Stor age Optimization by Replacing Some Flip-Flops with L atches*

Tsung-Yi Wu

Youn-Long Lin

Department of Computer Science
Tsing Hua University, Hsin-Chu, Taiwan 30043

Abstract

Conventionally, when a synchronous sequential circuitis
synthesized, storage units are implemented in either edge-
triggered flip-flops or level-sensitive latches, but not both,
depending onthe clocking scheme (one- or two-phase) used.
e propose that, in the former case, some of the flip-flops
can be replaced with latches. Since a latch is generally
smaller, faster and less power-consuming than a flip-flop,
thisreplacement leadsto improvementsin circuit area, per-
formance and power consumption. Whether a flip-flop can
be replaced with a latch depends on not only its structural
context but also itstemporal behavior. Inthispaper, wefirst
present conditions under which a straightforward replace-
ment can be made; then, we propose two retiming-based
transformations that increase the number of replaceable
flip-flops. We have implemented the proposed idea in a
software called FF2Latch. Experimental results on a set
of control-dominated circuits from the high-level synthesis
benchmark set [1] show that a large number of the flip-
flops can be replaced with latches. Up to 22% reduction
in the circuit area and up to 73% reduction in the power
consumption have been achieved.

1. Introduction

Research in high-level synthesis (HLS) has drawn alot
of attention because of its potential in significantly increas-
ing the productivity of VLS| design [7][8][12]. Experience
has shown that HL S tool s have better chance to be accepted
in such specific application domains as digital signa pro-
cessing (DSP) circuits [15] and control-dominated circuit-
s[6][18]. Control-dominated circuitsare used in awideva-
riety of applicationsincluding protocol converters, network
interfaces, ...etc. Therefore, automatic synthesis from a
high-level behavioral description of control-dominated cir-
cuits is a worthy research. This work addresses storage
synthesis, one of the important tasks in the HL'S of control-
dominated circuits.

The behavior of a control-dominated circuit is usual-
ly specified in a hardware description language (e.g., Ver-
ilog [3] or VHDL [2]) and compiled into an internal repre-

*Supported in part by a grant from the National Science Council of
R.O.C. under contract no. NSC-85-2221-E-007-032

EURO-DAC ' 96 with EURO-VHDL '96
0-89791-848-7/96 $4.00 [J 1996 IEEE

sentation such as the behaviord finite state machine (BFS-
M) [18]. During each transition from one state of the ma-
chine to another, a set of data manipulation and movement
operations take place. The synthesizer has to alocate for
each variableor signal astorage el ement of appropriateword
length. Depending on the clocking scheme used, contem-
porary synthesizers implement storage using either edge-
triggered flip-flops (for one-phase clock) or level-sensitive
latches (for two-phase clock), but not both. The former is
larger but is easier to design; whilethe later is smaller and
faster at the expense of greater design difficulty.

Papaefthymiou and Randall [14] compared the usage of
flip-flops and latches in the context of retiming [11]. Their
software, called TIM, replaces each flip-flop in a one-phase
circuit with a pair of cascade, two-phase-clocked level-
sengitivelatches and subsequently retimestheresulting two-
phasecircuit. They haveshown that, for performance-driven
retiming, a latch-based circuit is more area-efficient than a
flip-flop-based one. But, for area-driven retiming, there
isno gain in using the latch-based approach. In this paper,
however, we show that some of theflip-flopsin aone-phase-
clock system can bereplaced by latcheswhilepreserving the
circuit’s functionality. Although the timing (tempora be-
havior) of some of the internal nodes will be modified, the
timing of all output ports remains unchanged. Therefore,
thistype of replacement leads to area and power-consuming
reduction in the synthesized circuit.

Therest of thispaper isorganized asfollows. In the next
section, we will describe the motivation behind this work.
Then in section 3 we will first describe a straightforward
replacement method, and then present two local transfor-
mations that increase the replacement opportunity. Some
experimental results on a set of control-dominated circuits
from the HL S benchmark set [1] are given in section 4. Fi-
nally, we draw a conclusion and point to possible directions
for futureresearch in section 5.

2. Motivation

To optimize the performance or the area of a circuit, a
high-level synthesizer can modify the behavior of any part
of the circuit so long as the circuit’s function matches what
isspecified in the behavioral description. However, because
of their emphasis on the so called What You Synthesize is
What You Smulate (WY SWY'S [5][17]) feature, contem-

porary HLS tools usually over-synthesize by making sure
that every node of the synthesized circuit exhibits identical
timing behavior as that of the corresponding node in the
behavioral specification. If werdax thisWY SWY Srestric-
tion on the circuit interior, the synthesizer will have more
freedom in performing the optimization.

Compared with aflip-flop, a latch is smaller, faster and
less power-consuming. Therefore, we should chooselatches
over flip-flops wherever possible. Unfortunately, in a syn-
chronous sequentia circuit, the choice between using flip-
flops or latches is dependent on the underlining clocking
scheme (one- or two-phased). We will be able to save more
chip area if some of the flip-flops in a one-phase-clocked
circuit can be replaced with latches.

When a synchronous Mealy machine* [9] is described
in VHDL [2], the synchronization mechanism is usu-
ally expressed using a wait statement (e.g., “wait until
(clock="1")" [4][5]). Upon the execution of the wait s
tatement, the machine must wait for the system clock to
raise. In other words, each wait statement in the behav-
ioral description leads to a state in the corresponding syn-
chronous Mealy machine. For instance, in the 2-state ma-
chine synthesized from the behavioral VHDL description
for the PREFETCH benchmark circuit depicted in Figure 1,
the two states are derived from the two wait statements (line
16 and line 25), respectively. Note that because actions
are performed concurrently during state transitions, “<=
rather than “:=" [2] is used to represent each assignment
action in a state-transition diagram (STD) that represents a
synchronous Mealy machine.

Straightforwardly, every variable/signal in the left-hand
side of any assignment statements following a wait state-
mentswill be given a set of flip-flopstriggered by the same
event waited for by thewait statement. For instance, in Fig-
ure1(a), statement “ir :=ibus’ (line28) followingthe second
wait statement (line 25) causes the synthesizer to alocate a
set of positive-edge-triggered flip-flops to variableir (Fig-
ure 1(c)), and the value of ir will be updated to that of ibus
at apositive edge of the system clock when the current state
is s1 while ire istrue. Thisimplementation style matches
the timing semantics of every part of the specification.

If we replace the flip-flopsimplementing variableir with
active-low latches (Figure 1(d)), some internal signals will
exhibit different timing behavior as shownin Figure 2. We
call theflip-flopsir andthelatchesir;;. When the current
state is sy and ire istrue, irg; gets the value of ibus a a
rising edge of the system clock (i.e, t4). iy will transport
the value of ibuswhen the system clock islow (i.e., from¢;
tot, and fromiz tot,).

In Figure 2, the positive edge of the system clock waited
for by the second wait statement appears at both time ¢,
and ¢4 of the current execution cycle and ¢}, of the previous
execution cycle. Let tbus;_ bethevalueof ibusat timet,.

1In this paper, we rigidly define a synchronous Mealy machineis such
aFSM that state transitionsoccur at positive edges of the system clock, and
actions are concurrently executed during state transitions.

1: use work.vvectors.all; ire="1/

2: ir<=ibus,

3: entity prefetch is oldpc<=pc,
4: port (clock 1 in bit; pc<=pc+4
5: branchpc, ibus in b|132

6: branch, ire 1 in bit; branch!="1/
7 pct, irt, ia out b|132) pct<=oldpc,
8: ia<=pc,

end prefetch;
9: irt<=ir

10: architecture behavior of prefetch is -
11: begin Start
g: process

: variable ir, oldpc, pc : bit32 := 0; i R
14: ~ ——Initial values are ignored. EL?QEQM% irel="1'f
15: begin irt<=ir,
16: wait until (clock ='1’); ——state sg pe<=branchpc,

17: pct <= oldpc; ia<=|
18 la<=pe la<=branchpc

19: rt<=ir; (b)
20: if (branch ='1’) then

g; IR;; B:ﬁmchpc; state | ire |OL|’\IanlJJ)t<Of state | ire |°u,\t4p5>t<0f
23; it; i
24: ?ens[: Iif?e : loop so - i) SO - "yl
25! wait until (clock = '1'); ——state's; S1 0 iry] 0 irfy]
gg eﬁﬁ'ﬁéﬁi‘-—'re when (ire ='1"); S1 1 |bus[y] S1 1 ibusl[y]
gg ir|éj: ibus; f(state,ire) f(state,ire) ﬁ
: oldpc :=pc; ir ity
30: pci=pc+4;
: i D Q D Q
g; end process; ibusfy] ibusly]
33: end behavior; clock — clock —Q|C

() (©)

Figure 1. The PREFETCH benchmark: (a) VHDL
description; (b) the STD that represents the syn-
thesized synchronous Mealy machine; (c) the
flip-flop implementation of the y-th bit of i»; (d)
the latch implementation of the y-th bit of ir.

try: latches dbus,, during the time slot between ¢, and ¢3
because the state is s; and ire switches from logic 1 to O
at t; however, irs; still holds ibus,, during this time siot
because ire islogic O a ¢, when the ‘machine transits from
s1 tothe next state of s;1. Bothir; and ér;; will be updated
to ibus;, a t4, but, before t4, only ér;; is continuously
following the value of ibus during thetime interval between
t3 and 4. Although iry; and ir; ¢ may hold different values
during the timeinterval between ¢, and 24, it will not affect
thecircuit’sbehavior at its1/O ports because no read access
ismadeto variableir duringthat interval. ir isread only at
the transition from sq to s;.

|
) t tlo ST P < ty
time } } } } } } } }
clock * | * | * | * |
[|
| ibusy, | | | >|< ibusy,
|r|t I ibus, ibusX ibus;, ibus >| ibusy,
) | |
state s1 X X | | = | X_so

Figure 2. Timing diagram for ir¢; and éry; of the
illustrative example.

From the above-described example, we know that a flip-
flop can be replaced with latch if the replacement does not
affect the 1/0O behavior. That is, a positive(negative)-edge
flip-flop can be replaced by an active-low(-high) latch under
certain conditions.

3. Replacement

The condition under which the flip-flops implementing
aregister can be replaced with latches depends on the rela
tionship among the register, some 1/O ports and some com-
binational blocks. Some replacements can be done directly;
while others need some pre-processing. In this section, we
first present a simple condition under which a flip-flop can
be directly replaced with a latch. Then, we describe two
local transformationsthat make more flip-flops repl aceable.

3.1. Straightforward Replacement

In a synchronous Meay machine, latches can be used to
replace flip-flopsimplementing aregister » if and only if the
following conditionsare met.

C1: Writing to and reading from » never take place at the
same time,

C5: r does not feed any output port through only true com-
binational paths.

Cs. Letp = [sa, €a,by Sby -+ S5y €45y S]'] be a path in the
STD and f1, f2, fs, fa, and f5 are arbitrary functions.
If either action 2 <= fi(r,...) or condition f(r,...)
isassociated withe; ;, r <= f3(...)isnotinp — eq,
and there exists an edge e, (¢ p) conditioned by
some asynchronous signal s and associated with action
r <= f4(...), thenthereexistsan actionr <= fs(...)
associated withe, 3.

C1isnecessary becausel atches cannot implement aregis-
ter that isread and written at the same time in asynchronous
Mealy machine.

C5 isnecessary for the following reason. A register r is
called ¢ if it is implemented by positive-edge flip-flops,
and is cdled r;; if it isimplemented by active-low latches.
If » feeds an output port through only combinational paths,
the output port fed by r;; and the output port fed by 7
will exhibit different timing behavior. The reason isthat an
active-low latch will continuoudly update its value during
thelow level of the system clock, whilea positive-edgeflip-
flop will update its value only at the positive-edge of the
system clock. For instance, if ¢ shown in Figure 1(a) is
declared as an output port, the output port implemented by
ir¢ s and the output port implemented by ir;; will exhibit
different timing behavior shown in Figure 2.

Cs is necessary for the following reason. Let the path
p shown in Figure 3 be part of a STD and the machine
represented by the STD transit from state s, to state s;. If
action » <= fs(...) does not associate with e, 5, then ry;
may latch the wrong value, f4(...), during state s, s3, ...,
and s;. The reason is that, before the transition from s,
to s, riz continuously updates its value to f4(...) during
dtate s, when cond,,, istrue and the system clock is0O. The
wrong value may propagate to edgee; ; and be accessed by
the edge’s “ condition/actions’. On the other hand, if there
existsan action» <= fs(...) associated with e, ;, the error
cannot occur because the wrong value of » isoverwritten by

5(..)-

path p

(59
condbl...,
©

condy/ ...,r <= fa(...

without
O PP
or fa(r,...) /...

Figure 3. An illustration for condition C3: r
can be implemented with latches only if “r <=
fs(...)" exists.

A formal proof to the correctness of these conditionsis
givenin[19].

A concurrent register is one that violates C;. For in-
stance, the register for pc in “pc <= pc+4” shown in Fig-
ure1(b) isconcurrent. Another example of concurrent regis-
terisonethat appearsintheright-hand side of an assignment
statement and the left-hand side of another associated with
the same edge. For instance, if both actions “a <= b” and
“b <=4’ are associated with the the same state transition to
perform a swapping, then a and b are concurrent.

Simultaneous read and writing accesses by a single ma-
chineto aregister can only take place during the same state
transition. Therefore, to identify concurrent registersin a
single machine, we only have to examine every state tran-
sition one at atime. A register is concurrent if and only
if it appears in the left-hand side of any statement and in
either the condition or the right-hand side of any statement
associ ated with the same state transition.

A register satisfies condition C; if and only if theregister
is not declared an output port. To check whether a regis-
ter satisfies condition C; we analyze al related pathsin a
synchronous Meay machine.

A register implemented with flip-flops is replaced with
latches if it satisfies conditionsCq, C», and Cs.

The replacement for register i» shown in Figure 1 is s
traightforward. Register i» is not concurrent because it is
only read during thetransitionfrom state spto s1, and written
during thetransition from state s; to s (Figure 1(b)). Itisa
variable rather than an output port according to the descrip-
tion given in Figure 1(a). Therefore, it satisfies C,. It aso
satisfies C3 by checking the diagram shown in Figure 1(b).

3.2. Replacement after Local Transfor mation

Someflip-flop that cannot bereplaced withlatchesdirect-
ly can be replaced after some local transformations are per-
formed onitssurroundingcircuit. In thissection, we present
methods that make more flip-flops replaceable. We first de-
scribe how a flip-flop is generally implemented. Then, we
describe amethod that makes a non-replaceabl e flip-flop re-
placeable by moving it across some combinational portion
of thecircuit. Finally, we show that for someflip-flopstheir
master latches can be retimed and then eliminated.

3.2.1. Storage | mplementations

A flip-flop will load new data at some clock cycles and
hold old data at the others. There are two methods to im-
plement the loading/holding circuit. The first isto gate the
clock by ANDing it with a control signa decoding from the
state register. Thisproducesa clock edge at theflip-flop on-
ly when it needs to load the data. For instance, Figure 4(a)
shows a circuit for a flip-flop that will load data y at the
rising edge of the system clock if signal load islogic 1. The
second method insertsamultiplexer in front of theflip-flop’s
data input. The output of the flip-flop will be fed back to
the input in case of no loading of new data. For instance,
in Figure 4(b) the flip-flop will hold its origina dataaslong
as signal load is logic O; on the other hand, it will load
the new data, y, at the rising edge of the clock signal when
signal load islogic 1. The second method is preferred by
contemporary synthesis tools because it does not suffer as
much from the clock skew problem.

load

y—D Qf—out

D Q out
load N y
clock

clock —>
() (b)

Figure 4. Methods of loading new data and hold-
ing old data at a flip-flop: (a) the gated clock
method; (b) the multiplexed input method.

3.2.2. Transformation by Moving Flip-Flops

We use the circuit of Figure5 toillustrate theidea. The
circuit (CKT,,4) shown in Figure 5(8) is synthesized by
Synopsys's Design Compiler for register bit »[m]. r[m]
will retain its data during state s, under condition ¢,, but
it will load new data y[m] during state s, under condition
cq. CKTory can be retimed to CKT,, (Figure 5(b)) by
moving the flip-flop across the multiplexer. Note that the
control signalsfor the multiplexer have effectively al so been
retimed by decoding the next state function.

Theretiming isfeasible as long as there is no contradic-
tion in the resulting control table. That is, no more than
oneinput is to be routed to the multiplexer’s output simul-
taneously. If the retiming is infeasible, we will apply the
technique described in Section 3.2.3.

Every flip-flop of CKT,, other than F'F, can be re-
moved if its input data remains unchanged for at least one
clock period before its output data is routed to the multi-
plexer's output (r[m]). For instance, F F, can be removed
if data y[m] is synchronous and is stable from state s, to
state next(s,, ¢g). If dl flip-flops of CKT,, except FF,
can be removed, C' KT, can be transformed into C K T ¢
(Figure5(c)). Flip-flip F'F,, of circuit C KT, ¢ will be con-
currently read and written only during state next(s,, cp).
F F, can be replaced with a latch because what is read and
what is written are the same. Figure 5(d) shows the opti-
mized circuit by replacing F' F, of CKT;.; with a latch.
Clearly, thecircuit of Figure 5(d) isless expensive than that
of Figure 5(a).

state | output of MUX

next(sp,Cp) X'[m]

state | cond. | output of MUX

next(s-q, cq) y‘[-m]
x[m]

Sp Cp X[m]

Sq Cq yim]

f1(state,cond)
X(m] clock 8???,%5
N output
: D Q ylml——D Q[
yim] ofrim] Frg |VIm]
clock clock >
(@ (b)
state | output of MUX state | output of MUX

next(sp,Cp) x'[m] next(sp,Cp) x'[m]
next(sq,cq) y[m] next(sq,cq) y[m]

X[m]

output
of rfm]

yim]
(d)

Figure 5. The implementation of register bit r[m]:
(a) the original implementation, CKT,.4; (b) the
retimed implementation, CKT,,;; (c) the trans-
formed implementation, CKT;,¢; (d) the opti-
mized implementation, CKTgp;.

Our agorithmsfindsany register that matchesthe pattern
of CKT,r, and transformsit to that of CKT,,;. Figure 6
shows the process when the techniqueis applied to the y-th
bit of register ir¢ of the PREFETCH benchmark.

3.2.3. Transformation by Moving Master Latches

When aflip-flop cannot be moved as described previous-
ly, we still can do some transformations. We use Figure 7
toillustrate the idea. C'KT,,, shownin Figure 7(&) can be
retimed to C K T, in Figure 7(b) by moving the master latch
of the flip-flop F F, across the multiplexer. Note that the
control signals are retimed.

We now show that M L, can be removed from CKT,,
without changing the circuit function. M L, acts as a short
circuit when the clock signal islow. When the clock signal
ishigh, M L, isuseful only when slavelatch SL,, islatching
the output value of M L,. However, the content of M L, is
same as that of SL,. Therefore M L, isalso useless during
theclock signal beinglogic 1. Weconcludethat M L, canbe
removed from C K T,.; without changing the circuit function
as shown in Figure 7(c).

InC KT, , any master latch feeding the multiplexer can
be removed if its input data is stable while its output data
is being routed to the multiplexer’s output. For instance,
latch ML, in CKT;,; can be removed if signal y[m] is
synchronous and is stable during thetransition from stete s,
to state next (s, ¢4).

Figure 7(e) showsthe possibletiming difference between
signa y[m] and signal y'[m] in C K Ti.; during the transi-

state | output of MUX

So xTy]

S1 irfyl
Xyl

state | cond. | output of MUX
s1 | - ‘ Xyl
irfy]

S0
f1(state,cond)

X[yl
|: D Q lirtb’]
iyl

clock —p>

clock —p>

(@ (b)

state | output of MUX state | output of MUX

) X[yl so X[yl
s1

ify] s1 irfy]
X[yl Xy

clock —Q irtfy]

iry]
(d)

Figure 6. The implementation of register bit irt[y]
of PREFETCH: (a) the original implementation,
CKT,,,; (b)theretimed implementation, CKT,,;
(c) the transformed implementation, C’KTt’Tf; (d)
the optimized implementation, CKT,,,.
tion from state s, to state next(s,,c,). Register bit »[m)]
will latch value y'[m] when the clock signal is logic one
and the state is next(sy, ¢q), i.€, during the gray interval.
Therefore, »[m] will latchvaluey; during statenext(s,, ¢,).
Obvioudy, the behavior matches that of CKT,.,. Howev-
er, r[m] will latch value y, instead of value y, if ML, is
removed. Removing M L, does not change the function of
CKT if vduey isequd to y, during the gray interval.
Inother words, latch M L, in C KT, ¢ isredundant if signal
y[m] does not change during the gray interval. It is easy
to know whether y[m] switches during the gray interval by
inspecting the STD. Figure 7(d) showsthecircuit, C K Tpe,
derived from C K T, ¢ by removing all latches that directly
feed the multiplexer.

CKT,p; usealatch rather than aflip-flopasin CK'T,,,
to implement »[m]. M L, isthe control overhead. Despite
the overhead, C KT, is generdly less expensive because
M L, are sharable among multiple bits.

Our god isto find the register that matches the pattern
of CKT,,, and transforms it to that of C KT, if this
transformation can reduceareacost. For instance, ¢»t shown
in Figure 6 can aso be transformed with this method as
shown in Figure 8. The transformed circuit uses 32 fewer
flip-flops and 33 more latches.

4. Experimental Results

We have implemented the proposed idea in a software
program called FF2Latch. Severa circuits have been
used to test the effectiveness of FF2Latch. They include

f(state, ﬂ '
state | cond. | OutPut cond) 0.2
- | of MUX MLsc
sp Xm] clock —q €
: : : X(m]

sq yiml

f(state,cond) X
.i clock
. output

[m]
yim] H of r[m] y[m]
clock P
(@)

f(state, SC —] sc
cone) p.of f(state, sC —) sc’
ML, state,
lock CSC cond) D Q
clocl MLsc I
X[m] clock —9 C
x[m]

output
of rim]

output
of r[m]

o[LT LI LT L
sc Yftsa o) fnexta .cq cond.) ==
sc’ Xitsa o) fnext(sq .cq),cond.) -
v, -

v, -

=y i)

yim oy,

y'[m] A

Figure 7. The implementation of register bit r[m]:
(a) the original implementation, CKT,.,; (b) the
retimed implementation, CKT,,;; (c) the trans-
formed implementation, CKT;,;; (d) the opti-
mized implementation, CKT; (€) the timing
diagram for CKTi.s.

a counter (COUNTER [1]), a greatest common divisors
(GCD_ALT [1]), a prefetch subcircuit (PREFETCH [1]),
the Fancy chip (FANCY [1]), a highway traffic light con-
troller (HIGHWAY [1]), a bar-code reader circuit (BAR-
CODE), afirst-infirst-out stack (FIFO[13]), and atransceiv-
er (TRANSCEIVER).

Each benchmark isfirstly synthesi zed using the Synopsys
Design Compiler. Then, FF2Latch identifiesthe set of flip-
flops that can be replaced with latches. Each circuit takes
FF2Latch and Design Compiler a few minutes to execute
on a SUN SPARC-20.

The experimenta results are summarized in Table 1.
Columns 2, and 3 show the tota register bits and the num-
ber of flip-flops that have been identified by FF2Latch as
replacesble, respectively. Column 4 shows the total cell
area of the synthesi zed result by SynopsysDesign Compiler.
Column 5 showsthe tota cell area of the synthesized result
with the postprocessing of FF2Latch. Column 6 shows the
percentage of reduction in the total circuit area under the
assumption that a flip-flop is twice as large as a latch as
specified by the Synopsys'sclass library.

Column 7 shows the power (microWatts) consumed by

Register Circuit area Power consumption (UW)
Benchmark #bits | #repl. || Synopsys | Synopsys+ FF2Latch | reduc. Synopsys | Synopsys+ FF2Latch | reduc.
COUNTER 8 0 120 120 0 686 686 0
GCD_ALT 25 9 543 514 5.3% 3377 3047 9.8%
PREFETCH 192 128 2241 1800 19.6% 15687 87942 43.9%
FANCY 50 26 1261 1168 7.4% - - -
HIGHWAY 9 6 159 137 13.8% 1014 765 24.6%
BARCODE 43 1 618 615 0.5% 4227 4188 0.9%
FIFO 151 128 1988 1540 22.5% 12085 3201 73.5%
TRANSCEIVER 24 16 256 200 21.9% 1906 1014 46.7%
Table 1. Experimental results.
state | cond. | PR [2] |EEE Sandard VHDL LanguageReference Manual, | EEE, 1989
- sc sc’ ! ! ’
S1 x[y] f(state,

cond)

f(state,
cond)

cloc >

D Q
MLsc
qc X[0]
tput 2[0]
of ol ir[o],;l:
clocl c

output
of irt[31]

X[0] clock

output
of irt[0]

output
of irt[31]

Figure 8. The implementation of register irt: (a)
the original implementation; (b) the transformed
implementation.

each synthesized circuit. Column 8 shows the power con-
sumption after replacement. The last column shows the
percentage of reduction in the power consumption. Power
consumption was estimated using SIS-1.3 [16] with com-
mand “power_estimate t S—sU”. Notethat SIS-1.3 failed
to report on the power consumption of FANCY because of
insufficient memory in our workstation.

5. Conclusions

We have proposed a method to replace some of the flip-
flops with latches in a one-phase-clocked synchronous se-
guentia circuit. Latches are in general smaller, faster and
less power-consuming than flip-flops. We have implement-
ed the proposed approach in a software called FF2Latch.
Experiment on a set of control-dominated benchmark cir-
cuits show that up to 22% of thecircuit area and 73% of the
power consumption can be saved by applying FF2Latch.

A possible direction for future research is to study how
to reschedule actionsin the synchronous Mealy machine so
that the number of registerswith concurrent R/W isreduced;
hence, the number of registers that can be implemented in
latchesisincreased.

References
[1] “Benchmarks for the 6th International Workshop on High-Level
Synthesis,” Available through anonymousftp at ics.uci.edu, 1992.

(3l
(4

(5]

(6]

(7]
(8l

(9
[10]

(11

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

\erilog-XL Reference Manual, CADENCE Design Systems, Inc.,
version 1.6, vol. 1, 1991.

R. A. Bergamaschi and A. Kuehimann, “A System for Production
Use of High-Level Synthesis,” |EEE Transactionson VLS Systems,
pp. 233-243, Sep. 1993.

J. Biesenack, et a., “The Siemens High-Level Synthesis System
CALLAS," |EEE Transactionson VLS Systems, pp. 244-252, Sep.
1993.

R. Camposano, “ Path-Based Scheduling for Synthesis,” |EEE Trans-
actions on CAD of Integrated Circuits and Systems, pp. 85-93, Jan.
1991.

G. De Micheli, Synthesis and Optimization of Digital Circuits,
McGraw-Hill, 1994.

D. Gagjski, N. Dutt, A. Wu, and S. Lin, High-Level Synthesis: Intro-
duction to Chip and System Design, Kluwer Academic Publishers,
1992.

Y.-C. Hsu, MEBS VHDL Reference Manual, University of Califor-
nia, Riverside, 1994.

Z. Kohavi, Switching and Finite Automata Theory, McGraw-Hill,
second edition, 1978.

C. Leiserson, F. Rose, and J. Saxe, “Optimizing Synchronous Cir-
cuits by Retiming,” Third Caltech Conferenceon VLS, pp. 87-116,
1983.

M. C. McFarland, A. C. Parker, and R. Camposano, “Tutorial on
High-Level Synthesis,” 25th ACM/IEEE Design Automation Con-
ference, pp. 330-336, 1988.

D. E. Ott and T. J. Wilderotter, A Designer’s Guide to VHDL Syn-
thesis, Kluwer Academic Publishers, pp. 215-225, 1994.

M. C. Papaefthymiouand K. H. Randall, “ Edge-Triggering vs. Two-
Phase Level-Clocking,” Research on Integrated Systems: Proceed-
ings of the 1993 Symposium, Mar. 1993.

J. Rabaey, H. D. Man, J. Vanhoof, G. Goossens, and F. Catthoor,
“CATHEDRAL II: A synthesis system for multiprocessor DSP”
in Slicon Compilation (D. Gajski, editor), pp. 311-360, Addison-
Wesley, 1988.

E. M. Sentovich, etal., SS: A Systemfor Sequential Circuit Synthe-
sis, Department of Electrical Engineering and Computer Science,
UC Berkeley, May 1992.

A. Stoll and P. Duzy, “High-level Synthesis with Exact Timing
Constraints,” 29th ACM/IEEE Design Automation Conference, pp.
188-193,1992.

W. Wolf, A. Takach, C. Y. Huang, and R. Manno, “The Princeton
University Behavioral Synthesis System,” 29th ACM/IEEE Design
Automation Conference, pp. 182-187,1992.

T.-Y.Wuand Y.-L. Lin, “ Storage Optimization by Replacing Some
Flip-Flops with Latches,” Technique Report, Tsing Hua University,
1995.

	CDROM Home Page
	1996 Home Page
	EURO-DAC96 Home Page
	Front Matter
	Table of Contents
	Session Index
	Author Index

