
Describing Space-Continuous Models of Microelectromechanical Devices for

Behavioural Simulation

@eljko Mr~arica

Institute for Precision Engineering

Technical University Vienna

Floragasse 7, 1040 Austria

zeljko@ifwtrisc.ifwt.tuwien.ac.at

Van~o B. Litovski

Faculty of Electronic Engineering

University of Ni{

Beogradska 14, 18000 Ni{, Yugoslavia

vanco@earth.elfak.ni.ac.yu

Dejan Glozi}

IBM Software Solutions, Toronto Lab.

1150 Englinton St. East, North York

Ontario M3C 1H7, Canada

dglozic@vnet.ibm.com

Helmut Detter

Institute for Precision Engineering

Technical University Vienna

Floragasse 7, 1040 Austria

pdetter@ifwtcad.ifwt.tuwien.ac.at

Abstract

Modern behavioural simulators and their hardware

description languages enable description of time-

continuous and time-discrete models. In this work, a

modelling technique is developed for description of

space-continuous models, where partial differential

equations are used. A hierarchical library of partial

differential equations and boundary conditions for

microelectromechanical device modelling is created.

Mechanically complex devices have been modelled for

system-level simulation using this technique.

1. Introduction

Behavioural simulators and appropriate analogue

hardware-description languages like SABER (language

MAST) [1] and ELDO (language HDL-A) [2] allow

description of time-continuous models. These models are

described using algebraic and ordinary differential

equations (ODE), where only time derivatives are used.

These so-called lumped models are available for

electronic devices (diodes, transistors) and can be defined

for many other devices (electromagnet, electromotor).

However, it is not always possible to define a lumped

model on the basis of physical laws that govern the

device behaviour. For instance, many micromechanical

devices can be described only by the use of partial-

differential equations (PDE), because elastic bending of

micromechanical part must be modelled. Such bending is

preferred way of producing motion in microdimensions,

since it is difficult to produce mechanical joints or

rotational elements of very small size.

Derivation of the lumped, i.e. space-discrete models is

possible for some micromechanical devices in special

cases, where PDEs can be solved analytically. For other

devices, black-box modelling techniques could be used

for derivation of the lumped models from measured

characteristics. However, black-box models do not satisfy

condition of transparency [3], i.e. parameters of such

models do not represent physical quantities that can be

estimated from measurement or theoretical calculation.

Besides, these models cannot be used for extrapolation

outside the area that is used for model derivation, and

modelling of dynamic behaviour is very difficult [4].

For that reason, description of physically based and

accurate models of micromechanical devices demands

usage of PDEs, where not only time-derivatives, but also

derivatives with respect to spatial coordinates are used.

Nevertheless, such modelling is not directly supported by

the modern simulators and appropriate hardware

description languages (HDL). Introduction of new

language constructions into HDL is not a big problem,

provided that the source-code is available. However, the

simulation engine of a respective simulator creates some

limits in the modelling capabilities. These simulation

engines are suited for first-order ordinary differential

equations, since they are based on the simulation

techniques developed for circuit simulation in the well-

EURO-DAC ’96 with EURO-VHDL ’96
0-89791-848-7/96 $4.00 1996 IEEE

known simulator SPICE. For that reason, partial

differential equations must be reduced to the ODE form.

That reduction must be done in the language itself, so

that the simulation engine can be supplied with ODEs.

For description of the space-continuous models of

micromechanical devices and simulation of

microelectromechanical systems, we have used the

behavioural simulator Alecsis that we had developed.

Alecsis is similar to already mentioned simulators [1],

[2], having an advantage that its HDL AleC++ is object-

oriented. Different analogue systems have been simulated

until now [5]. For discretization of the partial differential

equations, finite difference method (FDM) is used. The

discretization is performed in AleC++.

In the next section, the features that a HDL must

satisfy to allow description of space-continuous models

are defined. In the third section, organization of

hierarchical libraries of PDEs and boundary conditions

used in micromechanics is explained. Usage of such

libraries makes description of space-continuous models

user-friendly. Viability of this technique is proven by

simulating several micromechanical devices and systems.

The last section summarizes these results and outlines

future plans for modelling of microelectromechanical

systems using HDL.

2. Modelling with partial differential equations

As is mentioned before, elastically bent micro-

machined structures are described using PDEs. Although

only terminal behaviour of such devices (usually sensors)

is of interest for system-level simulation, derivation of

physically based lumped model is not always possible. An

automatic translator of partial differential equations into

the form readable by circuit simulator SPICE has already

been achieved by program MEXEL [6]. Nevertheless,

this program is appropriate for equations with spatial

derivatives with respect to only one spatial coordinate,

which is enough only in special cases. To achieve

description of space-continuous model in a more flexible

way, we have used our behavioural simulator Alecsis and

its hardware description language AleC++.

A structure that is very often used in micromechanics

is a membrane (diaphragm). Equation that describes

behaviour of the micromachined membrane is [7]:

D
w

x
D

w

x y
D

w

y
p k

dw

dt
h

d w

dt

∂
∂

∂
∂ ∂

∂
∂

ρ
4

4

4

2 2

4

4

2

2
2+ + = − − (1)

where w is the displacement of the membrane, x and y

are the spatial coordinates, D is the bending rigidity, p is

the pressure, k is the damping coefficient, r is the

material density, and h is the membrane thickness.

Boundary conditions for the eqn. (1) are determined as

the model of physical connections of the membrane to

other parts of the system. Membrane can be connected to

other parts in different ways. If the length of the

membrane is L and the edge x=L is built into some rigid

rim, the boundary conditions are:

()w
w

xx L

x L

=
=

= 





=0 0,
∂
∂

(2)

Boundary conditions for membrane that are also often

used in micromechanics are those for the free edge. If W

is the width of the membrane, and edge y=W is free,

boundary conditions are [7]:

∂
∂

ν ∂
∂ ∂

∂
∂

ν ∂
∂

3

3

3

2

2

2

2

2
2 0 0

w

y

w

y x

w

y

w

x
y W y W

+ −






 = +







 =

= =

() , (3)

where n is the Poisson�s ratio.

For simulation, partial differential eqn. (1) has to be

discretized, i.e. partial derivatives have to be replaced by

finite differences. The discretization is performed by

defining some spatial mesh, and separate equation is

defined for every mesh node. The same must be

performed for each PDE describing boundary condition.

Therefore, one PDE is replaced by an equivalent system

of ordinary differential equations.

A HDL must satisfy some conditions to allow such

description, i.e. discretization of PDEs. There are two

main demands that are imposed. Firstly, HDL must be

capable of declaring an array of nodes (signals) of

variable size. In the case of eqn. (1), displacement w is

represented as a two-dimensional array of local

displacement of mesh nodes. The second important

condition is that the language should be capable of

creating an array of devices (submodels). In this way, a

discretized equation representing eqn. (1) can be defined,

and then copied into an array of equations over the mesh

nodes. This feature of creating an array of components is

known from VHDL, where array of logical gates or

subcircuits is often necessary.

Both these demands are satisfied in AleC++. Dynamic

allocation of arrays of signals (nodes) is possible. It

should be noted that AleC++ can be used both as

interpreted and as compiled language. Variable size

arrays can be used in both modes; there is no need for

model recompilation when size of an array is changed.

In the same way, an array of components (in this case

discretized equations) can be created. A discretized PDE

can be defined in a construction named module, which is

the basic structural unit in AleC++. In a module

hierarchically above this one, this construction can be

declared and then multiplied in a for loop that covers all

mesh nodes. A keyword clone is used for copying a

previously declared and defined component. PDEs for

boundary conditions can be defined in the same way, and

cloned in for loops for mesh boundary nodes.

In this way, the space-continuous model is described

as the system of equations, which is a part of the

complete system of equations for the whole circuit

(system). Therefore, the device and the system simulation

are mixed, since quantities that represent internal field

distributions appear in the same system of equations as

quantities on the device terminals. Although such

combination of description levels might be considered

inefficient, it is sometimes necessary for strongly coupled

systems. When device model and system description are

solved by two coupled simulators, the convergence

problems can appear due to the characteristics of Gauss-

Seidel method for solving the system of equations, i.e.

relaxation method of simulation [8]. It should be noted

that the simulation of the mechanical device behaviour

together with surrounding electronics is more important

in the case when coupling is strong, otherwise separate

simulations can give satisfactory results. In Alecsis, the

system of equations is solved as a whole, and the

Newton-Raphson method is used, which has better

convergence properties for strongly coupled systems than

the relaxation method.

3. Hierarchical libraries for description of

space-continuous models

The features of the HDL AleC++ allow the description

of partial differential equations. Nevertheless, when

partial derivatives are replaced by finite differences in

equation like eqn. (1), the complexity of the expression

grows. Therefore, it can be very difficult and error-prone

to describe such discretized expression directly. In order

to simplify the model description, a hierarchical library

of submodels is prepared.

Firstly, a set of modules for discretization of partial

derivatives can be defined. Such modules can be

predefined for each form of partial derivatives that is

used in eqn. (1). Of course, other forms of partial

derivatives can be used for some models of

micromechanical devices, too. Nevertheless, for elastic

deformation PDEs are limited to the fourth order.

Therefore, the number of possible variations of partial

derivatives is limited, and all cases can be prepared in the

library. Then, a PDE can be described by invoking

submodules for partial derivatives, where they contribute

to the same equation. That enables us to describe eqn. (1)

nearly as it is written.

There are other libraries that can be prepared for

modelling of micromechanical elements. Since the

membrane is often used in micromechanics, it can be

very useful to have the membrane equation also prepared

in the library. Besides, different boundary conditions for

the membrane (eqns. (2) and (3), etc.) are often used, and

can be prepared as the library, too. These libraries are

hierarchically organized. A hierarchical structure of the

libraries of predefined submodels for use in

micromechanics is given in Fig. 1. The membrane

equation and the boundary conditions are based on the

library of partial derivatives. A pressure sensor, created

as the membrane with all edges built-in, can be created

using previously defined membrane equation and

appropriate boundary conditions.

AleC++ supports such hierarchy through the usage of

classes. AleC++ is an object-oriented language, designed

Figure 1. Hierarchical libraries of micro-
mechanical submodels.

as a superset of C++. Basic construction for modelling is

a module. The class is the structure that contains the

module, model parameters (defining in that way a model

card) and other useful C++-like functions. Usage of

derived classes gives a straightforward way to establish

hierarchy, as is depicted in Fig. 1. The hierarchy can be

also defined in the HDLs that are not object-oriented, by

invoking already defined submodels during definition of

higher-level models. Nevertheless, usage of an object-

oriented language makes this hierarchical organization

much more understandable and secure, since inheritance

of model properties is better controlled, as well as access

rights to model parameters.

When the libraries given in Fig. 1. are used, the

description of micromechanical structures is much simpler.

By simple combination of predefined model equations and

boundary conditions, different structures can be defined. For

instance, the membrane with two edges built-in and two

edges free can be modelled and simulated simply by

invoking appropriate equations (modules) from the library.

Such model represents a new, user-defined derived class,

that can be also stored in the library.

The basic boundary conditions for the membrane,

depicted in Fig. 1., do not cover all possibilities. The

boundary conditions can be defined as the equilibrium of

boundary forces and moments between two neighbouring

structures. Since such boundary conditions cannot be

prepared for the general case, the designer of the

micromechanical device model is responsible for defining

them. For that reason, expressions for shearing forces,

bending moments and twisting moments at the

membrane boundary [7] are also given in the library (Fig.
1). These expressions are also PDEs. They can be used

for definition of complex boundary conditions, for

example for connection of the membrane with the boss

(thick and rigid part). Structures with bosses are often

used for micromachined sensors. The designer can define

the new class, containing boundary conditions that he

needs, and store it in the library.

There is also a special boundary condition of

symmetry, already prepared in Alecsis library. When

both the micromechanical structure and the load are

symmetrical, it can be very useful to model and simulate

only the part of the structure, since the respective system

of equation is much smaller, and therefore the simulation

time is much shorter. (Due to the sparse matrix solver,

simulation time does not increase drastically with the

increase of the matrix size, but the benefit is still

considerable.)

When the libraries given in Fig. 1. are used, modelling

of micromechanical structures is simplified.

Nevertheless, the discretization scheme (pattern of

neighbouring mesh nodes used for discretization) would

vary for different PDEs. The designer is still responsible

to know these schemes and to build the consistent system

of equations, where one equation corresponds to one

mesh node.

4. Modelling and simulation examples

The simulation results for the membrane with

different boundary conditions are given in Fig. 2. The

difference in the model code between cases a) and b) is

only in the boundary conditions that have been invoked

in the appropriate for loop. In both cases membrane

width and length are L=W=1mm, thickness is h=5mm,

Young�s modulus = 169GPa, Poisson�s ratio = 0.3. The

uniform load of 1kPa is applied.

In Fig. 3, simulation results for a more complex

micromechanical structure are given. The structure is a

force sensor with piezoresistive transducers [9]. The two

meshed parts are micromachined membranes. Each of

the membranes has one side built into the rim and two

sides free, while the fourth side is built into the boss. The

boss is the central part of the structure, where the force is

acting. The boundary conditions for the first three

mentioned edges are available in the library. For the

a)

b)

Figure 2. a) Structure with three edges
built-in and one edge free. b) Bridge
structure, with two edges built-in, and two
edges free.

fourth edge, boundary conditions are defined from the

equilibrium of forces and moments on the membrane

edge (which are also available in the library) and for the

geometrical conditions for the membrane built into the

boss. In Fig. 3., the deflected parts are membranes 354mm

wide, 133 mm long, 5mm thick. Rigid part (boss) is

354mm wide and 870.7mm long. Force F=2mN is acting
at the boss centre.

Fig. 2. and Fig. 3. represent simulation results for

micromechanical devices. However, the main purpose of our

modelling method was to enable simulation of the

microelectromechanical systems (MEMS). When a sensor is

modelled using the described technique, it is enclosed in a

module that is later invoked with its terminal connections.

Therefore, although such model is space-continuous, it is

invoked in the same way as any other model in the system-

level description (transistor, resistor, capacitor, etc.). If the

model of micromechanical sensor or actuator is already

prepared in the library, the system-level designer does not

need to know its internal structure. The model is invoked by

its name, connection terminals (which are not necessarily of

electrical nature) and the model card (similar to the SPICE

model card). More than one instance of the given model can

be declared and used.

In Fig. 4., a capacitive pressure sensor is shown, with

switched-capacitor (SC) circuit for converting the

capacitance value into the output voltage. f1 and f2 are

the switching phases. The sensor is the membrane of

rectangular shape with all four edges built into the rim.

Capacitance between the membrane and the bottom plane

is changed when the pressure is applied. There are four

components of the pressure - the applied (measured)

pressure, the pressure caused by a temperature coefficient

mismatch between different materials used in the sensor

production, the electrostatic pressure, and the pressure of

the gasses trapped in the sensor chamber. All these

components can be analytically expressed and added to

the eqn. (1).

In Fig. 5., simulation results for the system given in

Fig. 4. are given. The traced quantities are the measured

pressure, the displacement of the membrane centre, the

capacitance of the sensor and the circuit output voltage.

The effects of the electrostatic pressure change are

modelled and simulated. The voltage across the sensor

plates is variable, due to the switched-capacitor circuitry.

The abrupt change of the electrostatic pressure causes

mechanical oscillations. The oscillations are modelled by

the time derivatives in the eqn. (1).

Models like this capacitive pressure sensor cannot be

formulated in lumped form in general case, even by

black-box modelling techniques. The influences of the

applied pressure, the electrostatic pressure and other

effects are distributed over the membrane surface.

Besides, extraction of the lumped model from the

measured characteristics is difficult because of inertia

and dumping effects, i.e. time dependencies. The space-

Figure 5. Simulation results for the
pressure sensing system.

Figure 3. Displacement of the force sensor.

Figure 4. Capacitive pressure sensor with
SC read-out electronics.

continuous model that is used here is physically based,

with all important effects taken into account. Simulation

time for the example given in Fig. 5. was 10.4 CPU

minutes on a modest UNIX workstation.

This example exhibits bidirectional coupling of

mechanics and electronics, since influence of the

electrostatic forces is important (due to the miniaturized

size of the sensor). If two specialized simulators (one for

device and other for system simulation) are coupled,

convergence problems can arise. In our simulation, one

behavioural simulator is used, therefore one system of

equation is built for the whole system. The Newton-

Raphson method, which has very good convergence

properties, is used for solving.

5. Conclusion

In this work, behavioural mixed-signal simulator

Alecsis was used for the simulation of systems that

contain space-continuous models of devices. Other

simulators can be used for this purpose in the same

manner, providing that their hardware description

languages have two properties: allocation of the arrays of

nodes (signals) of variable size; use of the arrays of

subcomponents of variable size.

Although space-continuous models are usually not of

interest for the system-level simulation, they are

sometimes necessary. It is not always possible to define a

physically based lumped model that is accurate enough

for simulation.

Since in this way the internal fields in the device are

also modelled and simulated, a behavioural simulator can

be used for device-level simulation, too. Although finite-

element simulators are usually used for device-level

simulation of sensors and actuators, analytical approach

of modelling can sometimes has its advantages. Limits of

such models are the same as, for instance, for program

SENSIM [10]. Device models described in this way can

be invoked as components for system-level simulation.

Simulation times for sensors involving read-out

circuitry were less than 30 min for the most complex

examples. These times are acceptable when compared to

times for complex finite-element device simulations.

The user-friendliness of the PDE description is

facilitated by the use of libraries of submodels. This

library is created for micromechanical devices.

Nevertheless, usage of PDEs for modelling can be

important for other problems, too. For instance, models

of transmission lines are space-continuous. Also, such

modelling approach can be used for simulation of some

electronic devices. On the basis of libraries in Fig. 1.,

equivalent libraries for different purposes can be

developed.

Clearly, the approach that we use allows only limited

complexity of the models of micromechanical devices.

Usage of finite elements instead of finite differences

would enable more flexibility in the modelling, since the

meshing (discretization) is more general. Usage of finite

elements would be our research topic in the future. Our

work will be also oriented to building of libraries of

different micromechanical devices, as well as to further

development of HDL AleC++ for increasing the user

friendliness of the space-continuous model description.

Acknowledgement

This work was supported by project P10068 - �Development,

construction and fabrication of micromechanical parts� from the

Austrian Fonds zur Förderung der wissenschaftlichen Forschung.

References

[1] I. E. Getreu. Behavioral modeling of analog blocks using
the SABER simulator. 32nd Midwest Symposium on CAD,
Illinois, USA, 977-980, August 1989.

[2] D. Pabst. HDL-A VHDL-based analog and mixed signal model
description language. Tutorial T1 of Simulation Congress

EUROSIM �95, Vienna, Austria, September 1995.
[3] G. K. M. Wachutka. Problem-oriented modeling of

coupled physical effects in microtransducers and electronic
devices. Proc. of IEEE Int. Conf. on Microelectronics

MIEL �95, Ni{, Yugoslavia, 539-547, September 1995.
[4] K. Hofmann, J. M. Karam, M. Schulze, M. Theisen, B.

Curtois, M. Glesner. Automatische Übersetzung von FEM-
Modellen in eine Analoge Hardwarebeschreibungssprache.
Proc. of Mikro System Technik, Mikromechanik &

Mikrotechnik, Chemnitz, Germany, 86-91, October 1995.
[5] @. Mr~arica, T. Ili}, D. Glozi}, V. Litovski, H. Detter.

Mechatronic simulation using Alecsis. Anatomy of the
simulator. Proc. of Simulation Congress EUROSIM'95,
Vienna, Austria, 651-656, September 1995.

[6] G. Pelz, J. Bielefeld, F.-J. Zappe, G. Zimmer. MEXEL:
Simulation of microsystems in a circuit simulator using
automatic electromechanical modeling. Proc. of Micro System

Technologies �94, Berlin, Germany, 651-657, October 1994.
[7] S. Timoschenko, S. Woinowsky-Krieger. Theory of plates

and shells. McGraw-Hill Inc., 1959.
[8] S. Schulte, A. Maurer, H. Bungartz. Modular solution

approach for simulation of coupled physical phenomena.
Proc. of Conf. on Simulation and Design of Microsystems

and Microstructures MICROSIM �95, Southampton, UK,
201-209, September 1995.

[9] N. Delic, H. Detter, G. Popovic, W. Brenner.
Microgrippers and measuring forces applied to microparts.
Proc. of ECPD Int. Conf. on Adv. Robotics and Intelligent

Automation, Athens, Greece, 481-486, September 1995.
[10] K.-W. Lee, K. D. Wise. SENSIM: A simulation program

for solid-state pressure sensors. IEEE Transactions on

Electron Devices, 29(1):34-41, January 1982.

	CDROM Home Page
	1996 Home Page
	EURO-DAC96 Home Page
	Front Matter
	Table of Contents
	Session Index
	Author Index

