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Abstract

This paper presents a covering technique for optimiz-
ing the average-case delay of asynchronous burst-mode
control circuits during technology mapping. The spec-
i�cation and NAND-decomposed unmapped network of
these circuits are �rst preprocessed using stochastic
techniques to determine the relative frequency of oc-
currence of each state transition and the corresponding
sensitized paths through the NAND-decomposed net-
work. We minimize the sum of the implementation's
cycle times of the state transitions, weighted by their
relative frequencies, thereby optimizing for average-
case performance. Our results demonstrate that a 10-
15% improvement in performance can be achieved with
run-times comparable to synchronous techniques.

1. Introduction

The principle di�erence between asynchronous and

synchronous circuits is that asynchronous circuits are

event-driven and their environment can respond as

soon as an output signal changes. Thus, while syn-

chronous circuits should be optimized for worst-case

delay, asynchronous circuits should be optimized for

average-case delay. While numerous tools and tech-

niques for technology mapping of synchronous circuits

[3, 8, 11, 12] optimize for worst-case delay (as well as

area and/or power), the few existing techniques that

target asynchronous circuits primarily focus on ensur-
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ing hazard-freedom [6, 10, 9, 5] without considering

average-case performance.

One reason for this lack of attention is that

the technology mapping step in many asynchronous

design methodologies is greatly simpli�ed by the

use of specialized cell libraries. For other control-

oriented synthesis methodologies, such as speed-

independent, timed-circuit, and burst-mode designs,

however, gate-level implementations using existing in-

dustrial standard-cell libraries are attractive. This is

because designing, maintaining, and interfacing other

tools with specialized cell libraries for asynchronous

design is very expensive. In fact, the motivation for

this work arises from the Asynchronous Instruction De-

coder Project at Intel Corporation. In this project, the

lack of tools and techniques forced us to manually map

many control circuits onto Intel's cell library. This was

both labor-intensive and inexact since we used back-

of-the-envelope techniques to decide amongst various

mappings.

The focus of this paper is asynchronous burst-mode

control circuits which are speci�ed with an extended

burst-mode (XBM) diagram and implemented using a

modi�ed Hu�man architecture [14, 13]. The extended

burst-mode speci�cation and implementation of an ex-

ample, scsi-init-send, are given in Figure 1. This archi-
tecture has the advantage of low latency because the

input-to-output path is purely combinational, i.e., no
explicit storage elements are used.

Note that di�erent state transitions may occur from

a given state, driving the circuit into di�erent modes

of activity. For instance, in the scsi-init-send exam-

ple, there are two possible state transitions from state

3. The �rst (to state 4) represents the sending of an-

other byte, while the second (to state 6) represents the

signaling of the end of transmission. Because an out-

put signal is often speci�ed to change in multiple state
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Figure 1. Scsi-init-send example.

transitions, its logic may contain di�erent paths that

are executed in di�erent state transitions.

To optimize for average cycle-time, the delay along

these paths should be prioritized according to the rel-

ative frequency of the associated state transition. The

calculation of these priorities are based on the condi-

tional probabilities of di�erent state transitions. These

probabilities may be given by the user or estimated

through behavioral simulation of the circuit in its envi-

ronment. In the scsi-init-send application, the condi-

tional probabilities depend on the packet size of SCSI

transfers. For example, using a reasonable packet size

of 1K bytes, the conditional probabilities from state 3

would be as follows: 0.999 going to state 4 and 0.001

going to state 6. Using Markov chain analysis we de-

termine the long run proportion of executing each state

transition. The proportion of a state transition is its

relative frequency and it is used to weight the delay

through paths in the unmapped network that are sen-

sitized during that state transition.

We assume that the unmapped network has been

decomposed into a set of available base functions,

such as 2-input NAND-gates and inverters, using a

simple heuristic that optimizes the decomposition for

average-case performance [1]. The paper focuses on

the next step of the technology mapping algorithm

which is to cover the decomposed network with avail-

able gates. Previously, we proposed an algorithmwhich

�nds the optimal solution among all possible pattern

delay tradeo�s [1]. This algorithm has high computa-

tional complexity which limits its applicability to rela-

tively small circuits (consisting of less than 500 decom-

posed gates) [1].

This paper presents a heuristic technique which ob-

tains near-optimal results for small circuits with much

lower run-times than previous techniques. Moreover,

mapping for larger circuits (1000-2000 decomposed

gates) takes under 2 minutes. The average performance

improvement for a substantial benchmark of circuits is

approximately 10-15% when compared to implementa-

tions mapped using a naive application of synchronous

(worst-case) covering techniques.

2. Extended burst-mode control circuits

In each state of the machine, the circuit waits for a

set of speci�ed input transitions, referred to as an input
burst, then changes a variety of output signals, referred
to as an output burst. An input burst may contain di-
rected don't cares, labeled with �, which may change

monotonically but need not change and conditionals,
enclosed in angle brackets, which represent logical lev-

els of signals that are sampled when the remainder of

the input burst arrives (for a more formal de�nition see

[13]).

The circuit may also internally set a number of

state signals. Two-phase state transitions have an in-

put burst followed by an output/state variable burst

where state variables change concurrently with out-

puts. Three-phase state transitions have a separate

state variable burst that either precedes or follows the
output burst [14, 13]. For the machine to operate

properly, the environment must obey the generalized
fundamental-mode restriction, meaning that a new in-

put burst may arrive only after the circuit changes state

and has settled [14]. Cycle time of a state transition

is the delay from the last edge of an input burst to

the �rst input edge of the next input burst required to



avoid circuit malfunction (for a more formal de�nition

see [13]).

A pattern is an assignment of input signals and fed-

back state and output signals to binary values. The

pattern arrival time at a node in the circuit for a par-

ticular pattern is the time between the application of

the pattern and the changing of the node. It is not

de�ned for nodes that do not change in response to the

particular pattern. Every burst de�nes a pattern whose

values correspond to the values of input and feedback

signals immediately after the last terminating transi-

tion of the burst arrives at the circuit. The pattern
delay of a burst is the maximum pattern arrival time

among those corresponding to output/state variables

that change in response to the burst.

The cycle time of a two-phase transition equals the

pattern delay of its input burst plus the delay required

for the circuit to settle, which includes the feedback

delay and the settling time delay. The cycle time of a

three-phase transition consists of the pattern delay of

the input burst, the pattern delay of the state variable

burst, the feedback delay for the state variables and

associated settling-time, and the feedback delay for the

outputs and associated settling-time.

It has been our experience that most often no feed-

back delays are necessary and the settling time required

is shorter than the fastest environmental response time.

For the purpose of technology mapping it seems less

critical to minimize these factors and thus we model

them as constants fb-delay and st-delay. The cycle

time, cyc(t), of a two-phase state transition t is then

delay(o-burst(t)) + fb-delay + st-delay (1)

and the cycle time of a three-phase state transition t is

delay(s-burst(t)) + delay(o-burst(t))

+2(fb-delay+ st-delay); (2)

where delay(o-burst(t)) and delay(s-burst(t)) are the

pattern delays of the input and state variable bursts in

state transition t, respectively.

3. Pattern probabilities

Markov chain analysis is used to derive the relative

frequency of occurrence of each state transition which

is used to de�ne the probabilities of each of these pat-

terns. This analysis is similar to that used for power

estimation of burst-mode circuits as well as for �nding

transition probabilities in �nite state machines.

Under reasonable assumptions, the long term pro-

portion of each state transition t, referred to as �t, is

the unique non-negative solution to the equations:

�t =
X

t0 : sink (t 0)=source(t)

�t0 � PrXBM(t) (3)

X

t2�

�t = 1; (4)

where PrXBM(t) is the conditional probability of state

transition t and � is the set of state transitions in

the machine [1]. For the scsi-init-send example with

the conditional probabilities given in the introduction,

these equations show that �t for each state transition

t has one of two weights. All state transitions in the

reset cycle have weight 0.0003 and all state transitions

in the main cycle have weight 0.333.

The average cycle time is then found as follows [1]:

� =
X

t2�

�t � cyc(t): (5)

4. Optimizing average-case performance

This section presents our heuristic covering tech-

nique. The objective of the technique is to optimize the

average-case performance. Speci�cally, the technology

mapping heuristic minimizes average pattern delay,

X

i2I

wi � delay(i); (6)

subject to a given area constraint, where I is the set of

patterns corresponding to all input and state variable

bursts, wi is the relative frequency of the associated

state transition, and delay(i) is the delay of pattern i.

The average pattern delay equals the average cy-

cle time (Equation 6) of the circuit minus a constant.

Because the constant does not a�ect the minimization,

this heuristic actually minimizes the average cycle time

of a burst-mode circuit subject to an area constraint.

For each node in the decomposed network, all gates

that match the node are derived and a covering of gates
that implements the network is determined. Brute-

force algorithms must �nd every possible feasible map-

ping for the circuit, calculate its cost, and pick the

lowest cost solution that satis�es the given area con-

straint. To reduce the number of feasible mappings

considered, our algorithm uses dynamic programming.

The approach is similar to Chaudhary and Pedram's

approach for area and delay tradeo� analysis for syn-

chronous circuits [2]. They identify, analyze, and

choose from many possible coverings representing area-

delay tradeo�s. They capture these possible tradeo�s

in points on area-delay curves that are maintained at

each node in the network.



Rather than maintaining a single worst-case delay

for each point, we maintain the pattern arrival times

of each pattern for which that node is sensitized. Thus

each point at node n is of the form hd1; : : : ; djInj; areai,
where In is the set of patterns for which n is sensitized.

This set is found using Kung's algorithm [4]. An ele-

ment, di, is the pattern arrival time for pattern i 2 In.

The element area is the cumulative area for the cover

of this sub-cone of logic. Notice that instead of form-

ing an area-delay curve, our set of points represents a

multi-dimensional area-delay surface.

We describe our algorithm for circuits that consist

of a forest of trees. Extensions to general DAG's are

explained in [2, 1]. The algorithm contains two traver-

sals of the circuit. First, a postorder traversal (from

leaves to the roots) is used to determine the set of

surface points at each node. Chaudhary and Pedram

store only non-inferior, or pareto, points which repre-

sent all possibly-optimal coverings for a sub-tree rooted

at this node under the constant output load assump-

tion. Previous work extended the notion of pareto to

describe surface points: a surface point is said to be

non-inferior if there does not exist some other point

p
0 = hd01; : : : ; area

0i such that di
0 � di for all i and

area0 � area. Intuitively, inferior points correspond to

coverings of the sub-cone rooted at n that can never

lead to an optimal solution; there exists a di�erent

covering which has equal or smaller delays for all in-

put patterns and equal or smaller area. However, the

number of pareto surface points that needed to be con-

sidered grew uncontrollably, limiting its applicability

to small circuits. In our heuristic, only a subset of

pareto surface points are stored. To de�ne this subset

we de�ne the average pattern arrival time at a node n,

as follows:

�n =
X

i2I

wi � di: (7)

We keep the average-wise pareto points on the area-

delay surface of node n and no more, where a point

is average-wise pareto if there exists no other point on

the surface which has either 1) less area and equal or

smaller average pattern arrival time or 2) equal area

and smaller average pattern arrival time. Our experi-

mental results suggest that this subset of points yields

near-optimal results with much lower run-times.

The algorithm to compute the area-delay surface is

depicted in Figure 2. For each internal node n, the set

of hazard-free matches m at that node are found us-

ing an algorithm developed by Siegel and De Micheli

[10]. For each match, many area-delay points are pos-

sible depending on how the cones of logic rooted at

the input of the match m at node n, referred to as

inputs(n;m), are mapped. Because the nodes are vis-

Algorithm 4.1 (Compute area-delay surface)

compute area-delay surface(n) f
foreach candidate match m at node n

foreach combination of inputs points pt.in pts
foreach i 2 I such that n 2 sens(i)
pt.d[i] = comp p time(pt.in pts,i,m,n,n)

pt.area =
P

l

k=0
pt.in pts[k].area + m.area

insert pt into n.surf
remove inferior pts(pt,n.surf)

g

Figure 2. Computing the area-delay surface.
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Figure 3. Computing the surface points.

ited in post-order, the possibly optimal ways to im-

plement the cones of logic rooted at inputs(n;m) have

already been analyzed and stored in di�erent points on

their area-delay surfaces. For each combination of in-

put surface points, an area-delay point is computed for

node n. The pattern arrival time di for each pattern

i 2 In is computed using the function comp p time()
[1]. We use the SIS gate delay model which considers

di�erent pin-to-pin delays, distinct rise and fall times,

and capacitive loading factors. The pattern delay anal-

ysis is based on the single step transition model which is

more accurate than the traditional static timing mod-

els because it excludes all false paths.

Consider the example depicted in Figure 3 where a

simple 2-input AND gate covers nodes D and C. There

are two input patterns, one in which the AND gate

rises and one in which the AND gate falls. Input B has

three points and input A has 2 points. As the upper

bound suggests, there are 6 possible combinations of

inputs, each corresponding to a di�erent covering of



the sub-trees rooted at A and B. Each combination

determines one possible output point. For example,

consider the combination of point a and point e. The

delay of the �rst pattern is the maximum of the delays

of the �rst pattern in points a and e plus 1 for the delay

of the AND gate, yielding a delay of 4. The delay of

the second pattern is the minimum of the delays of the

second pattern in points a and e plus 1 for the delay of

the AND gate, yielding a delay of 2. The area for this

combination is the sum of the areas of a and e plus 1

for the area of the AND gate, yielding 7. Assuming the

pattern weights are equal, the combinations (c; d) and

(b; e) are average-wise inferior and are not stored.

After the �rst traversal of the circuit, one point on

the surface of each output signal is chosen. This com-

bination of points identi�es the particular technology

mapping area-delay tradeo� for the entire circuit. We

heuristically choose a combination of points that meets

the user-speci�ed area constraint and yields a near-

optimal average pattern delay [1]. Once the combi-

nation of points is chosen, a second pre-order traver-

sal (from roots to leaves) is performed to determine

the speci�c gate selections that map the circuit. This

second traversal is needed since the exact load of the

matching gate is not known and a default load is used

when initially setting the delay curve at inputs(n;m).

When considering a match m during the pre-order

phase, however, the exact load on inputs(n;m) is

known and used to recalculate the pattern delay. Thus,

the area-delay surfaces at inputs(n;m) are essentially

shifted. As a result, di�erent input points may be pre-

ferred and selected during the preorder than would oth-

erwise be expected. This can cause a slight di�erence

between the actual area and/or pattern arrival times

than speci�ed by the selected output point. Exper-

imental results suggest that this di�erence is usually

less than 10% for typical burst-mode circuits.

Our new heuristic does not change the complexity

analysis given in [1] which �nds the worst-case com-

putational complexity of the algorithm to be high pri-

marily because the number of surface points can grow

exponentially with the depth of the circuit. The high

computational complexity, however, is mitigated by a

variety of factors. First, asynchronous control circuits

tend to be relatively small (less than 1K gates) because

asynchronous systems are typically designed using a

distributed control paradigm. Second, the number of

patterns of interest for each output tends to be small.

Third, for each pattern only the gates on the sensitized

paths (which tend to be a small subset of all paths)

have corresponding pattern arrival times. And, �nally,

most derived area-delay points are average-wise inferior

and therefore dropped.

5. Preliminary Results

We implemented a preliminary version of our cover-

ing algorithm in an extension to POSE, which is an ex-

tended version of SIS that contains the code for Chaud-

hary and Pedram's technology mapping algorithm [2]

and other optimizations targeting low-power design.

We conducted experiments on a suite of bench-

mark circuits on a SPARC 20 model 502 with 128

Megabytes of memory. We applied both worst-case

[2] and average-case methods on a NAND-decomposed

network of the circuit that has been optimized for

average-case delay in Table 1. We report results us-

ing both the previous method described in [1] and our

new heuristic method described in this paper. For all

experiments, we used the \lib2" gate library included

in the SIS package. Due to lack of time, De Micheli

and Siegel's algorithm was not used to determine which

library gates are hazardous. Instead, all gates were as-

sumed to be hazard-free.

The results demonstrate that the application of our

covering algorithm can yield up to 10% to 15% im-

provement over the traditional worst-case covering. As

expected, the circuits with widely varying state transi-

tion frequencies, i.e., scsi-init-send, dramc, trcv, ircv,
tsend, stetson-p1, isend, scsi and cache-ctrl, show sig-

ni�cantly greater improvements than the circuits with

uniform state transition frequencies, i.e., merge, bufc-
trl, stetson-p3, q42 and binary-cntr.

Compared to previously reported results, the run-

time reductions are dramatic. Our new technology

mapping heuristic can complete on many lager circuits

for which our previous average-case optimization algo-

rithm times out. Circuits of up to 2000 decomposed

gates (the largest circuits available) have been success-

fully mapped in under 2 minutes. The results also show

that these run-times are comparable to those of tradi-

tional worst-case covering.

Moreover, in all circuits for which both algorithms

complete, the new heuristic achieves less than 5% worse

results than the previous algorithm. In fact, for some

circuits it did slightly better, presumably due to ran-

dom di�erences caused by the unknown load approxi-

mation.

6. Conclusions

This paper describes an e�cient technology-

mapping covering heuristic for optimizing average-

case performance of burst-mode circuits. The results

demonstrate that average-case covering typically has

comparable run-times to synchronous techniques and

yields 10-15% improvement in performance.



Preliminary Results of Covering Technique

Circuit Description Ave. Pattern Delay (ns) CPU Times

# # # # # Worst-case Ave-case Worst-case/Heuristic/

Name PIs POs States Patts. Gates Heuristic Previous Previous (secs)

merge 8 3 7 8 31 2.0 1.63 1.68 0.2/0.1/0.1

bufctrl 5 3 3 3 36 2.84 2.80 2.80 0.3/0.1/0.1

stetson-p3 7 3 8 11 40 1.69 1.66 1.66 0.3/0.2/0.1

q42 5 3 4 4 45 3.54 3.49 3.49 0.3/0.2/0.2

binary-cntr 11 7 32 32 72 5.49 5.11 5.11 1.6/0.8/0.98

dramc 13 7 12 14 135 2.96 2.80 2.75 1.2/0.5/3.0

scsi-init-send 10 4 7 10 142 4.43 3.97 3.88 0.6/0.3/0.3

pe-send-ifc 12 5 11 14 172 4.31 4.22 4.17 1.4/0.7/7.6

trcv 14 7 16 30 401 7.88 6.78 6.93 4.1/3.6/203.6

ircv 14 7 16 30 451 8.58 7.40 7.33 5.1/3.0/132.9

tsend 18 9 22 42 856 12.13 10.57 time-out 10.23/12.1/time-out

stetson-p1 28 17 26 31 932 7.36 6.34 time-out 10.7/10.8/time-out

isend 28 17 26 31 1423 13.22 11.76 time-out 23.8/27.2/time-out

scsi 19 11 71 93 1741 10.9 9.70 time-out 24.3/72.8/time-out

cache-ctrl 37 20 38 49 2092 13.0 12.09 time-out 29.0/61.9/time-out

Table 1. Preliminary results of our covering algorithms for minimizing average cycle-time.

We also believe that these technology mapping algo-

rithms are applicable to other fundamental mode de-

sign styles, such as Nowick's UCLOCK method [7].
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