPASS time analyzer)

Design Sch. # of Estimated Crit. Path QTV Crit. Path
Name Step (A,M,R) R-R Static Multi R-R Static

HAL 4 (7,4,17) 13.40 36.21 33.79 14.30 31.12

Biquad 10 (7,14,23) 14.29 88.94 61.26 15.05 83.61

AR 13 (3,6,39) 17.20 55.52 106.80 16.53 57.27

BP 13 (3,6,33) 19.29 54.46 71.38 17.60 47.53

Wave 21 (4,8,32) 14.78 64.31 165.21 13.67 70.18

Table 3: The e�ect of datapath{controller interaction in
register-to-register delay estimation

Design # of TDP TDP&C TDP&C
Name (A,M,R) (Datapath) (Pessimistic) (Realistic)

Biquad Filter (7,8,14) 11.98 20.51 18.54

AR Filter (9,18,11) 13.20 21.68 19.46

BP Filter (8,12,12) 12.29 21.10 18.36

Wave Filter (3,6,18) 13.07 25.49 22.21
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Figure 1: Register-to-register transfer path
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