
EURO-DAC ’96 with EURO-VHDL ’96
0-89791-848-7/96 $4.00 1996 IEEE

Storage Optimization by Replacing Some Flip-Flops with Latches�

Tsung-Yi Wu Youn-Long Lin

Department of Computer Science
Tsing Hua University, Hsin-Chu, Taiwan 30043

Abstract

Conventionally, when a synchronous sequential circuit is
synthesized, storage units are implemented in either edge-
triggered flip-flops or level-sensitive latches, but not both,
depending on the clocking scheme (one- or two-phase) used.
We propose that, in the former case, some of the flip-flops
can be replaced with latches. Since a latch is generally
smaller, faster and less power-consuming than a flip-flop,
this replacement leads to improvements in circuit area, per-
formance and power consumption. Whether a flip-flop can
be replaced with a latch depends on not only its structural
context but also its temporal behavior. In this paper, we first
present conditions under which a straightforward replace-
ment can be made; then, we propose two retiming-based
transformations that increase the number of replaceable
flip-flops. We have implemented the proposed idea in a
software called FF2Latch. Experimental results on a set
of control-dominated circuits from the high-level synthesis
benchmark set [1] show that a large number of the flip-
flops can be replaced with latches. Up to 22% reduction
in the circuit area and up to 73% reduction in the power
consumption have been achieved.

1. Introduction
Research in high-level synthesis (HLS) has drawn a lot

of attention because of its potential in significantly increas-
ing the productivity of VLSI design [7][8][12]. Experience
has shown that HLS tools have better chance to be accepted
in such specific application domains as digital signal pro-
cessing (DSP) circuits [15] and control-dominated circuit-
s [6][18]. Control-dominated circuits are used in a wide va-
riety of applications including protocol converters, network
interfaces, . . . etc. Therefore, automatic synthesis from a
high-level behavioral description of control-dominated cir-
cuits is a worthy research. This work addresses storage
synthesis, one of the important tasks in the HLS of control-
dominated circuits.

The behavior of a control-dominated circuit is usual-
ly specified in a hardware description language (e.g., Ver-
ilog [3] or VHDL [2]) and compiled into an internal repre-

�Supported in part by a grant from the National Science Council of
R.O.C. under contract no. NSC-85-2221-E-007-032

sentation such as the behavioral finite state machine (BFS-
M) [18]. During each transition from one state of the ma-
chine to another, a set of data manipulation and movement
operations take place. The synthesizer has to allocate for
each variable or signal a storage element of appropriate word
length. Depending on the clocking scheme used, contem-
porary synthesizers implement storage using either edge-
triggered flip-flops (for one-phase clock) or level-sensitive
latches (for two-phase clock), but not both. The former is
larger but is easier to design; while the later is smaller and
faster at the expense of greater design difficulty.

Papaefthymiou and Randall [14] compared the usage of
flip-flops and latches in the context of retiming [11]. Their
software, called TIM, replaces each flip-flop in a one-phase
circuit with a pair of cascade, two-phase-clocked level-
sensitive latches and subsequently retimes the resulting two-
phase circuit. They have shown that, for performance-driven
retiming, a latch-based circuit is more area-efficient than a
flip-flop-based one. But, for area-driven retiming, there
is no gain in using the latch-based approach. In this paper,
however, we show that some of the flip-flops in a one-phase-
clock system can be replaced by latches while preserving the
circuit’s functionality. Although the timing (temporal be-
havior) of some of the internal nodes will be modified, the
timing of all output ports remains unchanged. Therefore,
this type of replacement leads to area and power-consuming
reduction in the synthesized circuit.

The rest of this paper is organized as follows. In the next
section, we will describe the motivation behind this work.
Then in section 3 we will first describe a straightforward
replacement method, and then present two local transfor-
mations that increase the replacement opportunity. Some
experimental results on a set of control-dominated circuits
from the HLS benchmark set [1] are given in section 4. Fi-
nally, we draw a conclusion and point to possible directions
for future research in section 5.

2. Motivation
To optimize the performance or the area of a circuit, a

high-level synthesizer can modify the behavior of any part
of the circuit so long as the circuit’s function matches what
is specified in the behavioral description. However, because
of their emphasis on the so called What You Synthesize is
What You Simulate (WYSWYS [5][17]) feature, contem-

porary HLS tools usually over-synthesize by making sure
that every node of the synthesized circuit exhibits identical
timing behavior as that of the corresponding node in the
behavioral specification. If we relax this WYSWYS restric-
tion on the circuit interior, the synthesizer will have more
freedom in performing the optimization.

Compared with a flip-flop, a latch is smaller, faster and
less power-consuming. Therefore, we shouldchoose latches
over flip-flops wherever possible. Unfortunately, in a syn-
chronous sequential circuit, the choice between using flip-
flops or latches is dependent on the underlining clocking
scheme (one- or two-phased). We will be able to save more
chip area if some of the flip-flops in a one-phase-clocked
circuit can be replaced with latches.

When a synchronous Mealy machine1 [9] is described
in VHDL [2], the synchronization mechanism is usu-
ally expressed using a wait statement (e.g., “wait until
(clock=’1’)” [4][5]). Upon the execution of the wait s-
tatement, the machine must wait for the system clock to
raise. In other words, each wait statement in the behav-
ioral description leads to a state in the corresponding syn-
chronous Mealy machine. For instance, in the 2-state ma-
chine synthesized from the behavioral VHDL description
for the PREFETCH benchmark circuit depicted in Figure 1,
the two states are derived from the two wait statements (line
16 and line 25), respectively. Note that because actions
are performed concurrently during state transitions, “<=”
rather than “:=” [2] is used to represent each assignment
action in a state-transition diagram (STD) that represents a
synchronous Mealy machine.

Straightforwardly, every variable/signal in the left-hand
side of any assignment statements following a wait state-
ments will be given a set of flip-flops triggered by the same
event waited for by the wait statement. For instance, in Fig-
ure 1(a), statement “ir := ibus” (line 28) followingthe second
wait statement (line 25) causes the synthesizer to allocate a
set of positive-edge-triggered flip-flops to variable ir (Fig-
ure 1(c)), and the value of ir will be updated to that of ibus
at a positive edge of the system clock when the current state
is s1 while ire is true. This implementation style matches
the timing semantics of every part of the specification.

If we replace the flip-flops implementing variable ir with
active-low latches (Figure 1(d)), some internal signals will
exhibit different timing behavior as shown in Figure 2. We
call the flip-flops irff and the latches irlt. When the current
state is s1 and ire is true, irff gets the value of ibus at a
rising edge of the system clock (i.e., t4). irlt will transport
the value of ibus when the system clock is low (i.e., from t1

to ta and from t3 to t4).
In Figure 2, the positive edge of the system clock waited

for by the second wait statement appears at both time t2

and t4 of the current execution cycle and t02 of the previous
execution cycle. Let ibustx be the value of ibus at time tx.

1In this paper, we rigidly define a synchronous Mealy machine is such
a FSM that state transitions occur at positive edges of the system clock, and
actions are concurrently executed during state transitions.

(b)

Start s0 s1

branch!=’1’/
pct<=oldpc,
ia<=pc,
irt<=ir

ire!=’1’/−branch=’1’/
pct<=oldpc,
irt<=ir,
pc<=branchpc,
ia<=branchpc

−/−

(c)

D Q

clock

ir[y]

ibus[y]

state

s0

s1

ir[y]

ibus[y]

output of
 MUXire

s1

ir[y]
−
0
1

f(state,ire)

(d)

D Q

clock C

ir[y]

state

s0

s1

ir[y]

ibus[y]

output of
 MUXire

s1

ir[y]
−
0
1

f(state,ire)

ibus[y]

(a)

 1:
 2:
 3:
 4:
 5:
 6:
 7:
 8:
 9:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:

0

1

use work.vvectors.all;

entity prefetch is
 port (clock : in bit;
 branchpc, ibus : in bit32;
 branch, ire : in bit;
 pct, irt, ia : out bit32);
end prefetch;

architecture behavior of prefetch is
begin
 process
 variable ir, oldpc, pc : bit32 := 0;
 −−Initial values are ignored.
 begin
 wait until (clock = ’1’); −−state s
 pct <= oldpc;
 ia <= pc;
 irt <= ir;
 if (branch = ’1’) then
 pc := branchpc;
 ia <= pc;
 end if;
 test_ire : loop
 wait until (clock = ’1’); −−state s
 exit test_ire when (ire = ’1’);
 end loop;
 ir := ibus;
 oldpc := pc;
 pc := pc + 4;
 end process;

end behavior;

ire=’1’/
ir<=ibus,
oldpc<=pc,
pc<=pc+4

Figure 1. The PREFETCH benchmark: (a) VHDL
description; (b) the STD that represents the syn-
thesized synchronous Mealy machine; (c) the
flip-flop implementation of the y-th bit of ir; (d)
the latch implementation of the y-th bit of ir.

irlt latches ibusta during the time slot between ta and t3

because the state is s1 and ire switches from logic 1 to 0
at ta; however, irff still holds ibust02 during this time slot
because ire is logic 0 at t2 when the machine transits from
s1 to the next state of s1. Both irff and irlt will be updated
to ibust4 at t4, but, before t4, only irlt is continuously
following the value of ibus during the time interval between
t3 and t4. Although irlt and irff may hold different values
during the time interval between t1 and t4, it will not affect
the circuit’s behavior at its I/O ports because no read access
is made to variable ir during that interval. ir is read only at
the transition from s0 to s1.

t22t’ t1

s0s1 s1 s0

2t’

2t’ ibus

 ibus ibus

t3 t4

t ibus
4

t ibus
4ibus

t0

current execution cycle

ta

t ibus a

ir ff

ir lt

state

time

ire

clock

Figure 2. Timing diagram for irff and irlt of the
illustrative example.

From the above-described example, we know that a flip-
flop can be replaced with latch if the replacement does not
affect the I/O behavior. That is, a positive(negative)-edge
flip-flop can be replaced by an active-low(-high) latch under
certain conditions.

3. Replacement
The condition under which the flip-flops implementing

a register can be replaced with latches depends on the rela-
tionship among the register, some I/O ports and some com-
binational blocks. Some replacements can be done directly;
while others need some pre-processing. In this section, we
first present a simple condition under which a flip-flop can
be directly replaced with a latch. Then, we describe two
local transformations that make more flip-flops replaceable.

3.1. Straightforward Replacement
In a synchronous Mealy machine, latches can be used to

replace flip-flops implementing a register r if and only if the
following conditions are met.

C1: Writing to and reading from r never take place at the
same time.

C2: r does not feed any output port through only true com-
binational paths.

C3: Let p = [sa; ea;b; sb; . . . ; si; ei;j; sj] be a path in the
STD and f1, f2, f3, f4, and f5 are arbitrary functions.
If either action x <= f1(r; . . .) or condition f2(r; . . .)
is associated with ei;j , r <= f3(. . .) is not in p� ea;b,
and there exists an edge ea;m (62 p) conditioned by
some asynchronous signals and associated with action
r <= f4(. . .), then there exists an action r <= f5(. . .)
associated with ea;b.

C1 is necessary because latches cannot implement a regis-
ter that is read and written at the same time in a synchronous
Mealy machine.

C2 is necessary for the following reason. A register r is
called rff if it is implemented by positive-edge flip-flops,
and is called rlt if it is implemented by active-low latches.
If r feeds an output port through only combinational paths,
the output port fed by rff and the output port fed by rlt
will exhibit different timing behavior. The reason is that an
active-low latch will continuously update its value during
the low level of the system clock, while a positive-edge flip-
flop will update its value only at the positive-edge of the
system clock. For instance, if ir shown in Figure 1(a) is
declared as an output port, the output port implemented by
irff and the output port implemented by irlt will exhibit
different timing behavior shown in Figure 2.

C3 is necessary for the following reason. Let the path
p shown in Figure 3 be part of a STD and the machine
represented by the STD transit from state sa to state sb. If
action r <= f5(. . .) does not associate with ea;b, then rlt
may latch the wrong value, f4(. . .), during state sa, sb, . . .,
and si. The reason is that, before the transition from sa
to sb, rlt continuously updates its value to f4(. . .) during
state sa when condm is true and the system clock is 0. The
wrong value may propagate to edge ei;j and be accessed by
the edge’s “condition/actions”. On the other hand, if there
exists an action r <= f5(. . .) associated with ea;b, the error
cannot occur because the wrong value of r is overwritten by
f5(. . .).

sa

sb

s i

f 1(r,...)x <=... /...,
or f (r,...)2 /...

sm

fr <= (...)4mcond / ...,
bcond / ...,

path p

fr <= (...)5

s j

fr <= (...)3

 without

Figure 3. An illustration for condition C3: r

can be implemented with latches only if “r <=

f5(. . .)” exists.

A formal proof to the correctness of these conditions is
given in [19].

A concurrent register is one that violates C1. For in-
stance, the register for pc in “pc <= pc+4” shown in Fig-
ure 1(b) is concurrent. Another example of concurrent regis-
ter is one that appears in the right-handside of an assignment
statement and the left-hand side of another associated with
the same edge. For instance, if both actions “a <= b” and
“b <= a” are associated with the the same state transition to
perform a swapping, then a and b are concurrent.

Simultaneous read and writing accesses by a single ma-
chine to a register can only take place during the same state
transition. Therefore, to identify concurrent registers in a
single machine, we only have to examine every state tran-
sition one at a time. A register is concurrent if and only
if it appears in the left-hand side of any statement and in
either the condition or the right-hand side of any statement
associated with the same state transition.

A register satisfies conditionC2 if and only if the register
is not declared an output port. To check whether a regis-
ter satisfies condition C3 we analyze all related paths in a
synchronous Mealy machine.

A register implemented with flip-flops is replaced with
latches if it satisfies conditionsC1, C2, and C3.

The replacement for register ir shown in Figure 1 is s-
traightforward. Register ir is not concurrent because it is
only read during the transition from state s0 to s1, and written
during the transition from state s1 to s0 (Figure 1(b)). It is a
variable rather than an output port according to the descrip-
tion given in Figure 1(a). Therefore, it satisfies C2. It also
satisfies C3 by checking the diagram shown in Figure 1(b).

3.2. Replacement after Local Transformation
Some flip-flop that cannot be replaced with latches direct-

ly can be replaced after some local transformations are per-
formed on its surroundingcircuit. In this section, we present
methods that make more flip-flops replaceable. We first de-
scribe how a flip-flop is generally implemented. Then, we
describe a method that makes a non-replaceable flip-flop re-
placeable by moving it across some combinational portion
of the circuit. Finally, we show that for some flip-flops their
master latches can be retimed and then eliminated.

3.2.1. Storage Implementations
A flip-flop will load new data at some clock cycles and

hold old data at the others. There are two methods to im-
plement the loading/holding circuit. The first is to gate the
clock by ANDing it with a control signal decoding from the
state register. This produces a clock edge at the flip-flop on-
ly when it needs to load the data. For instance, Figure 4(a)
shows a circuit for a flip-flop that will load data y at the
rising edge of the system clock if signal load is logic 1. The
second method inserts a multiplexer in front of the flip-flop’s
data input. The output of the flip-flop will be fed back to
the input in case of no loading of new data. For instance,
in Figure 4(b) the flip-flop will hold its original data as long
as signal load is logic 0; on the other hand, it will load
the new data, y, at the rising edge of the clock signal when
signal load is logic 1. The second method is preferred by
contemporary synthesis tools because it does not suffer as
much from the clock skew problem.

D Q

clock

y

load

out

(a) (b)

D Q

clock

y
out

0
1

load

Figure 4. Methods of loading new data and hold-
ing old data at a flip-flop: (a) the gated clock
method; (b) the multiplexed input method.

3.2.2. Transformation by Moving Flip-Flops
We use the circuit of Figure 5 to illustrate the idea. The

circuit (CKTorg) shown in Figure 5(a) is synthesized by
Synopsys’s Design Compiler for register bit r[m]. r[m]

will retain its data during state sp under condition cp, but
it will load new data y[m] during state sq under condition
cq. CKTorg can be retimed to CKTrt (Figure 5(b)) by
moving the flip-flop across the multiplexer. Note that the
control signals for the multiplexer have effectively also been
retimed by decoding the next state function.

The retiming is feasible as long as there is no contradic-
tion in the resulting control table. That is, no more than
one input is to be routed to the multiplexer’s output simul-
taneously. If the retiming is infeasible, we will apply the
technique described in Section 3.2.3.

Every flip-flop of CKTrt other than FFp can be re-
moved if its input data remains unchanged for at least one
clock period before its output data is routed to the multi-
plexer’s output (r[m]). For instance, FFq can be removed
if data y[m] is synchronous and is stable from state sq to
state next(sq ; cq). If all flip-flops of CKTrt except FFp

can be removed, CKTrt can be transformed into CKTtrf
(Figure 5(c)). Flip-flipFFp of circuit CKTtrf will be con-
currently read and written only during state next(sp; cp).
FFp can be replaced with a latch because what is read and
what is written are the same. Figure 5(d) shows the opti-
mized circuit by replacing FFp of CKTtrf with a latch.
Clearly, the circuit of Figure 5(d) is less expensive than that
of Figure 5(a).

(a)

state output of MUXcond.

D Q

clock

sp

sq

pc

qc

output
of r[m]y[m]

x[m]

y[m]

(b)

D Q

clock

FFp

D Q

clock

FFq

output of MUXstate

sp pc

s cq q

next(,)

next(,)

output
of r[m]

x’[m]

y’[m]

x[m]

y[m]

x’[m]

y’[m]

f2(state)

output of MUX

(c)

D Q

clock

FFp

state

sp pc

s cq q

next(,)

next(,)

output
of r[m]

x’[m]

y[m]

y[m]

x’[m]

x[m]

f2(state)

output of MUX

D Q

clock

(d)

C

state

sp pc

s cq q

next(,)

next(,)

output
of r[m]

x’[m]

y[m]

x[m]

y[m]

x’[m]
f2(state)

x[m]
f1(state,cond)

Figure 5. The implementation of register bit r[m]:
(a) the original implementation, CKTorg; (b) the
retimed implementation, CKTrt; (c) the trans-
formed implementation, CKTtrf ; (d) the opti-
mized implementation, CKTopt.

Our algorithms finds any register that matches the pattern
of CKTorg and transforms it to that of CKTopt. Figure 6
shows the process when the technique is applied to the y-th
bit of register irt of the PREFETCH benchmark.

3.2.3. Transformation by Moving Master Latches
When a flip-flop cannot be moved as described previous-

ly, we still can do some transformations. We use Figure 7
to illustrate the idea. CKTorg shown in Figure 7(a) can be
retimed toCKTrt in Figure 7(b) by moving the master latch
of the flip-flop FFp across the multiplexer. Note that the
control signals are retimed.

We now show that MLp can be removed from CKTrt
without changing the circuit function. MLp acts as a short
circuit when the clock signal is low. When the clock signal
is high,MLp is useful only when slave latchSLp is latching
the output value of MLp. However, the content of MLp is
same as that of SLp. Therefore MLp is also useless during
the clock signal being logic 1. We conclude thatMLp can be
removed from CKTrt without changing the circuit function
as shown in Figure 7(c).

InCKTtrf , any master latch feeding the multiplexer can
be removed if its input data is stable while its output data
is being routed to the multiplexer’s output. For instance,
latch MLq in CKTtrf can be removed if signal y[m] is
synchronous and is stable during the transition from state sq
to state next(sq ; cq).

Figure 7(e) shows the possible timing difference between
signal y[m] and signal y0

[m] in CKTtrf during the transi-

(a)

D Q

clock

state output of MUXcond.

−

−

s1

s0

x[y]

x[y]

ir[y]

irt[y]
ir[y]

(b)

output of MUXstate

D Q

clock

D Q

clock

s0

s1

x’[y]

ir’[y]

x’[y]

x[y]

ir’[y]

irt[y]

ir[y]
FF1

FF0

f2(state)

output of MUXstate

D Q

clock

(c)

s0

s1

x’[y]
ir[y]

x[y]

x’[y]

irt[y]

ir[y]

FF0

f2(state)

output of MUXstate

D Q

clock

(d)

C

s0

s1

x’[y]
ir[y]

x[y]

x’[y]

ir[y]

irt[y]

f2(state)

f1(state,cond)

Figure 6. The implementation of register bit irt[y]
of PREFETCH: (a) the original implementation,
CKT 0

org
; (b) the retimed implementation, CKT 0

rt
;

(c) the transformed implementation, CKT 0

trf
; (d)

the optimized implementation, CKT 0

opt
.

tion from state sq to state next(sq ; cq). Register bit r[m]

will latch value y0
[m] when the clock signal is logic one

and the state is next(sq; cq), i.e., during the gray interval.
Therefore, r[m]will latch value y1 during statenext(sq ; cq).
Obviously, the behavior matches that of CKTorg . Howev-
er, r[m] will latch value y2 instead of value y1 if MLq is
removed. Removing MLq does not change the function of
CKTtrf if value y1 is equal to y2 during the gray interval.
In other words, latchMLq inCKTtrf is redundant if signal
y[m] does not change during the gray interval. It is easy
to know whether y[m] switches during the gray interval by
inspecting the STD. Figure 7(d) shows the circuit,CKTopt,
derived from CKTtrf by removing all latches that directly
feed the multiplexer.

CKTopt use a latch rather than a flip-flop as in CKTorg
to implement r[m]. MLsc is the control overhead. Despite
the overhead, CKTopt is generally less expensive because
MLsc are sharable among multiple bits.

Our goal is to find the register that matches the pattern
of CKTorg and transforms it to that of CKTopt if this
transformationcan reduce area cost. For instance, irt shown
in Figure 6 can also be transformed with this method as
shown in Figure 8. The transformed circuit uses 32 fewer
flip-flops and 33 more latches.

4. Experimental Results
We have implemented the proposed idea in a software

program called FF2Latch. Several circuits have been
used to test the effectiveness of FF2Latch. They include

(c)

(a)

clock

D Q
output
of r[m]

state cond.

sp

sq

pc

qc

output
of MUX

y[m]

x[m]

x[m]

y[m]

f(state,cond)

output
of r[m]D Q

D Q

clock

clock

sc’sc
D QD Q

clock

x[m]

y’[m]
y[m]

C

C

C
MLsc

f(state,
 cond)

output
of r[m]D Q

clock

(d)

D QD Q

clock

x[m]

y[m]

sc’sc

C

C

MLsc

(b)

D Q

clock
output
of r[m]D Q

D Q

clock

clock

D QD Q

clock

x[m]

x’[m]

y’[m]
y[m]

sc sc’

C

C

C

C

MLsc

f(state,
 cond)

f(state,
 cond)

sc

sc’

(e)

clock

y[m]

r[m]=y’[m]

y’[m]

y
1

y
2

y
1

y
2

sq cq,next()

sq cq,next()sq cq,f()

f(

f(

sq cq,f()

FF

ML

SL

SL

SL

p

p

p

p

p

ML

ML

q

q

,cond.)

,cond.)

Figure 7. The implementation of register bit r[m]:
(a) the original implementation, CKTorg; (b) the
retimed implementation, CKTrt; (c) the trans-
formed implementation, CKTtrf ; (d) the opti-
mized implementation, CKTopt; (e) the timing
diagram for CKTtrf .

a counter (COUNTER [1]), a greatest common divisors
(GCD ALT [1]), a prefetch subcircuit (PREFETCH [1]),
the Fancy chip (FANCY [1]), a highway traffic light con-
troller (HIGHWAY [1]), a bar-code reader circuit (BAR-
CODE), a first-in first-out stack (FIFO [13]), and a transceiv-
er (TRANSCEIVER).

Each benchmark is firstly synthesized using the Synopsys
Design Compiler. Then, FF2Latch identifies the set of flip-
flops that can be replaced with latches. Each circuit takes
FF2Latch and Design Compiler a few minutes to execute
on a SUN SPARC-20.

The experimental results are summarized in Table 1.
Columns 2, and 3 show the total register bits and the num-
ber of flip-flops that have been identified by FF2Latch as
replaceable, respectively. Column 4 shows the total cell
area of the synthesized result by Synopsys Design Compiler.
Column 5 shows the total cell area of the synthesized result
with the postprocessing of FF2Latch. Column 6 shows the
percentage of reduction in the total circuit area under the
assumption that a flip-flop is twice as large as a latch as
specified by the Synopsys’s class library.

Column 7 shows the power (microWatts) consumed by

Register Circuit area Power consumption (uW)
Benchmark #bits #repl. Synopsys Synopsys + FF2Latch reduc. Synopsys Synopsys + FF2Latch reduc.
COUNTER 8 0 120 120 0 686 686 0
GCD ALT 25 9 543 514 5.3% 3377 3047 9.8%
PREFETCH 192 128 2241 1800 19.6% 15687 87942 43.9%
FANCY 50 26 1261 1168 7.4% – – –
HIGHWAY 9 6 159 137 13.8% 1014 765 24.6%
BARCODE 43 1 618 615 0.5% 4227 4188 0.9%
FIFO 151 128 1988 1540 22.5% 12085 3201 73.5%
TRANSCEIVER 24 16 256 200 21.9% 1906 1014 46.7%

Table 1. Experimental results.

clock

D Q
output
of irt[0]

x[0]

ir[0]

clock

D Q

x[31]

output
of irt[31]

ir[31]

z[0]

z[31]

−

−

s1

s0 ir[y]

x[y]

output of
MUX: z[y]state cond.

(a)

f(state,
 cond)

clock

D Q

D Q

clock
MLsc

sc’sc

C

output
of irt[0]

x[0]

ir[0]

clock

D Q

C

x[31]

output
of irt[31]

ir[31]

z[0]

z[31]

(b)

C

f(state,
 cond)

Figure 8. The implementation of register irt: (a)
the original implementation; (b) the transformed
implementation.

each synthesized circuit. Column 8 shows the power con-
sumption after replacement. The last column shows the
percentage of reduction in the power consumption. Power
consumption was estimated using SIS-1.3 [16] with com-
mand “power estimate –t S –s U”. Note that SIS-1.3 failed
to report on the power consumption of FANCY because of
insufficient memory in our workstation.

5. Conclusions
We have proposed a method to replace some of the flip-

flops with latches in a one-phase-clocked synchronous se-
quential circuit. Latches are in general smaller, faster and
less power-consuming than flip-flops. We have implement-
ed the proposed approach in a software called FF2Latch.
Experiment on a set of control-dominated benchmark cir-
cuits show that up to 22% of the circuit area and 73% of the
power consumption can be saved by applying FF2Latch.

A possible direction for future research is to study how
to reschedule actions in the synchronous Mealy machine so
that the number of registers with concurrent R/W is reduced;
hence, the number of registers that can be implemented in
latches is increased.

References
[1] “Benchmarks for the 6th International Workshop on High-Level

Synthesis,” Available through anonymous ftp at ics.uci.edu, 1992.

[2] IEEE Standard VHDL Language Reference Manual, IEEE, 1989.

[3] Verilog-XL Reference Manual, CADENCE Design Systems, Inc.,
version 1.6, vol. 1, 1991.

[4] R. A. Bergamaschi and A. Kuehlmann, “A System for Production
Use of High-Level Synthesis,” IEEE Transactions on VLSI Systems,
pp. 233-243, Sep. 1993.

[5] J. Biesenack, et al., “The Siemens High-Level Synthesis System
CALLAS,” IEEE Transactions on VLSI Systems, pp. 244-252, Sep.
1993.

[6] R. Camposano, “Path-Based Scheduling for Synthesis,”IEEE Trans-
actions on CAD of Integrated Circuits and Systems, pp. 85-93, Jan.
1991.

[7] G. De Micheli, Synthesis and Optimization of Digital Circuits,
McGraw-Hill, 1994.

[8] D. Gajski, N. Dutt, A. Wu, and S. Lin, High-Level Synthesis: Intro-
duction to Chip and System Design, Kluwer Academic Publishers,
1992.

[9] Y.-C. Hsu, MEBS VHDL Reference Manual, University of Califor-
nia, Riverside, 1994.

[10] Z. Kohavi, Switching and Finite Automata Theory, McGraw-Hill,
second edition, 1978.

[11] C. Leiserson, F. Rose, and J. Saxe, “Optimizing Synchronous Cir-
cuits by Retiming,” Third Caltech Conference on VLSI, pp. 87-116,
1983.

[12] M. C. McFarland, A. C. Parker, and R. Camposano, “Tutorial on
High-Level Synthesis,” 25th ACM/IEEE Design Automation Con-
ference, pp. 330-336, 1988.

[13] D. E. Ott and T. J. Wilderotter, A Designer’s Guide to VHDL Syn-
thesis, Kluwer Academic Publishers, pp. 215-225, 1994.

[14] M. C. Papaefthymiou and K. H. Randall, “Edge-Triggering vs. Two-
Phase Level-Clocking,” Research on Integrated Systems: Proceed-
ings of the 1993 Symposium, Mar. 1993.

[15] J. Rabaey, H. D. Man, J. Vanhoof, G. Goossens, and F. Catthoor,
“CATHEDRAL II: A synthesis system for multiprocessor DSP,”
in Silicon Compilation (D. Gajski, editor), pp. 311-360, Addison-
Wesley, 1988.

[16] E. M. Sentovich, et al., SIS: A System for Sequential Circuit Synthe-
sis, Department of Electrical Engineering and Computer Science,
UC Berkeley, May 1992.

[17] A. Stoll and P. Duzy, “High-level Synthesis with Exact Timing
Constraints,” 29th ACM/IEEE Design Automation Conference, pp.
188-193, 1992.

[18] W. Wolf, A. Takach, C. Y. Huang, and R. Manno, “The Princeton
University Behavioral Synthesis System,” 29th ACM/IEEE Design
Automation Conference, pp. 182-187, 1992.

[19] T.-Y. Wu and Y.-L. Lin, “Storage Optimization by Replacing Some
Flip-Flops with Latches,” Technique Report, Tsing Hua University,
1995.

	CDROM Home Page
	1996 Home Page
	EURO-DAC96 Home Page
	Front Matter
	Table of Contents
	Session Index
	Author Index

