
EURO-DAC ’96 with EURO-VHDL ’96
0-89791-848-7/96 $4.00  1996 IEEE

Clock Optimization for High-Performance Pipelined Design

Hsiao-Ping Juan, Daniel D. Gajski and Smita Bakshi

Department of Information and Computer Science

University of California, Irvine, CA 92717-3425, USA

Abstract

In order to reduce the design cost of pipelined systems,

resources may be shared by operations within and across dif-

ferent pipe stages. In order to maximize resource sharing,

a crucial decision is the selection of a clock period, since

a bad choice can adversely a�ect the performance and cost

of the design. In this paper, we present an algorithm to

select a clock period that attempts to minimize design area

while satisfying a given throughput constraint. Experimen-

tal results on several examples demonstrate the quality of

our selection algorithm and the bene�t of allowing resource

sharing across pipe stages.

1 Introduction
In general, high-performance constraints are met by

pipelining the design into several concurrently executing
stages, such that the pipe stages operate one after the other

on the same sample but at the same time on di�erent sam-

ples. In designing such a pipelined system, the current
practice is to partition the description under development

into stages and then each stage, along with its performance

and cost constraints, is given to a di�erent design group.
In this scheme, di�erent stages are implemented separately

and have their own datapaths and control units. Thus, dif-

ferent stages can use di�erent clock signals, as long as their
delays satisfy the throughput constraint.

Clearly, implementing each pipe stage separately would

result in a large number of hardware resources, thereby in-

creasing the cost of the design. However, the design cost can
be reduced by sharing resources among these stages. For

instance, the same functional unit can be utilized to per-

form several di�erent operations from di�erent pipe stages
over di�erent time-steps.

When performing resource sharing, an important deci-
sion is the selection of a clock period to schedule the opera-

tions into di�erent states. A bad choice of the clock period

could adversely a�ect the performance and cost of the �-
nal design. For instance, Figure 1(a) shows a two-stage

pipeline with a pipe stage delay (the inverse of through-

put) constraint of 120 ns. Figures 1(b), (c) and (d) show
scheduling results of the given pipeline using 60, 30 and

20 ns as the clock period respectively. When the clock pe-

riod is equal to either 60 or 30 ns, the pipe stage delay
constraint is satis�ed. The operations a and e can share

the same multiplier since they are in di�erent clock cycles.

Note that the operations b and c are scheduled in the same
clock cycle when the clock period is 60 ns, but in di�erent

clk : 60 ns
cost : 2 mult,

2 add

clk : 30 ns
cost : 2 mult,

1 add

(a) (b) (c)

pipelined DFG

pipe stage delay : 120 ns
add : 24 ns
mult : 56 ns

+

+

x

s2

s1

x

xs1

s2 x

x

s4

s3

s2

s1

+

+

x
s1

s2

s3

s4

x

x

x

+

+

pipe stage 1

pipe stage 2

x

+

+

x

x

s1

s2

s3

s4

s1

s2

s3

s4

s5

s6

s5

s6

s7

clk : 20 ns
perf : violated

(d)

a

b

c

d

e

a

b

c

d

e

a

b

c

d

e

a

b

c

d

e

Figure 1: An example illustrating the e�ect of di�erent
clock periods on resource sharing of a pipelined design

clock cycles when the clock period is 30 ns. Consequently,

the operation b and c can share one adder when the clock
period is 30 ns, but not when the clock period is 60 ns.

Thus, the implementation when the clock period is 30 ns

requires one less adder than the implementation when the
clock period is 60 ns. However, it does not imply that a

shorter clock period is always preferable. For example, Fig-

ure 1(d) shows that, when the clock period is equal to 20 ns,
pipe stage 1 requires seven clock cycles, which results in a

delay of 140 ns and violates the pipe stage delay constraint.

Using this example, we have shown that the selection of
a clock period is a non-trivial problem. In this paper, we

propose a clock estimation algorithm that determines the

clock period which satis�es the throughput constraint and
requires minimum number of resources.

The rest of the paper is organized as follows. In the next
section, we discuss previous research done in this area and

also explain how we di�er from it. We give the problem def-

inition and present the assumed design model in Section 3.
The clock selection algorithm is explained in Section 4. Fi-

nally, we present experimental results and give conclusions.

2 Previous Work
Several previous papers addressed the issue of clock pe-

riod estimation for a given data
ow graph. For example,

there are several clock estimation schemes [4] [7] [8] that

use the delay of the slowest component as the estimated

clock period. However, using the slowest component delay

as the clock period can lead to under-utilized functional

units and consequently higher design cost in cases where
the components have widely di�ering delays.

A clock estimation method based on slack minimization

is proposed in [6]. This estimation method aims to select

the clock period that optimizes the performance of the de-
sign. In our problem, performance optimization is not the

goal; our goal is to minimize the design cost while satisfying

the performance constraint.

In [1], a methodology is proposed to estimate the clock

period for time-constrained scheduling as well as resource-
constrained scheduling. However, this methodology does

not consider pipelined designs, while our algorithm aims to

select a clock period for pipelined designs.

Finally, the algorithm presented in this paper di�ers
from all the algorithms mentioned above in that our algo-

rithm also takes the control unit delay into account. When

the number of states is very large, the control unit tends to
become very complex and control unit delay contributes sig-

ni�cantly to the clock period and cannot be neglected. By

considering the control unit delay, our algorithm provides
a more realistic estimation than the previously published

work.

3 Problem De�nition and Assumptions
Given (1) a pipeline of n pipe stages PS1 � � �PSn, where

each pipe stage PSi is represented by a data
ow graph
DFGi, (2) a component library, (3) the pipe stage delay

constraint PSDelay and (4) a range of allowable clock pe-

riods, represented by [clkmin, clkmax], the goal of our algo-
rithm is to �nd a clock period clk such that, for all i, DFGi
can be scheduled into bPSDelay/clkc states of delay � clk

and the design area is minimized.

The maximum clock period allowed, clkmax, is equal

to PSDelay. Design libraries often specify the maximum
clock frequency at which the clock input of a bistate circuit

may be driven such that stable transitions of logic levels are

maintained. This frequency is used to determine the value
of clkmin if it is not already speci�ed by the user. The cost

of a pipeline is approximated by the total area of datapath

components.

Our clock estimation algorithm assumes a design model,
as shown in Figure 2, similar to the design model used in [6].

In this model, the datapath consists of registers, functional

units and tri-state drivers. A two-level bus structure is as-
sumed for the interconnection across the registers and func-

tional units. Note that a register could be used to store a

temporary value that is used in di�erent states of the same
pipe stage or could be used as a pipeline latch between pipe

stages. Operation chaining is supported in this model by

allowing connections from the output ports of some func-

tional units directly to the input ports of other functional

units. Moreover, operations can execute over several clock

cycles; that is, multi-cycled operations are possible.

The control unit consists of the state register, a decoder,

the control logic to drive the control lines for the datapath
components, and the next-state logic to compute the next

reg reg

stage reg

control
logic

decoder

next state
logic

FU FU

Control Unit Datapath

control

status

critical
path

Figure 2: Design model for clock estimation

state to be stored in the state register. The control unit im-

plements a state machine that sequences a design through
a series of states, each of the states represents the set of

datapath operations performed concurrently in the same or

di�erent pipe stages of the design.
The clock period is determined by the longest register-

to-register delay. Typically, the path through the control

logic, as shown in Figure 2, has the largest delay. Therefore,
in our estimation, the minimal clock period is approximated

using the sum of all the delays associated with the compo-

nents in the path, including the datapath and the control
unit.

4 Algorithm
Our algorithm selects the clock period in three basic

steps.

1. Pipe stage shape function generation: The �rst
step in our algorithm is to produce a shape function in

terms of clock periods versus the pipe stage delay, in-

dividually, for each pipe stage of the description. This
shape function can clearly indicate the clocks that can

satisfy the pipe stage delay constraint.

2. Clock candidates selection: Next, given the pipe
stage delay constraint, PSDelay, and the shape func-

tions of each pipe stage, a set of clock periods that

can satisfy the pipe stage delay constraint in all stages
can be easily obtained. These clock periods are called

clock candidates.

3. Resource estimation: Having obtained the set of

clock candidates, the �nal step in our algorithm is
to estimate the amount of resources required by each

clock candidate. Then the algorithm would return

the clock period that requires the least amount of re-
sources.

Details of pipe stage shape function generation and re-

source estimation will be presented in the following sections.

4.1 Pipe Stage Shape Function Genera-
tion

The shape function generation algorithm basically con-

sists of three steps. It �rst produces a shape function

in terms of clock periods versus the minimum number of

Procedure: MinClkPeriod
Inputs: a data
ow graph DFG, the number of states N ;
Output: the minimum clock period;

begin Procedure

Cstep = 1;
ComputePathLength(DFG);
MaxPathLength = delay of the longest path in DFG;
MinClk = MaxPathLength/N ;
InsertReadyOps(DFG; PList);
while (PList 6= ;) do
if Cstep = N then

schedule all the non-scheduled operations;
MinClk = maximum state delay;
PList = ;;

else

op = First(PList);
if op is a single-cycled operator then
determine chaining or non-chaining;
schedule op and update MinClk;

else

determine the number of cycles of op;
schedule op and update MinClk;

end if;
InsertReadyOps(DFG; PList);
Cstep = Cstep + 1;

end if;
end while;

return MinClk;
end Procedure

Figure 3: The procedure to estimate the minimum clock
period, given N states

states by considering only the datapath delay. Then the

algorithm estimates the control unit delay and updates the

shape function accordingly. Finally, the shape function of
clock periods versus the pipe stage delay can be computed

by multiplying the clock periods by the corresponding num-

ber of states.

Given a data
ow graph DFG of a pipe stage and the
range of allowable clock periods, [clkmin, clkmax], the shape

function is generated incrementally by �xing the number of

states, and then computing the minimum clock period for
the �xed number of states using the procedure MinClkPe-

riod outlined in Figure 3. This process produces one (clock
period, number of states) point in the shape function. To

obtain the entire shape function, we iteratively increase the

number of states, beginning with the smallest possible num-
ber, which is dPSDelay=clkmaxe, and �nishing with the

largest possible number, which is bPSDelay=clkminc.

Given a data
ow graph DFG, the procedure

MinClkPeriod �rst computes the path length for each of

the operations in DFG. The path length of an operation

is de�ned as the longest path delay starting from this op-

eration till the output node. Therefore, by de�nition, the

maximum path length, MaxPathLength, of all operations in

DFG is the critical path length. The variable MinClk is

initialized to the optimal clock period MaxPathLength/N,
where N is the number of states that the DFG will be

scheduled into. The next step of the procedure involves

determining whether a ready operation can be scheduled
and whether chaining or multi-cycling should be performed

depending upon its e�ect on the clock period. The schedul-

ing of an operation may increase the clock period and the

variable MinClk is updated if it does. Once an operation
is scheduled, other non-ready operations become ready and

these are then inserted into the ready list. This process
continues and when it reaches the last state, all the non-

scheduled operations are scheduled into the last state and

the procedure returns the variable MinClk. Clearly, the
result of this algorithm depends upon how chaining and

multi-cycling is performed. We now illustrate how chaining

and multi-cycling are determined on the example in Fig-
ure 4.

x

+

+

x

DFG

num of states = 5
mult : 56 ns
add : 24 ns

(a) (b) (c) (d)

MinClk=28ns

a b

c

d

x
a

x

+a b
x

+

x

+

a b

c

d

MinClk=
27.2ns

MinClk=
28ns

Figure 4: Determining the minimum clock period

Given that a multiplication operation takes 56 ns and

an addition takes 24 ns, the procedure computes that the

maximum path length is 136 ns. Since the data
ow graph
needs to be scheduled into �ve states, the optimal clock pe-

riod, that is, the current MinClk, is 136/5=27.2 ns. In the

�rst iteration, the procedure attempts to schedule opera-
tion a and needs to determine whether to schedule it across

b56/27.2c=2 states or d56/27.2e=3 states. If a is scheduled

across two states, the average delay of the �rst two states
is 56/2=28 ns, and operations c and d could be scheduled

across three states, which results in an estimated delay per

state of (24+56)/3=26.7 ns. Thus, the clock period is 28
ns. If a is scheduled across three states, then the average

state delay is 18.7 ns for the �rst three states. However, op-

erations c and d now need to be �nished within two states,
which gives an estimated delay per state of (24+56)/2=40

ns. That is, the clock period in this case is 40 ns. Since

scheduling the operation a into a two-cycled operation gives
an estimation of shorter clock period, the procedure decides

to schedule a across the �rst two states as shown in Fig-

ure 4(b), and the clock period MinClk is updated to 28
ns.

Next, the operation b is scheduled. Since the delay of the

operation b is less than 28 ns, it is a single-cycled operation
and its scheduling does not change the current clock period.

The result of this iteration is shown in Figure 4(c). The

procedure continues this process for operations c and d,
and the �nal result is shown in Figure 4(d). The algorithm

obtains a minimum clock period of 28 ns.

Similarly, we can estimate that the minimum clock pe-

riods for scheduling the data
ow graph in Figure 4(a) into

one, two, three, or four states are 136 ns, 80 ns, 56 ns and

56 ns respectively. Therefore, we can conclude that for any

clock period larger than 136 ns, the minimum number of

states the DFG requires is one; for any clock period be-

tween 136 and 80 ns, the minimum number of states is two,

etc. Figure 5 shows the resulting shape function.

x

+

+

x

DFG

mult : 56 ns
add : 24 ns

a b

c

d

136805628

1

2

3

4

5

clock period (ns)

nu
m

be
r

of
 s

ta
te

s

Figure 5: The shape function of clock periods versus num-
ber of states

Thus far, the shape function does not incorporate con-

trol unit delays. As illustrated in Figure 2, the control unit

consists of a state register, a decoder, the control logic and
the next-state logic. Therefore, given the number of states

N , the delay of an N -state control unit, TCU(N), is esti-

mated as the sum of the decoder delay (TDEC), the control
logic delay (TCL), the next-state logic delay (TNS), and the

propagation delay and the setup time of the state regis-

ter. The propagation delay and the setup time of the state
register can be obtained from the component library. The

following equations are used to estimate TDEC , TCL, and
TNS.

TDEC = TINV + dlogM log2Ne � TAND

TCL = dlogM Ne � TOR

TNS = dlog
M
(N=2)e� TOR

For lack of space, we will not explain how these equations

have been derived; a detailed discussion is provided in [5].

Given a point (clki;N) in the shape function, the
algorithm next updates the point (clki;N) to (clki +

TCU (N);N). Note that given two points (clki;N) and

(clki+1;N + 1), where clki � clki+1, it is possible that
clki + TCU (N) � clki+1 + TCU (N + 1). In this case, the

algorithm drops the point (clki + TCU (N);N).

After the shape function of clock periods versus the num-
ber of states is updated, the shape function of clock periods

versus the pipe stage delay can be obtained by multiplying

the clock periods by the corresponding number of states.

4.2 Resource Estimation
From the shape functions for each pipe stage, the set

of clock candidates can be easily obtained. The next step

of our algorithm is to estimate the number and type of

resources required for each clock candidate.
An example to illustrate the algorithm is shown in Fig-

ure 6(a). We know that all pipe stages are executed con-

currently and in order to consider resource sharing across
the stages, the algorithm needs to consider the operations

in all stages at the same time. In order to demonstrate this,

we put the DFGs from two pipe stages, DFG1 and DFG2,
side by side in Figure 6. Note that these pipe stages are

executed in parallel but on di�erent input samples.

Given the clock period and the number of states, the �rst
step of the algorithm is to compute the time frame of each

x

+

+

x

+

x

+

DFG1 DFG2

clk = 30 ns
num of states = 5

x

x

+

+

+

x

s2

s3

s4

s5

mult : 56 ns
add : 24 ns

(a) (b)

+

stage 2stage 1

s1

(d)(c)

x

x

x

s1

s2

s3

s4

s5

stage 1 stage 2

I1

+

+

+

+

s1

s2

s3

s4

s5

stage 1 stage 2

I3

I1

I2

operation distribution interval I1 = {s1,s5}
num of mult = 2

operation distribution interval I3 = {s4,s5}
operation distribution interval I2 = {s3,s3}
operation distribution interval I1 = {s1,s2}

num of add = 1

Figure 6: An example illustrating the resource estimation
algorithm

operation. Let ASAPi and ALAPi denote the ASAP and

ALAP value of operation oi respectively, the time frame

of oi is de�ned as (ALAPi � ASAPi + cycle(oi)), where
cycle(oi) represents the number of clock cycles required to

�nish the operation oi. Figure 6(b) shows the time frames

of all the operations in Figure 6(a).

The next step is to partition states into a set of dis-

joint operation distribution intervals such that there are no
overlapping time frames between two consecutive intervals.

For example, in Figure 6(c), there is no way of partitioning

the �ve states into intervals such that there are no overlap-
ping time frames of the multiplication operations; therefore,

there is only one operation distribution interval, fs1,s5g,
for multiplication operations, where s1 is the starting state

and s5 is the ending state of the interval. On the other

hand, there are three operation distribution intervals for
additions. After the operation intervals are obtained, the

algorithm estimates the required number of components for

each interval separately, and the maximum number of re-
quired components over all intervals is the minimum num-

ber of components needed to perform all the operations.

The underlying concept of determining the minimum

number of components for one distribution interval is that,

if there are n operations that need to be �nished within s

states, and a component used to perform an operation re-

quires at least c clock cycles to �nish the execution before

it can be used again to execute another operation, then
clearly, the minimum number of components required is

equal to d(n � c)/se. For example, for the multiplication

operations shown in Figure 6(c), n = 3, c = 2 and s = 5,
hence, the minimum number of multipliers required is d(3
� 2)/5e, that is, at least two multipliers are needed. Sim-

ilarly, from Figure 6(d), it can be estimated that at least
one adder is required.

5 Experiments

In this section, we present results of three experiments
with the clock estimation algorithm which we have imple-

mented using C on a SUN SPARC 5 station. In the �rst

experiment, we demonstrate the quality of our algorithm by
comparing the selected clock against the \best" clock ob-

tainable using force-directed scheduling. The second exper-

iment studies the impact of resource sharing across di�erent
pipe stages on the cost of a design, and �nally, the third

experiment demonstrates the e�ect of considering control

unit delay on the clock selection.

For all experiments we have used the VLSI Technology
Inc. VDP370 1.0 micron Datapath Element Library [9] to

obtain the area and delays of the functional units. The

datapath elements used are shown in Figure 7.

subtractor

component delay(ns)
adder

multiplier

11.2
15.5
32.0

area(x1000 um*2)
54

60
320

Figure 7: Datapath component library

5.1 Experiment 1: Quality of Results

As discussed in Section 2, there are no existing clock se-

lection algorithms for pipelined designs; furthermore, the
existing clock selection algorithms do not take control unit

delay into account. Thus, in order to demonstrate the

quality of our algorithm, we have been unable to compare
our results with related research in clock selection; instead,

we have utilized force-directed scheduling, which is a well

known time-constrained scheduling algorithm.

This experiment is conducted on four examples: the AR
lattice �lter (AR) [4], the linear phase b-spline interpolated

�lter (BSpline) [6], the elliptical �lter (EF) [2] and the HAL

benchmark [2]. For each of the examples, we �rst generate
a number of input descriptions by manually pipelining the

speci�cation into a di�erent number of stages, where the de-

lay of the pipe stages in each pipeline is as equal as possible.
We then place di�erent pipe stage delay constraints on each

of the pipelined descriptions, and for a given pipe stage de-

lay constraint we obtain the estimated and the \best" clock
period. The estimated clock period is obtained by executing

our clock-selection algorithm. The best clock period is ob-

tained by executing the force-directed scheduling algorithm
for a number of clock periods, each corresponding to a dif-

ferent number of states (from one state to �fteen states).

The clock period that gives the minimal area design is then
the best period.

The results of comparing the best and the estimated

clock period for the four examples mentioned above are

shown in Figure 8. The last column of the table shows the

percentage di�erence in design area, which is approximated

by the sum of the areas of all the components, obtained by

the force-directed scheduling algorithm and by our clock-

selection algorithm. As can be seen from the results, the

estimated clock period was identical to the one obtained

with FDS in most cases; however, in three cases our al-

gorithm estimated a clock period that resulted in the use

Examples # of
stages

PSDelay
(ns) clk(ns) resources

FDS ours
clk(ns) resources

1502
3
2
3
2
3
4
2

100
150
100
300

150
200

150

16.6 4A,5M 16.6 4A,5M
16.6 6A,8M 6A,8M16.6
21.4 2A,2M 18.75 2A,2M
33.3 3A,2M 12.5 2A,3M
27.2 3A,2M 33.3 4A,2M
33.3 5A,2M 22.2 5A,3M
16.6 5A,2M 16.6 5A,2M
50 1A,1S,2M 50 1A,1S,2M

AR

BSpline

EF

HAL
A: adder, S: subtractor, M: multiplier

res. diff.
(%)

0
0
0

0
0

33.2
6.7

35.2

Figure 8: Comparing the best and the estimated clock
period for four benchmarks: AR, BSpline, EF, and HAL

of either one more multiplier or one more adder than that
obtained with FDS.

This discrepancy between the estimated and the best

clock period may be explained by considering the �delity
of our resource estimation method, which essentially gives

a lower bound on the number of resources. It is important

to note that the correct selection of the clock depends more
on the �delity rather than on the accuracy of the resource

estimation. In order to illustrate the role of �delity of our

resource estimates, we compared the results of our resource
estimates with the resources obtained by the force-directed

scheduling algorithm for all examples and PSDelay con-

straints shown in Figure 8. Due to space limitations, we
give only the results for the 3-stage AR and EF examples

in Figure 9. From the results of comparison, we conclude

that when �delity is high, our clock selection algorithm se-
lected the best clock - in spite of the fact that the accuracy

of the estimation is low in some cases, such as in the 3-stage

AR design. When �delity is low, our clock selection algo-
rithm selected the wrong clock, even though the accuracy

may be high, such as in the 3-stage EF design.

0 50 100 150 200
clock period (ns)

0

1000

2000

3000

4000
ar

ea
 (

x1
00

0
u

m
*2

)

FDS
ours

0 20 40 60 80 100
clock period (ns)

2000

3000

4000

5000

6000

ar
ea

 (
x1

00
0

u
m

*2
)

FDS
ours

AR filter

(3 pipe stages)
Elliptic filter

(3 pipe stages)

Figure 9: Comparing our resource estimates against the
results of the FDS algorithm for the 3-stage AR and EF
examples

From the results it may appear that the FDS approach is

superior than our approach; however, we would like to point

out that in the case of the elliptical �lter example, whereas

it took approximately 1 second to estimate and select the

clock period for a given pipe stage delay constraint using

our algorithm, it took more than 17 minutes to obtain the

best clock period using the FDS algorithm since it had to be

iterated over approximately �fteen di�erent clock periods.

5.2 Experiment 2: Resource Sharing
This experiment is conducted on the same examples that

were used in the previous section. For each description and

constraint, we compare the minimum number of resources
obtained by implementing all the pipe stages individually

(that is, by dis-allowing resource-sharing across di�erent

pipe stages) to that obtained by implementing all the pipe
stages together and thus allowing resource sharing across

di�erent pipe stages.

The minimum cost of a design without resource sharing
is computed by �rst obtaining the best clock period and the

minimum number of resources required for each pipe stage

separately using force-directed scheduling, and then sum-
ming up the resources of all the pipe stages. To compute

the minimum number of resources required with sharing,

we �rst select a clock period by applying our algorithm to
the pipelined descriptions and then generate the minimum

number of resources required using force-directed schedul-

ing.

clk(ns)
PSDelay

(ns)

1502
3
2
3
2
3
4
2

100
150
100
300

150
200

150

Examples

AR

BSpline

EF

HAL
A: adder, S: subtractor, M: multiplier

18.75
12.5,50

18.75,50
20,50

25,37.5
20,25,50

18.75,30,50
37.5,75

without sharing
resources clk(ns)

16.6
16.6

18.75
12.5
33.3
22.2
16.6
50,1S,2M2A

with sharing

6A,7M
,8M8A
,2M3A
,3M4A
,2M5A
,3M7A

6A,4M

4A,5M
resources

,8M6A
,2M2A
,3M2A
,2M4A
,3M5A

5A,2M
,1S,2M1A

29.2
3.6
6.7
9.2
5.9
8.1

imprv.
(%)

43.3
6.7

of
stg.

Figure 10: The e�ects of resource sharing on four bench-
marks AR, BSpline, EF, and HAL

The results on the four examples are shown in Figure 10.

Note that when each stage is implemented separately, in
some cases, more than one clock signal is used because dif-

ferent pipe stages can use di�erent clock signals. In all the

cases, the results indicate that resource sharing within and
across di�erent pipe stages reduces the design area from

anywhere between 3.6 and 43.3 %. This shows a substan-

tial reduction in area when resource-sharing across di�erent
pipe stages is allowed and it also indicates the e�ectiveness

of our algorithm.

5.3 Experiment 3: Control Unit Delay
This experiment is conducted for the AR �lter and the

elliptical �lter benchmarks. Figure 11 shows the result of
the elliptical �lter benchmark. There are two shape func-

tions of clock periods versus total delay. The shape function

in solid line is obtained by our shape function generation
algorithm with the control unit delay estimation, while the

shape function in dashed line is generated by our algorithm,

but assuming the control unit delay is zero.

From the results, we observe that the di�erence between

delays obtained with and without considering the control

unit delay becomes larger when the clock period becomes
smaller. Note that the di�erence can be as large as 720

ns. Therefore, we conclude that the control unit delay con-

tributes signi�cantly in the clock period and neglecting the
control unit delay may result in a bad choice of the clock

0 20 40 60 80 100
clock period (ns)

200

400

600

800

1000

1200

d
el

ay
 (

n
s)

with control unit delay
w/o control unit delay

Figure 11: The clock period vs. delay shape functions of
the EF example, generated with and without the control
unit delay estimation

period. Same conclusion can be reached for the AR �lter

benchmark [5].

6 Conclusions and Future Work
In summary, we have presented a clock selection algo-

rithm that, given a pipelined behavioral description and a
throughput constraint, selects the clock period leading to

the minimal-area design. We tested our clock-selection al-

gorithm on several examples and the results show that, in
most cases, our algorithm selects a clock period that uses

minimal area resources within less than one second. We

plan to extend our model to incorporate wire delays. Cur-
rently, we are working on a clock selection algorithm that

allows multiple clock signals.

7 Acknowledgements
This work was supported by the Semiconducter Research

Corporation (grant #94-DJ-146), and by the National Sci-

ence Foundation (grant CDA-9422095). We gratefully ac-

knowledge their support.

8 References

[1] S. Chaudhuri, S. A. Blythe, and R. A. Walker, \An Exact
Methodology for Scheduling in a 3D Design Space," in Proc.

8th ISSS, 1995.

[2] N. D. Dutt, and C. Ramachandran, \Benchmarks for the
1992 High-Level Synthesis workshop," TR#92-107, Dept.

of ICS, UCI, 1992.
[3] D. D. Gajski, N. Dutt, A. Wu, and S. Lin, High-Level Synthe-

sis: Introduction to Chip and System Design, Kluwer Aca-
demic Publishers, 1992.

[4] R. Jain, A. C. Parker, and N. Park, \Module Selection for
Pipelined Synthesis," in Proc. 25th DAC, 1988.

[5] H.-P. Juan, D. D. Gajski, and S. Bakshi, \Clock Optimiza-
tion for High-Performance Pipelined Design," TR#96-01,

Dept. of ICS, UCI, 1995.
[6] S. Narayan, and D. D. Gajski, \System Clock Estimation

based on Clock Slack Minimization," in Proc. EuroDAC,

1992.
[7] N. Park, and A. C. Parker, \Synthesis of Optimal Clocking

Schemes," in Proc. 22nd DAC, 1985.

[8] A. C. Parker, T. Pizzaro, and M. Mlinar, \MAHA: A Pro-
gram for Datapath Synthesis," in Proc. 23th DAC, 1986.

[9] VLSI Technology Inc., VDP370 1.0 Micron CMOS Datapath

Cell Library, 1991.

	CDROM Home Page
	1996 Home Page
	EURO-DAC96 Home Page
	Front Matter
	Table of Contents
	Session Index
	Author index

