
An Integrated Approach to Engineering Computer Systems

Derrick Morris, D. Gareth Evans & Peter N. Green
Computer Systems Design Group, Department of Computation, UMIST, Manchester, UK

Abstract
This paper describes MOOSE a full-lifecycle, model-
based approach to the engineering of computer systems.
It describes how early lifecycle models that represent the
logical behaviour and architecture of a system can be
transformed into representations that allow
implementation source for both hardware and software to
be synthesised.

1. Introduction

This paper presents an integrated development process
covering the complete development lifecycle for
Computer System-Based Products.  It provides methods
and tools that apply mainly to the front end of the
lifecycle, and which integrate with existing tools to
produce implementations.

A broad range of products form the anticipated
application area, including special purpose distributed
systems and custom built embedded systems that control
a wide range of products, such as domestic appliances,
portable personal appliances, communication systems,
vehicle control systems and industrial control systems.
The main features of these systems that are relevant to
the approach are that they are application specific,
subject to stringent non-functional requirements,
embedded as defined by Zave [1] and reactive as defined
by Harel [2].  Their implementations usually involve both
software and hardware, which may be either analogue or
digital.

Even though many examples of products based on
computer systems exist, the discipline for developing
them is by no means mature or stable and their
development presents a daunting and challenging task,
sometimes leading to serious problems [3].  Although the
design and implementation of hardware and software
components is fairly well understood, relatively little
progress has been made in development processes which
consider the systems as a whole.  The approach described
delays the separate treatment of hardware and software
until a stage when high level implementation source can
be automatically synthesised from a complete system

design.  Techniques and tools have been developed to
support a development paradigm that starts with a model
that specifies the behavioural requirements of a complete
product.  This behavioural model is then made executable
in order to support validation and provide an environment
in which system wide issues can be investigated prior to
making the technology commitments on which an
implementation will be based.  Since models play a
central role in the development method, and since they
are Object Oriented, the approach is called Model-based
Object Oriented System Engineering (MOOSE).

Traditionally software has usually been in overall
control of system functionality, whilst the performance,
size and power requirements of a system have been
largely determined by its hardware.  However, with the
advent of ASIC technology and high performance RISC
processors, there are now important trade-offs between
hardware and software implementations to be
investigated.  The MOOSE approach recognises this
situation, and that some non-functional objectives may
only be achievable if functional responsibility can be
easily moved between software and hardware.  It follows
that products exhibiting different cost/performance trade-
offs may be developed from the same model, and that
designs are re-usable across products.

This paper presents the MOOSE development
paradigm for application-specific computer systems, and
the notation and the tool support on which it is based.  A
portion of a simple control system model is presented,
and there is a discussion of a significant aspect of novelty
in the paradigm, namely Transformational Codesign.

2. Computer system development methods

Recently, an awareness has grown that methods are
needed to support the integrated development of the
software and hardware in application-specific systems,
and this has lead to growth of hardware/software
codesign.  Currently, most codesign approaches do not
attempt to cover the entire development lifecycle of a
product, and focus on a single stage, namely the
partitioning of a system into hardware and software
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components that realise an efficient implementation,
typically optimised for price/performance.  Normally
these approaches are targeted towards a fixed
implementation environment that has a pre-defined
operating system, processor and support hardware, e.g.[4,
5, 6].

Other methods for the engineering of computer-based
products have been proposed that consider the complete
process.  These include the initial specification of the
operating behaviour of the product and its transformation
into a hybrid implementation that includes application-
specific software and hardware, system software and
processors.  One such set of approaches seeks to integrate
existing analysis and design methods and tools to provide
a seamless approach to complete system development,
e.g. [7].  These approach have the advantage of using
well tried methods at the expense of introducing tool and
method integration problems.  Alternative paradigms
attempt to devise homogenous methods and tools that
provide an integrated route to system development, e.g.
[2, 8].  These have the advantage of being focused
directly on the problem area, but have the corresponding
disadvantage of needing either to invent completely new
methods or to provide far-reaching extensions to existing
methods, both cases requiring the development of
supporting tools.  For the reasons outlined elsewhere [9]
the research introduced in this paper falls into the latter
category, and  is based upon cospecification, codesign
and cosimulation, followed by automatic synthesis of
implementation source from validated models.

3. Features of the MOOSE paradigm

As shown in Figure 1 the MOOSE paradigm starts
from a product idea, and the MOOSE-specific part ends
when the development can be completed by applying
standard techniques and tools to implementation source
for the hardware and software parts of the product,
automatically synthesised from a 'proven' model.

For software, C++ is the current implementation
language and the 'standard tools' are the compilers and
debuggers for that language.  However, this choice of
language is not fundamental to the approach and it can
adapt to lower level languages such as 'C' and Assembler,
or to alternative higher level languages.  If necessary,
multiprocessor implementations can be developed, and
the automatic synthesis mechanism produces separate
program source for each processor.  The objects placed in
different processors, hence different programs, interact
through communication mechanisms that are either
developed or selected in the final stages of model
development.

For hardware, the current implementation language is

VHDL and the 'standard tools' are those that provide
simulation and automatic manufacture of Application
Specific Integrated Circuits (ASICS) from a VHDL
specification.  Again this choice is not fundamental, and
a route exists within MOOSE to enable systems to be
implemented on PCBs using standard parts.
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Figure 1: The MOOSE paradigm
Four phases of incremental development precede the

synthesis of the implementation source.  The first phase
develops an architecture having three components,
namely a Domain Model, an analysis of non-functional
requirements and a Behavioural Model that captures the
system’s functional requirements.  In the second phase
the Behavioural Model is extended to become an
Executable Model, so that the behaviour can be
dynamically validated.  During the third phase
experiments are performed with the Executable Model
and transformations are applied that capture the decisions
committing objects to a software, firmware or hardware
implementation.  This phase is concluded by associating
all three kinds of objects with specific processors.  At this
stage there is enough detail in the Committed Model to
synthesise the complete C++ source for each processor in
the implementation, with the exception of functions that
interface to hardware objects or which facilitates
interprocessor communication. In the fourth phase
sufficient hardware detail is developed  in a Platform
Model to support the complete synthesis of the
implementation source, for both the software and
hardware.

The Platform Model is automatically created from the
Committed Model.  Its main purpose is to focus
subsequent design effort on hardware detail such as
register interfaces and bus and memory organisation.
When completed, this model defines the interconnection
of all the hardware components in the system, including
application specific hardware, processors, memories,
buses and other interconnect mechanisms.  In addition it
specifies the interfaces between application-specific
software and hardware.  There is enough information in
this model for any style of hardware specification to be



synthesised.

4. The modelling notation

MOOSE models have an Object Oriented structure,
this is preferred to functional decomposition because of
its potential for greater stability during design evolution,
safer encapsulation of detail, and reuse.  The Object
Oriented notation used differs from those typically used
to analyse software systems (such as OMT, etc.) in that it
focuses on the objects that form the system rather than a
classification of the application domain and their
relationships.  This approach is motivated by the desire to
produce a system structure that provides a firm basis for
the partitioning of the system and the subsequent
synthesis of source code for the implementation.

An important aspect of a modelling notation is its
ability to represent a system in manageable and readable
portions with a well-organised structure.  The hierarchical
structure of Structured Analysis and HOOD perform well
in this respect, and hence a similar structuring mechanism
has been adopted for the MOOSE notation.  Thus a
complete model consists of a hierarchy of diagrams
called Object Interaction Diagrams (OIDs), and the class
definitions for these objects.  At the higher levels of the
hierarchy the objects on an OID represent subsystems
whose decomposition into objects is given on subordinate
diagrams.  Decomposition stops at objects considered
simple enough to be treated as primitive, and these are
defined by class definitions.

The MOOSE notation provides a number of object to
object communication types which represents
abstractions of typical interaction mechanisms between
computer system components.  The semantics of these
communication mechanisms have been defined so that
executable models can be synthesised from the graphical
model with comparatively little textual information being
required.  Moreover, the major mechanisms can be
mapped directly into implementations in both hardware
and software.  Briefly the communication types provide
the means for an object to call a function (method) of
another object (interaction); make information available
on a time continuous basis  (time continuous information
flow) and to broadcast events.  In addition are there are
parameterised event and time discrete information flows
that are used to connect a system to its external interface.
These, as we will discuss later, present an abstract view
of the interface and are provided so that the commitment
to a particular interface style can be postponed until the
consequences of its implementation can be understood.

5. An example model

To demonstrate the principles of the modelling
approach and illustrate the notation, the well known
'Mine Pump' control system has been chosen since its
behaviour is simple but and it has just enough features to
bring out the main principles of MOOSE.

Figure 1 indicates that if the water collecting at the
bottom of a mine shaft rises above a certain limit the
pump should be switched on, and when the water has
been sufficiently reduced the pump should be switched
off.  The pump can also be turned on and off by a human
operator.  Any operator can control the pump when the
water level is between the high and low sensors, and a
specific operator designated the 'supervisor' has the
authority to control the pump whatever the water level.

For safety reasons there are sensors monitoring
methane (CH4) and carbon monoxide (CO)
concentrations, and airflow; and an indication must be
given of any critical values since evacuation will be
required.  Further, due to the risk of fire, the pump must
not be operated when the atmosphere contains too much
CH4.  Finally all three sensors' values along with the
pump status (i.e. on or off) should be periodically logged.
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Figure 2 - Schematic of the mine pump system

6. The Behavioural Model for the mine pump

The External View is the top of the hierarchy of OIDs
that make up the Behavioural Model. This is developed
with two principles in mind.  Firstly, it is constructed to
clearly identify the scope of the system development, i.e.
to precisely identify what must be developed.  Secondly,
it presents a statement of the behaviour of the system as
viewed from its external interface. The External View
may be augmented with a set of State Transition
Diagrams so that the system’s behaviour is precisely
defined.

The External View for the Mine Pump Control System
is shown in Figure 3.  Here the system is represented as a



single object (a circle) that connects to a set of external
objects (rectangles).  The scope of the system can be
clearly seen.  For example, the use of the external object
Gas Sensors implies that the design of these sensors is
outside the scope of the Mine Pump System’s
development; if they were to be developed as part of the
system, an external object ‘Atmosphere’ would have been
chosen.  The connections CO Concentration, etc. are
defined electrical signals that relay the concentration and
flow of gas to the system.  The use of the external object
Operator implies that the design and physical
development of the user interface will be carried out as
part of this project.  If this were not the case, physical
external objects such as a keypad would have been used.
This interface also illustrates the principle of minimum
commitment to a design decisions in the Behavioural
Model.  It shows that the operator can inform the system
that the pump should be turned on via the parameterised
event pump on.  This event not only signals the
operator’s desire to start the pump but also carries as an
associated parameter that indicates whether the operator
has supervisor privileges.  The precise interface
mechanism will be developed in the Transformational
Codesign phase, when the commitment to the physical
interface, through, for example, a key lock, voice
recognition or PIN number can be made in the context of
the system’s design.  The postponement of interface
decisions in this way allows the one Behavioural Model
to serve as the starting point of many implementations in
which different interface commitments may be made.
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Figure 3: Mine pump model - External View
The Behavioural Model is developed from the

External Model by decomposing the single system object
into a set of communicating objects that are represented
on an OID.  The first OID for the Mine Pump Control
System is shown in Figure 4.  In this simple example all
except the Gas object are primitive and the behaviour
and purpose are described as text in an Object
Specification (OSPEC).  The Gas object is further
decomposed into a set of objects represented on a lower
level OID.

The Behavioural Model is developed with a number of

principles in mind:
• Object oriented principles should be followed,

therefore the objects should have neat encapsulation
and crisp interfaces

• Commitment to implementation should be minimised.
Thus the objects developed should be capable of
being implemented in hardware or software.

• The model serves as an architecture from which the
system is built.

• The model will express the maximum concurrency
potential of the system; in the belief that it is easier to
reduce the concurrency as one derives the
implementation than it is to develop it.
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Figure 4: First level refinement of mine pump
The proposed system’s dynamic behaviour is

evaluated by the execution of a C++ program that is
synthesised by tools  from the model.  This firstly
requires that the Behavioural Model be developed into an
Executable Model by specifying the class of each
primitive objects is added.  Class behaviour is specified
through a combination of graphical notations and
executable code.

This brief summary of the modelling notation has
excluded a number of features, including those concerned
with the dynamic creation of objects, the representation
of repetitive patterns of objects and the development of
class hierarchies, which introduce inheritance into the
class definitions [9].

7. Transformational codesign

In this phase of the MOOSE paradigm implementation
decisions are incorporated into the Executable Model.
The goals are to make decisions that provide a ‘best fit’
with the non-functional requirements, and incorporate
them by changes that are of a transformational nature,
thereby safeguarding the ‘proven’ behaviour of the



model.  Since the model remains executable its logical
behaviour and performance characteristics can be
investigated as necessary.

Typically the steps to be taken in transforming an
Executable Model into a Committed Model are:
• Design of the Interface Mechanisms (requiring the

addition of objects and the transformation of
connections)

• Commitment of Objects to Hard or Soft
Implementations (requiring the modification of object
inter-connections)

• Decisions on the Number of Processors (and the
association of objects with them)

• Analysis of Threads of Execution
The design of the interface mechanisms is the first step

because in general it requires the addition of new objects,
and these are best added to the model before other
decisions are taken.  Thus each external connection to the
model has to be examined in order to decide if its
implementation requires special interface objects to be
added.  For example, in the case of the Mine Pump
Control System we might decide to introduce a control
panel in order to interface with the Operator.  It is clear
that the control panel has to deal with operator
identification, pump operations, and to convey pump and
gas.  Figure 5, which is the final Committed Model,
shows the addition of a User Console object.
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Figure 5: Top level OID of the Committed Model
The important features are that there is little

disturbance to the model and the changes that are not
purely additive involve only localised transformations.
For example, the parameterised events are intercepted by
the new object (User Console) behind which they become
interactions.  Thus the discovery of user identity becomes
a responsibility of this object.

Next the commitment of objects to either software or
hardware can be decided.  The essential problem here is
to satisfy the non-functional requirements.  The MOOSE
tools do not make the decisions but they assist in
identifying the need for change and they provide, through
the executable models, a means to investigate the
consequences of various commitments.  Finally they

allow the implementation decisions to be captured in a
manner that carries them through to synthesised
implementations. Commitment is marked on an OID by
shading the objects; shaded objects with a black border
are hardware, with a white border are software and non-
primitive objects that contain both hardware and software
objects are left uncoloured - see Figure 5.

Following the hardware/software commitment, a
review of inter-object connections is required and
transformations to produce the preferred hardware to
hardware and software to software connection style are
made.  That is, software mainly uses interactions and
hardware mainly uses information flows and events.  The
hardware/software connections may involve interactions
driven by software and events produced by hardware.

The next step is to decide on the processors that will
be required, and several factors influence this choice.
Obviously it determines the actual concurrency in the
software, and this has to be matched with the need for
intrinsic concurrency.  Requirements for physical
distribution of the system also affect the number of
processors required.  Clearly the choice of processor
types combined with their number determines the
performance available, which must be sufficient to meet
peak demands and response times.  Other non-functional
requirements, such as power consumption may be the
deciding issue on processor type, and this may impact the
number of processors required to meet the performance
requirements.  The assignment of objects to processors is
indicated by writing a logical processor name on the
object.  In this example (Figure 5) we have two, SURface
and UnderGround.  Experiments with the executable
model provide a means for validating the performance to
be expected.

After the processors have been chosen and objects
have been assigned to them, the consequences for the
threads of execution running through the soft objects
have to be analysed.  This analysis has to recognise that
each processor provides a sequential (but interruptable)
execution mechanism for the functions of the software
objects assigned to it, whereas in the model prior to
processor commitment each object was considered to be
concurrent.  Checks to be made concern, for example,
deadlines and times to service events, reachability,
integrity, and freedom from deadlock and livelock.
Various transformations of the model may be needed if
problems are highlighted by the above analysis.  Again
the Executable Model is a vehicle that supports the
analysis.

8. Operations on the Platform Model

The Platform Model is automatically created from the



Committed Model.  It omits all the Committed Model’s
software objects, since enough detail already exits to
synthesise their C++ source, but  introduces new software
objects that provide: the interface between software and
hardware; the communication between software in
different processors; and the management of the threads
of execution.  These will all be developed as the Platform
Model is refined.  The hardware design is also completed.
When the Platform Model is initially synthesised, with
the exception of the processor, it contains only the
application specific hardware objects, and new objects
have to be added to provided the hardware glue in the
form of buses, address decoders, memories, interrupt
handlers, etc.

Finally, the definitions of the application specific
hardware objects that exist in the Committed Model have
to be translated into synthesisable VHDL.  This process is
supported by tools.  In addition, appropriate tool support
can allow the VHDL specification to be dynamically
tested in the context of the model by using cosimulation
techniques and thus its behaviour can be verified as being
consistent with the emulation.

Thus the transformations to the Platform Model result
in a model in which all components exist in a form whose
implementations are synthesisable.  The full synthesis of
implementation from the Committed Model and the
Platform Model results in the C++ source for each
processor and a VHDL description for the all the
system’s hardware.  The latter is, in most cases, directly
synthesisable into an implementation.

9. Summary

Since this paper reports on ongoing work a status
report is more appropriate than conclusions.  The notation
and basic approach to the development of application
specific computer systems is stable and it is documented
in a book [9], and a partial toolset is available.

The tools that support the MOOSE paradigm and
notation presented take the form of a PC/Microsoft
Windows-based workbench (MOOSEbench) catering for
the early stages of the paradigm and providing model
capture facilities,  synthesis of an executable models, and
an execution environment for running executable models.
Further information and a trial version of the workbench
is available on the World Wide Web at
http://www.cl.co.umist.ac.uk/moose  Work is currently
underway to provide tool support for other parts of the
paradigm. Ongoing tool development work is focused on
the synthesis of implementation source code in C++ and
VHDL.  Other research is also underway which is
primarily concerned with the introduction of automatic
analysis to supplement or perhaps even replace some of

the human effort that is still required to realise a
successful product.  The present level of automation can
only be claimed to be improving product quality and
human productivity.

The objectives of reuse of designs and
implementations are met by the provision of libraries
accessible through the workbench.  In so far as
automation of computer system design means reducing
the work in designing computer systems, these libraries
play a major role.  The MOOSE libraries consist of
reusable objects (i.e. their class definitions) and
subsystems (i.e. object networks specified by OIDs).  The
MOOSE project is developing libraries catering for the
use of implementation technologies developed within the
ESPRIT Open Microprocessor Initiative (OMI) and
selected application areas such as vision and multi-media.

A number of case studies, based on real systems
products and in collaboration with industry, are currently
in progress to assess the method.
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