
Assignment of Storage Values to Sequential Read-Write Memories

Sabih H. Gerez� and Erwin G. Wouterseny

Department of Electrical Engineering, University of Twente, The Netherlands
email: s.h.gerez@el.utwente.nl , wouter@natlab.research.philips.com

Abstract

Sequential read-write memories (SRWMs) are RAMs
without an address decoder. A shift register is used instead
to point at subsequent memory locations. SRWMs consume
less power than RAMs of the same size. Algorithms are pre-
sented to check whether a set of storage values fits in a sin-
gle SRWM and to automatically map storage values in as
few SRWMs as possible. Benchmark results show that good
assignments can be obtained in spite of the limited address-
ing capabilities.

1. Introduction

High-level synthesis, the automatic mapping of an algo-
rithmic description of some computation to a description
at the register-transfer level, is normally tackled by divid-
ing the problem into a number of subproblems and solving
them sequentially (see e.g. [3, 4]). These subproblems in-
cludeschedulingandassignment. Scheduling maps an op-
eration in the algorithmic description to a time instant and
assignment deals with the mapping to computational units,
storage units and interconnection.

This paper addresses the memory assignment problem
for the case that a schedule has already been fixed. In gen-
eral, it will be necessary to store intermediate results in
some way in order to satisfy the result of scheduling. These
intermediate results are calledstorage values[16] and it is
part of the assignment task to map these values on memory
elements available within an architectural model.

Normally registersandregister filesare used for the pur-
pose of storage in a data path (see e.g. [6]). Registers have
a single memory location while register files have multiple

�The work reported in this document was initiated when the author was
anacademic guestat the Institute of Microtechnology, Neuchˆatel, Switzer-
land in the months June and July of 1994. The author is grateful to the
Ecole Polytechnique F´edérale de Lausanne, Switzerland for providing the
financial support for the visit.

yAuthor’s current affiliation: Philips Research Laboratories, ED&T
Synthesis, Eindhoven, The Netherlands.

RAM
core

Data in/out

Reset

Next

Figure 1. A sequential read-write memory.

locations identified by an address (similar to a RAM). Re-
cently,queues, stacks, andbidirectional queueshave been
proposed as alternative memory elements by Aloqeely and
Chen [1]. They consist of structures of shift register chains
in which the writing and reading of data occurs in first-in-
first-out order (queue: write in first register and read from
last register in chain), last-in-first-out order (stack: write to
and read from first register only) or a combination of both
(bidirectional queue: write to or read from either the first
or the last register in the chain). Another variation of these
structures is thecircular FIFO proposed by Bennour and
Aboulhamid [2] (this structure is similar to a queue with the
additional property that the data from the last register can
be fed back to the first one).

This paper considers yet another type of memory ele-
ment: thesequential read-write memory(SRWM). It can be
seen as “RAM without address decoding”. Instead of an ad-
dress decoder there is a shift register. Only one of the bits
in this register is high and it is used as a pointer to a mem-
ory location to which data can be written or from which
data can be read. A control signal (next) can make this bit
point to the next higher memory location in the next control
step and another control signal (reset) can reset the shift
register such that the high bit points at the lowest memory
location. This has been visualized in Figure 1. These mem-
ories have been designed and used by Heubi et al. [8, 9].
Obviously, the read-only version of such a memory is well
suited for the storage of multiplication coefficients in the re-

EURO-DAC ’96 with EURO-VHDL ’96
0-89791-848-7/96 $4.00 1996 IEEE

alization of DSP algorithms (they are read repetitively in a
fixed order). The read-only version can also be adapted for
the realization of controllers [10].

Compared torandom access memories, sequential mem-
ories are far more constrained for the storage of intermedi-
ate values produced and consumed in the data path. They
might still be considered to be used as aread-write memory,
because they are simpler: as there is no address decoding,
only few control signals are necessary (instead of an ad-
dress) which also leads to a simplification of the controller.

SRWMs have a similar behavior as the structures pro-
posed by Aloqeely and Chen, but are more interesting as
they are generally smaller and use less power (the data is,
for example, not moved around in every control step). A
study comparing SRWMs and shift-register structures for
area and power consumption has been reported by Heubi
[8]; it turns out that SRWMs are better in both aspects once
that the memories are sufficiently large (in word length and
number of memory locations). When a common RAM is
compared with an SRWM for the same number of memory
locations, the SRWM is smaller and uses less power pro-
vided that the number of memory locations is sufficiently
large. The gain comes from the shift register whose size
grows linearly with the number of memory locations, while
an address decoder grows more than linearly.

Storage values that do not have read or write conflicts
can be stored in a single RAM without bothering about the
address at which they will reside: all addresses are equally
accessible. This is not the case for an SRWM: the read and
write times of storage values restrict the address to which a
specific value can be mapped. The first problem discussed
in this paper deals with the problem of determining whether
a specific set of storage values fits in a single SRWM and
providing the address for each storage value when there is
a fit. The second problem is to partition an arbitrary set
of storage values in a minimal number of subsets such that
each subset can be mapped on a single SRWM. A secondary
goal is to minimize the total of number memory locations
used. The first problem is solved exactly by a backtracking
algorithm. This algorithm is later used as a subroutine of a
heuristic that solves the second problem.

The memory elements discussed in this paper should be
seen as an alternative to memory elements that are tradi-
tionally used. There may be circumstances in which they
provide the best design solution. Therefore, a tool as the
one described here, should be seen as part of a toolbox that
also contains synthesis tools for other memory types.

The structure of this paper is as follows. First two combi-
natorial optimization problems related to the use of SRWMs
in high-level synthesis are formulated. Then algorithms are
proposed to solve these problems. The final part of the pa-
per consists of the presentation of experimental results ob-
tained by these algorithms and some conclusions.

2. Formulation of the problems

The application domain addressed in this paper is digital
signal processing, characterized by the (almost) infinite iter-
ation of some algorithm. Such an algorithm is characterized
by a parameterT0 called theiteration period[7]. All com-
putations are repeated everyT0 control steps, where a con-
trol step corresponds to a single period of a system clock.
This does not mean that all operations belonging to a sin-
gle execution of an algorithm need to be performed within
T0 control steps. Assuming anoverlapped scheduling[15]
model, theschedule spancan be larger thanT0.

One iteration period covers the control stepsT =
f0; 1; : : : ; T0 � 1g. The result of a scheduling algorithm,
containing the mapping in time of a single iteration, will,
however, have references to control steps inZ (the set of
all integers). The storage values are part of the setS =
fs0; s1; s2; : : :g. For each values 2 S, !(s) is the write
time, the time when the value should be stored in memory:
! : S ! Z. A value can be read more than once after hav-
ing been written. The time instances at which this happens
are indicated by the function� : S ! 2Z , where2Z is the
power setof Z (the set of all its subsets).

In the rest of the analysis, two different clocking schemes
are considered. In one, reading and writing takes place in
the same clock phase. In the other, a control step has distinct
clock phases for reading and writing. The two schemes will
be referred to as thesingle-phaseandmultiple-phaseclock-
ing models respectively.

The latest read timefor a storage value is given by the
function � : S ! Z: �(s) = maxt2�(s). The lifetime in-
terval [16] for each storage value is given by the function
� : S ! 2Z . If a single-phase clock scheme is used this
function is defined as:�(s) = fz 2 Zj!(s) � z � �(s)g.
If a multiple-phase clock scheme is used this function is de-
fined as:�(s) = fz 2 Zj!(s) < z � �(s)g. The lifetime
of a storage values is defined as:�(s)� !(s).

Even when the values of!(s) and the members of�(s)
may not always be in the setT , it is useful for the rest of
the analysis to concentrate on time values inT . Therefore,
the auxiliary functions!m : S ! T and�m : S ! 2T are
introduced:!m(s) = !(s) mod T0 and�m(s) = ft mod
T0jt 2 �(s)g. In a similar way,�m : S ! T , �m(s) =
�(s) mod T0, �m : S ! 2T , and�m(s) = ft mod T0jt 2
�(s)g.

Figure 2 shows an example of a set of storage values
after taking all time values moduloT0 (T0 = 10). An ar-
row pointing downward indicates the write time of a storage
value and an arrow pointing upward a read time. Note that
the repetitive nature of the problem is expressed by repeat-
ing control step 0.

For the time being, it is assumed that all storage values
s 2 S, have a lifetime of at mostT0. In case of storage

0 5 01 2 3 4 6 7 8 9

s0
s1
s2

Figure 2. A set of storage values.

values with an actual lifetime longer thanT0, they are sup-
posed to have been split into values with a lifetime of at
mostT0 in a preprocessing step.

The following combinatorial optimization problems with
respect to synthesis with sequential read-write memories
are considered here:

� REALIZABILITY. Given an iteration periodT0, a set
of storage valuesS and the functions! and �, find
out whether all storage values inS can be stored in a
single SRWM. If so, indicate the address to which each
storage value should be assigned.

� MINIMAL GROUPING. Given an iteration periodT0,
a set of storage valuesS and the functions! and�, find
a partition ofS in disjoint subsetsS1; S2; ::::Sk, such
that each subset can be realized on a single SRWM and
k is minimal.

3. The realizability problem

Because the realizability problem is a central problem in
SRWM synthesis, it has been chosen to solve it exactly. As
the problem is NP-complete [18], it is solved by a back-
tracking algorithm as explained below.

A valid address assignmentis denoted by the function
� : S ! A. HereA is the set of address locations
f0; 1; : : :g. To storejSj storage values, never more than
jSj memory locations are necessary (in practice often less,
because storage values can share memory locations if they
do not have to be stored simultaneously).

A read/write conflictbetween storage values is defined
slightly differently for the two clocking schemes. It is de-
noted by the Boolean function
 : S � S ! f0; 1g. For
a single-phase clock:
(si; sj) � !m(si) = !m(sj) _
!m(si) 2 �m(sj)_!m(sj) 2 �m(si)_�m(si)\�m(sj) 6=
;. For a multiple-phase clock:
(si; sj) � !m(si) =
!m(sj) _ �m(si) \ �m(sj) 6= ;.

Two storage values are said to overlap if their lifetime
intervals overlap. This is given by the Boolean function

 : S � S ! f0; 1g:

(si; sj) =

�
0 �m(si) \ �m(sj) = ;

1 otherwise

Theaccess timefor a destination address (d), given the
current position of the address pointer (p) is given by the
function� : A�A! N

+:

�(p; d) =

�
d� p d � p

d+ 1 d < p

If d < p, a reset andd next signals are necessary. Oth-
erwise, justd� p next signals are sufficient.

The decision to assign a storage value to a specific ad-
dress can have consequences for the assignments feasible
for the other storage values. This is determined by the num-
ber of control steps which is available to move the pointer
from the address of one storage value to the address of an-
other. Dealing with this aspect requires the definitions of an
action, asuccessorand theavailable time.

An action is either a read or a write action. A storage
valuesj is called asuccessorof si if and only if an action
on si is immediately followed by an action onsj . Here
“immediate” means that no other storage value has an ac-
tion in the mean time. Besides, a storage value is not its
own successor by definition. Theavailable timeis given
by the function� : S � S ! N

+. If sj is a successor of
si, �(si; sj) is equal to the smallest number of control steps
between an action onsi and an action onsj , where these ac-
tions follow each other immediately. Ifsj is not a successor
of si, �(si; sj) has an infinite value.

Now the requirements for the realizability problem can
be formulated:

1. No conflicts:8si; sj 2 S; i 6= j :
(si; sj) = 0.

2. No overlap: a function� should be found such that
8si; sj 2 S; i 6= j :
(si; sj) = 1) �(si) 6= �(sj).

3. Sufficient time:� should also obey8si; sj 2 S; i 6= j :
�(�(si); �(sj)) � �(si; sj).

Checking for the “no-conflicts requirement” is trivial.
The remaining requirements are well-suited for a backtrack-
ing search procedure [11]. For each storage value for which
more than one address assignment is possible, a tentative
choice for one of the addresses is made. The other choices
will possibly be considered after backtracking. Before con-
tinuing the recursive search process, the consequences of
the “no overlap” and “sufficient time” requirements are
computed, thus restricting the choices for the address as-
signment of the remaining storage values. A solution has
been found when all storage values have a single possible
address assignment that obeys the two requirements. If a sit-
uation occurs where some storage value cannot be assigned
to any location, no solution can be found by further search-
ing and backtracking can start directly. Besides, one has the
choice to stop after thefirst solution found or to continue
searching in order to find thebestsolution (with the least
number of memory locations).

Specific combinations of read-write patterns can directly
put initial constraints on address locations before starting
the search. For example, the existence of three storage val-
ues with overlapping life timessi; sj ; sk 2 S, �(si; sk) = 1
and�(sj ; sk) = 1 implies�(sk) = 0 (only thereset sig-
nal can change the address pointer from two different loca-
tions to the same location in one control step). Generaliza-
tions of this rule and other similar patterns can be found in
[17].

The reader should check that the problem of Figure 2 is
realizable with the unique solution that mapss0 to address
2, s1 to address 0 ands2 to address 1.

4. The minimal grouping problem

Given the fact that the exact solution of the realizabil-
ity problem is already quite complex, it can be stated that
an exact solution of the minimal grouping problem is not
feasible. Actually, the minimal grouping problem is NP-
hard [18]. Obviously, any heuristic that attempts to solve
the minimal grouping problem, will need to use an algo-
rithm for the realizability (at least to check whether a given
grouping is correct; this could either be done by an exact or
by a heuristic method). As the realizability algorithm pro-
posed has an exponential worst-case time complexity, an ef-
fective heuristic requiring a “limited” use of the realizability
check should be found (search methods that visit many po-
tential solutions, like simulated annealing [12], cannot be
considered).

The algorithm proposed for the minimal grouping prob-
lem consists of two stages both of which use the routine for
realizability test. The first is aninitial assignmentphase in
which a solution with some number of memories is con-
structed such that the assignments to all memories is real-
izable. The pseudo-code for a simple algorithm that solves
this task is given in Figure 3. The storage values are first
ordered in decreasing order of “difficulty”. The difficulty
expresses the overlap that the storage value has with other
storage values and the number of read/write conflicts it
has. Randomization is used to break ties. The algorithm
takes each storage value and tests whether the value can be
mapped on one of the memories already allocated. If not,
a new memory is allocated to hold this storage value. The
set of storage values assigned to a memory with indexi is
denoted byRi.

The second stage is aniterative improvementstage. Its
pseudo-code description is given in Figure 4. The main idea
is to take the setP of all storage values in the first memory
and try to assign them to any of the remaining memories.
If this does not succeed for some storage value, this value
ends up in the newly created “overflow” memory. As the
set of storage values that is being redistributed is known to
be realizable, the worst that can happen is that all its ele-

maxmem := 0;
for all s 2 S “in order of decreasing difficulty”do

flag := true;
for i := 1 to maxmemdo

if flag and realizable(fsg [Ri)
thenRi := fsg [Ri;

flag := false;
fi

od;
if flag
then maxmem := maxmem + 1;

Rmaxmem:= fsg
fi

od;

Figure 3. Minimal grouping: initial assignment.

ments end up in the overflow memory. So, the number of
memories never increases, but may decrease.

The process just described is repeated while being care-
ful not to enter an infinite loop. If the setP at a certain
iteration equals any of the setsP encountered in an earlier
iteration, the iterative improvement process is terminated.
Experiments show that this happens after some 20 to 30 it-
erations. During this search process the solution with the
minimal number of total memory locations (for the optimal
number of memories) is recorded as the best solution.

5. Experimental results

The results to be presented in this section have been ob-
tained by an implementation of the algorithms mentioned
above in C++ on an HP 735 machine (results in earlier pub-
lications [5, 19] were obtained by a prototype implemented
in CMU Common Lisp; the Lisp prototype also contained a
postprocessing routine that was not implemented this time).
The two versions of realizability algorithm were imple-
mented (see Section 3) and it turned out that using thebest-
solutionversion did not improve the quality of the solution
compared to thefirst-solutionversion. All results reported
here were obtained with the first-solution version.

Sets of storage values with “regular” write and read pat-
terns, as used in the publications of Aloqeely and Chen
[1], have not been investigated. It is obvious that sequen-
tial memories are especially suited for this type of patterns.
The goal of the experiments performed was to see whether
SRWMs could as well be considered for “irregular” prob-
lems. Although many benchmarks for high-level synthesis
are known, generally accepted benchmarks for the isolated
problem of memory synthesis do not exist. Therefore, for

repeat
P := R1;
for i := 1 to maxmem – 1do
Ri := Ri+1

od;
maxmem := maxmem – 1;
for all s 2 P do

flag := true;
for i := 1 to maxmemdo

if flag and realizable(fsg [Ri)
thenRi := fsg [Ri;

flag := false;
fi

od;
if flag
then maxmem := maxmem + 1;

Rmaxmem:= fsg
fi

od
until “loop condition detected”;

Figure 4. Iterative improvement.

the first set of experiments, a family of benchmark examples
proposed by Parhi [14] has been selected. They consist of
the repetitive transpositions of arbitrary size matrices. Con-
sider e.g. the following3� 4 matrix:

2
4 s0 s1 s2 s3

s4 s5 s6 s7

s8 s9 s10 s11

3
5

of which the elements arrive in a row-by-row order (one
element per control step):s0, s1, s2, s3, s4, etc. Trans-
position requires that the elements are output in a column-
by-column order:s0, s4, s8, s1, s5, etc. This requirement
directly defines thenm � 1 storage values (the matrix ele-
ment at the lower left has a lifetime of zero). Once that all
elements of one matrix have been processed, a new matrix
to be transposed arrives. Obviously,T0 = nm for ann�m

matrix. Parhi shows that for these problems(n�1)(m�1)
is a lower bound for the number of memory locations (and
that this lower bound can be met using tailored shift register
structures interconnected in a specific way).

These benchmarks have the property that they contain
storage values with lifetimes longer thanT0. They have
been split in the way mentioned in Section 2. An implemen-
tation with RAMs would also require splitting, unless spe-
cial addressing hardware is used [13]. Table 1 shows some
results obtained for different matrix dimensions both for the
single-phase (indicated by “sp”) and multiple-phase (“mp”)
clocking models. For each problem 10 runs have been per-

problem # memories # locations CPU
time [sec]

5� 5 sp 4..5 (4) 22..24 (16) 0.21
5� 5 mp 3..4 (3) 18..19 (16) 0.50
6� 6 sp 5..6 (4) 33..35 (25) 1.7
6� 6 mp 4 (3) 28..30 (25) 1.6
7� 7 sp 6 (4) 45..49 (36) 5.8
7� 7 mp 5 (3) 39..44 (36) 14
8� 8 sp 7 (4) 61..64 (49) 110
8� 8 mp 5..6 (3) 53..58 (49) 130

Table 1. Results for matrix transposition.

formed to be less dependent on the influence of randomiza-
tion. The given CPU time is the average per run. For each
benchmark, the number of memories and the total number
of memory locations found are given. In the cases that dif-
ferent results were found in different runs, the minimum and
maximum values are given in the form “min..max”. The
values between parentheses are lower bounds. For the num-
ber of memories, this is a “heuristically computed” lower
bound for the case that RAMs instead of SRWMs would be
used for the given splitting. For the total number of memory
locations, the lower bound in the hardware model of Parhi
is given (see above); it is not likely that the lower bound can
be met in a hardware model of RAMs or SRWMs.

With respect to the necessary number of memories, it
can be seen that this number is generally close to the lower
bound (given by the possible RAM assignment). Also the
total number of memory locations is often close to the lower
bound. It should be noted that the shift-register structure of
Parhi [14] is capable to read from and write to any register
within a single control step. It turns out that only few extra
locations are necessary when using a multiple-phase clock.
The difference with the lower bound is, obviously, larger for
the more constrained single-phase clock scheme.

The second set of experiments intended to evaluate the
minimal grouping heuristic. For this purpose, random
benchmarks were used that were known to fit in a sin-
gle memory (by first constructing a pattern ofnext and
reset signals and deriving write and read times from
them). Mergingn such benchmarks with the same value
for T0 leads to a problem that is guaranteed to have a solu-
tion withn SRWMs. The results found are given in Table 2.
It can be seen that the minimal grouping heuristic performs
quite well for these benchmarks and often finds a solution
with at mostnmemories, although there is a tendency in the
results to deteriorate as the benchmarks become more com-
plex. Just to give an impression, the most complex bench-
mark (T0 = 80 andn = 5) consisted of 72 storage values
(performing 177 actions) and the ten runs of the program
produced solutions with 54 to 56 locations and using an av-
erage run time of 47 seconds.

T0 n = 2 n = 3 n = 4 n = 5

20 2 3 4 4
30 2 3 4..5 5
40 3 3 4 5
50 2 3 4 5
60 2 3..4 5 5..7
70 2 3..4 4..5 5..6
80 2 3..4 5 6..7

Table 2. Random benchmark results.

6. Conclusions and further research

This paper has shown that SRWMs may be an attractive
alternative to RAMs for the storage of values in data-path
synthesis. Even in the case of “irregular” read-write pat-
terns, SRWMs could be applied in spite of their limited ad-
dressing capabilities.

Two algorithms were presented to automatically map
storage values on SRWMs. The first one solves the real-
izability problem exactly using an algorithm that has an ex-
ponential worst-case time complexity. The second one uses
the first as a subroutine to solve the minimal-grouping prob-
lem in a heuristic way. It, therefore, also has an exponential
worst-case time complexity.

An important issue for future research is to speed up
these algorithms, possibly by relaxing the requirement of
solving the realizability problem exactly. The ultimate is-
sue is to integrate an SRWM-synthesis tool within a larger
framework of tools for data-path synthesis, especially a syn-
thesis system for low-power design.

References

[1] M. Aloqeely and C.Y.R. Chen. A new technique for exploit-
ing regularity in data path synthesis. InEuropean Design
Automation Conference, EURO-DAC, pages 394–399, 1994.

[2] I.E. Bennour and E.M. Aboulhamid. Register allocation us-
ing circular FIFOs. InInternational Symposium on Circuits
and Systems, pages 560–563, 1996.

[3] G. De Micheli. Synthesis and Optimization of Digital Cir-
cuits. McGraw-Hill, New York, 1994.

[4] D.D. Gajski, N.D. Dutt, A.C.H. Wu, and S.Y.L. Lin.High-
Level Synthesis, Introduction to Chip and System Design.
Kluwer Academic Publishers, Boston, 1992.

[5] S.H. Gerez and E.G. Woutersen. A high-level synthesis tool
for the assignment of storage values to sequential read-write
memories. InIFIP TC 10 WG 10.5 International Workshop
on Logic and Architecture Synthesis, pages 220–230, Greno-
ble, December 1995.

[6] B.S. Haroun and M.I. Elmasry. Architechtural synthesis for
DSP silicon compilers. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 8(4):431–
447, April 1989.

[7] S.M. Heemstra de Groot, S.H. Gerez, and O.E. Herrmann.
Range-chart-guided iterative data-flow-graph scheduling.
IEEE Transactions on Circuits and Systems I: Fundamental
Theory and Applications, 39:351–364, May 1992.

[8] A. Heubi, M. Ansorge, and F. Pellandini. Architecture VLSI
faible consommation pour le traitement num´erique du sig-
nal. In Proceedings GRETSI ’93, pages 1083–1086, Juan-
les-Pins, France, September 1993.

[9] A. Heubi, S. Grassi, M. Ansorge, and F. Pellandini. A low
power VLSI architecture with an application to adaptive al-
gorithms for digital hearing aids. In M.J.J. Holt, C.F.N.
Cowan, P.M. Grant, and W.A. Sandham, editors,Signal Pro-
cessing VII: Theories and Applications (Proceedings of the
EUSIPCO-94 Seventh European Signal Processing Confer-
ence), pages 1875–1878, 1994.

[10] H.A. Hilderink and J.A.G. Jess. Rom-based multi thread
controller. InIFIP Workshop on Logic and Architecture Syn-
thesis, pages 231–241, Grenoble, December 1993.

[11] E. Horowitz and S. Sahni.Fundamentals of Computer Al-
gorithms. Computer Science Press, Rockville, Maryland,
1978.

[12] S. Kirkpatrick, C.D. Gelatt, and M.P. Vecchi. Optimization
by simulated annealing.Science, 220(4598):671–690, May
1983.

[13] J.L. van Meerbergen, P.E.R. Lippens, W.F.J. Verhaegh,
and A. van der Werf. Relative location assignment for
repetitive schedules. InEuropean Conference on De-
sign Automation with the European Event on ASIC Design,
EDAC/EUROASIC, pages 403–407, 1993.

[14] K.K. Parhi. Systematic synthesis of DSP data format con-
verters using life-time analysis and forward-backward reg-
ister allocation.IEEE Transactions on Circuit and Systems
- II: Analog and Digital Signal Processing, 39(7):423–440,
July 1992.

[15] K.K. Parhi and D.G. Messerschmitt. Static rate-optimal
scheduling of iterative data-flow programs via optimum un-
folding. IEEE Transactions on Computers, 40(2):178–195,
February 1991.

[16] L. Stok and J.A.G. Jess. Foreground memory management
in data path synthesis.International Journal of Circuit The-
ory and Applications, 20:235–255, 1992.

[17] E.G. Woutersen. The application of sequential read-write
memories in high-level synthesis. Master’s thesis, Univer-
sity of Twente, Department of Electrical Engineering, Lab-
oratory of Network Theory, December 1995. EL-BSC-
097N95.

[18] E.G. Woutersen and S.H. Gerez. Some complexity results
in memory mapping. InThird HCM BELSIGN Workshop,
Corsica, April 1996.

[19] E.G. Woutersen and S.H. Gerez. The application of se-
quential read-write memories in high-level synthesis. In
GRONICS ’96: Groningen Information Technology Confer-
ence for Students, pages 93–100, Groningen, The Nether-
lands, February 1996.

	CDROM Home Page
	1996 Home Page
	EURO-DAC96 Home Page
	Front Matter
	Table of Contents
	Session Index
	Author Index

