

An Approach for Integrated Specification and Design of Real-Time Systems

Y. Tanurhan S. Schmerler H.-P. Gölz K. D. Müller-Glaser

Forschungszentrum Informatik Karlsruhe
Dept. of Electronic Systems and Microsystems

FZI/ESM
Haid-und-Neu-Str. 10-14, D-76131 Karlsruhe, Germany

http://www.fzi.de/esm/esm.html
email: esm@fzi.de

Abstract

In this paper, a design methodology for the design of
microelectronic systems which includes hardware and
software for open-loop and closed-loop control will be
presented. An integrated approach to specification and
design, analysis and simulation of the overall system has
been developed. This provides for a systematic, computer
aided approach to requirements definition, specification
and design as well as verification and validation of the
results. As embedded systems often require real-time capa-
bilities, the environment presented gives special consider-
ation to these constraints. We give an example for concrete
applications, which shows, how the design of real-time
embedded systems is supported by the design methodology
and environment.

1 Introduction

The design of embedded real-time systems, which
includes hardware and software for open-loop and closed-
loop control and sensor and actuator components, such as
automotive Electronic Control Units (ECU) or On-Board
Management Microsystems (OBMMS) requires the com-
bination of expertise from different domains. Available
methods and tools currently support certain parts of sys-
tem design, such as the design of discrete open-loop con-
trol systems or continuous and discrete closed-loop
control systems [18]. However, no integrated approach to
specification and design with respect to real-time capabili-
ties or to analysis and simulation of the overall system is
available. This lack of a complete and consistent system
description leads to integration problems that are often
detected very late in the design cycle and therefore cause
high redesign costs. The design of such complex and het-

erogeneous systems mandates a systematic, computer-
aided approach to requirements definition, specification
and design, as well as to verification and validation of the
results.

The design methodology presented in this paper is
called IRTISD (Integrated Real-TIme System Specifica-
tion and Design Environment).

2 Specification of real-time systems

Real-time systems are typically electronic systems
which demand special, fixed time-behaviour during execu-
tion. This means that the correctness of real-time systems
does not only depend on a correct function but also on the
delivery of the results at the correct time. The results have
to be produced before a defined deadline, with other
words, the real-time criterion has to be fulfilled. If this
time-behaviour is crucial to the functioning of a whole
system, the system is called a

hard

 real-time system, if not
we speak of a

soft

 real-time criterion.
This paper deals with the specification of embedded

real-time systems, i.e. systems which implement their
functionality both through software and hardware-compo-
nents. Normally, the software cannot be modified by the
user. The number of embedded real-time systems has
heavily increased during the last few years due to falling
prices for micro processors and DSP´s and growth of the
typical system complexity of embedded systems in indus-
trial automation, telecommunication and aerospace.

Rising hardware-performance and higher computing
power does not provide a solution to the problem of fulfill-
ing the hard real-time criterion, as recent research results
in the area of embedded systems have shown [13].
Increased computing power is used to increase system
complexity rather than for the improvement of timing

EURO-DAC '96 with EURO-VHDL '96
0-89791-848-7/96 $4.00 1996 IEEE

behaviour. An improvement in this area can be achieved by
systematic modifications to the scheduling concept and
resource management.
More importantly, such improvements can be achieved
through:
• The use of formal methods for the specification and

verification of the design.
• The inclusion of programming languages and design

tools especially for code generation for special target
systems resulting from a formal specification.

• The development and use of operating systems and net
management methods combined with a real-time-capa-
ble communication protocol to ensure predictable oper-
ations in a complex and non-predictable environment.

• The planning and use of fault-tolerance to increase reli-
ability and ensure the timing behaviour of real-time
systems.
This paper presents an integrated design and specifica-

tion environment which fulfils the needs and constraints of
embedded real-time systems described above. The follow-
ing chapters describe details of the environment, the design
methodology and example applications that have been
designed with IRTISD. Related work [17] has been con-
cerned with a design methodology for hybrid electronic/
mechanical systems but uses similar strategies as devel-
oped within IRTISD.

3 Overall strategy

The requirements and specification are defined as those
stages in the system design cycle which precede the design
of microsystem architectures, the implementation of sys-
tem components, integration and test. These phases include
the formulation and analysis of functional and behavioral
requirements to the proposed system, as well as non-func-
tional requirements and constraints that have to be met and
considered.

The design process of complex, heterogeneous systems
can be organized into a hierarchy of specification, design,
implementation and integration processes at different levels
of abstraction. Such systems consist of analog and digital
hardware/software of different abstraction levels, as well as
non-electronic components, such as actuators and sensors.

At the systems and subsystems level, implementation is
replaced by a lower-level development process. At the
component level, technology specific design processes are
used to implement the components. Having successfully
finished the implementation process at one level, the results
are integrated at the next higher level up to the system
level. Within this process, specification, design, verification
and validation are performed at each level and therefore
accompany the overall system design process. The defini-

tion of requirements at system level represents the initial,
interactive process of formulating the customer’s needs, as
well as the technology-specific restrictions and common
technical and economical restrictions. Feasibility studies
are performed to validate the requirements. The formula-
tion, validation and modification of requirements typically
results in a specification document which includes a collec-
tion of formal and informal, functional and non-functional
requirements, goals, constraints and marginal conditions.

The IRTISD methodology is based on three major
approaches [1], [15]:
• Systematic acquisition of requirements documents
• Management of non-functional requirements that can-

not be formalized based on coarse-granular data models
• Development, analysis and simulation of executable

models for functional and behavioral specification with
step-by-step refinement into actual component design
Embedded systems are characterized by a tight coupling

with the usually time and value-continuous system envi-
ronment (fig 1).

Specification techniques currently available, such as
Structured Analysis for Real-Time Systems (SA/RT) [2],
[3], Statecharts [4], SpecCharts [5], Specification and
Description Language SDL [6], [7], [8], Hardware
Description Languages [9] and object-oriented methods
[10] concentrate mainly on functional and behavioural
specification. Current work includes new insights derived
from intensive usage of SDL for early system validation
[11] in the field of aerospace technology. We use a specifi-
cation model based on a combination of structured tech-
niques similar to the SA/RT approach. It uses Statecharts
for the reactive, open-loop parts of the behavioral specifica-
tion, which are complemented by the use of mathematical
specifications especially control design block diagrams,
module generators or high-level modelling in VHDL and C
for the description of SA/RT-processes. The SA/RT model
can be partitioned and connected by models based on queu-
ing theory, in order to analyse the system performance.

Figure 1. Structure of embedded systems

E
N
V
I
R

O
N
M
E
N
T

A
C
T
U
A
T
O
R
S

opt.
mech.
therm.
electr.
magn.
chem.
biolog. S

E
N
S
O
R
S

POWER ELECTRONICS

DIGITAL
HARDWARE

ANALOG
HARDWARE

P
O
W
E
R

S
U
P
P
L
Y

COMMUNICATION MODULES

S
P
E
C
.

I
N
T
E
R
F
A
C
E
S

MICRO-
PROCESSOR

MICRO-
CONTROLLER

DSP

OPERATING
SYSTEM

Fig. 2 shows the structure of the overall tool environ-
ment within IRTISD. Tool couplings in the area of cosi-
mulation have been implemented between tools for
description of time-discrete models (for instance State-
mate) and of continuous systems (for instance MatrixX)
on several levels. There are two mechanisms for code inte-
gration which is used for code generated by one tool com-
municating with the internal simulator of the other tool.
This is a very convenient and, more than that, a quick way
to get a coupled simulation. Code integration is a proce-
dure performed automatically by the environment, which
includes code modification and linking to executable pro-
grams. These are started in the background for communi-
cation with the running simulator. Besides code
integration, direct couplings between Statemate and
MatrixX have been implemented. Using these coupling
mechanisms, system verification and validation can be
performed in an interactive way - either by using the inter-
active simulator of Statemate or a graphical panel as fron-
tend to a standalone program which resulted from code
integration. The integration of continuous sub-models into
the Activity and Statechart hierarchy allows for easy and

intuitive design of heterogeneous systems. The manage-
ment and handling of design and simulation data is the
task of the framework and allows the user to restore
former simulation runs and the corresponding design data
at any time. Version management, code generation and
code integration are performed by the tool servers of the
integrated tools automatically. For tool data exchange, the
standardized Format CDIF (Case Data Interchange For-
mat) was chosen to achieve a tool independent exchange
format [11].

4 Design process within IRTISD

The following example demonstrates the application of
the different methods described above, in order to support
the requirements description and specification of a system.
The specification process using IRTISD includes:
• The requirements description:

The acquisition of the requirements description is
achieved using a hypertext-based frontend (HTML and
SGML, see fig. 2). A predefined specification template
for automotive control units is used. All functional,

Estimation
Planning

Interface
Specification

High-Level Prepartitioning

Requirements Capturing - HTML, SGML

Component Specification

Behavioral SpecificationData Flow

generaltransformatorialreactive
Timing

Specification

System Validation
Rapid Prototyping

HW-In-The-Loop-Simulation

CDIF, VHDL(-A), C und C++
Code Generation, Validation and Prototyping

Simulation Backplane
Tool integration / Model integration / System simulation

 SimBa

SYNOPSYS, ELDO,SABER

Architecture Simulation
Component Models

SES/workbench

Performance Analysis
Component Models

Architecture Spezifikation
Manual Partitionierung

Logic Animator,
Paradigm RP

ASCET,
DSPACE
AC-100

Signal
Requirements

TSDL

High Level Models

VHDL(-A) and C

Teamwork
Analysis/Simulation

Statemate, Geode,
ObjectTime, SDS

Analysis/Simulation

MatrixX, MATLAB
Analysis/Simulation

SA

Power Consumpt.
Timing
Area

Reliability
Costs...

Timing
Constraints

Electrical
Physical
Chemical
Biological

Constraints

Figure 2. IRTISD-system

Architecture Specification

Manual Partitioning

behavioral and informal requirements and constraints
are entered via text and table editors within the hierar-
chical HTML-pages. A table-based acquisition supports
structured and traceable descriptions of the different
functional requirements and the latest test procedures.
This information is used to create checklists for the fol-
lowing formal specification of the system model and
the test procedures.

• The formal interface and environment definition:
A complete system specification must include the sys-
tem´s interfaces and, if the system specification is to be
simulated, (which is strongly recommended in
IRTISD), simulation models of the environment. The
system is described by a data flow diagram called con-
text diagram. The context diagram represents the top-
level system description which includes the environ-
mental process, the information flow and the system
interface. As the environment shows up as processes in
the data flow model, these processes can be filled with
the models of the environment when needed.

• The refinement in steps and formal control specifica-
tion: The functional specification of the system to be
designed is refined by a hierarchy of data flow descrip-
tions. Each function described in the requirements
description is designated by a black-box and a number
of interconnecting data and control flows. Existing
models are also represented as processes and are linked
to the corresponding black box. System control is
defined at each level of the data flow model hierarchy
(as in SA/RT). Every control process is described using
the Statechart formalism: in particular concurrent and
hierarchical state machines are used. The activation/de-
activation of processes is described formally and related
to transitions in the state machine model.

• The formal process specification: Algorithms for feed-
back control or signal pressing are described using
transfer functions and other elements known from clas-
sical and modern control design. As this usually
requires a tool change (in this case Statemate to
MatrixX), the interfaces are transferred into the control
design tool.

• The simulation and prototyping: Using a cross-tool
simulation the system behaviour is simulated. Alterna-
tively, code can be generated by the participating tools
and can be integrated automatically. This provides a
software prototype which can be used to validate the
system behaviour outside the simulators, especially in
an real-time environment.

• The performance analysis: The software prototype is
brought into the environment which provides for statis-
tical analysis. Here, specific loads, dataflows or differ-
ent communication protocols for implementation can
be scrutinized. If the needed performance level is not

achieved, the lower-level requirements are changed or
sharpened in the hypertext requirements specification
and the cycle is repeated.

• The code is generated in a language which leads to
component development: VHDL on the digital hard-
ware side, VHDL-A [15] on the analog hardware side,
and C or ADA on the software side.

5 Example application

The following example demonstrates different methods
which support the requirements description and specifica-
tion of an embedded system. It also demonstrates the com-
plete, integrated specification process of a typical
automotive control unit based on a microcontroller. In cars
being developed currently these control units are increas-
ingly used for controlling different mechanical parts in
automobiles such as motor management or transmission
control.

The basic requirements for automotive control systems
deal with multiple fields in system development such as
hard real-time requirements for the operating system (i.e.
injection control), continuous-time simulation (integrated
RLC-networks), discrete-event simulation (microcontrol-
ler), network management and protocols (CAN), and
robustness.

The ECU controls the engine by generating the pulses
for the injection valves (IV1-4) and by sending the start
signal to the electronic fuel pump (EFP) at the correct time.
The ECU gets information about the state of the engine
from different sensors. These sensors provide information
about air temperature (TA), cooling water temperature
(TCW), camshaft rotation (CAS) and crankshaft rotation
(CRS). The results of the air mass measurement (AMM)
are dependent on the mechanical position of the throttle
valve (TV). CL15 indicates the on/off position of the igni-
tion key (see fig. 3)

The ECU itself consists of an SAB80C166 microcon-
troller, which is connected via a local bus system to the I/
O-Interfaces, to the CAN-controller and to RAM and ROM
memory units. The software which runs on the
SAB80C166 is the OSEK [16] operating system. OSEK is
a configurable real-time operating system. It contains fixed
and application-specific modules, e.g. for time- event- or
interrupt-handling. The application itself is described in a
variable number of tasks with different priorities.

The functional description of the electronic controller
unit (see fig. 3) corresponds to the development methodol-
ogy used in IRTISD. The specification starts with the defi-
nition of the highest level, in this case the electronic
controller unit ECU. Then the design is refined layer after
layer until the finest granularity is reached. This finest

granularity consists of basic components. Thus, the design
methodology described in chapter 3 was applied.

At the first sub-level, the described ECU is divided into
the following components: a microcontroller 80C166 to
perform the basic computation, memory units, I/O-units,
and a CAN controller to communicate with other ECU’s in
the automotive system.

The microcontroller contains the operating system
OSEK, which is refined into the parts concerning the func-
tionality of the application, the different algorithms that
control the engine.
These controlling algorithms have also been defined in the
IRTISD environment by using the MATRIXx/System
Build Simulator. The verified model was exported by
MATRIXx via the C-code-interface. To obtain the OSEK-
specific application format, the provided scheduler was
removed from the generated code and the sub-models were
extracted. To verify the extracted motor-management
model, the simulation results from IRTISD were compared
with the results from the simulation of the original model.
 The ECU example shows the two different, but corre-

sponding ways to go ahead with the system specification:
the informal (conceptional) method and the formal method.
The informal specification of the ECU uses textual and
graphical methods to define the requirements, the func-
tional decomposition and the interfaces between the com-
ponents themselves and with the systems environment.The
structure and contents of the informal specification can be
transformed into a formal specification after an element has
been described informally.
In addition to the top-down-methodology described above,
IRTISD provides a bottom-up strategy for entering the
specification process at the component level. In the ECU
example the CAN unit has been developed in the past, and
now it is being reused in the current design. So IRTISD
combines the top-down and bottom-up methods to a meet-
in-the-middle strategy.

The OSEK real time operating system [16], developed
in a joint Project of the automotive industry, was modelled
within the IRTISD environment. The OSEK standard spec-
ifies the kernel of the operating system including time-,
interrupt- and event-handling. In order to integrate OSEK
into the environment, its functionality was also modelled in
Statemate. Now any application for OSEK can be devel-
oped and verified in IRTISD. An additional advantage of
the OSEK-integration is the possibility of monitoring the
operating systems behaviour during run time in order to get
information about the real-time behaviour of the applica-
tion.

The communication between different electronic con-
troller units is handled by a CAN controller located within
each unit. This CAN Controller was modelled in Statemate
using the IRTISD methodology. For validation purposes,
this simulation model was run on an FPGA- based logic
emulation system. Then, the modelled controller was veri-
fied by connecting it to the emulated controller and to a
integrated CAN-controller. In order to demonstrate the var-
ious coupling mechanisms, the software model of the
CAN-controller was connected to real existing components
and to emulated hardware components.

The environment MESA

 To verify the idea and basic
concept of IRTISD, we implemented the design-, specifica-
tion- and simulation environment for microelectronic sys-
tems MESA

1

 in cooperation with the German automotive
manufacturers BMW, Daimler-Benz, Porsche and VW and
their electronic deliverers Bosch, Hella, Siemens and VDO
within the MSR consort. The design methodology of
IRTISD used in MESA allows an exchange of models
under development between manufacturer and deliverer
without giving away Know-How - but on the other side the
sub-models of all partners were available and thus, cosimu-

1. See http://www.fzi.de/esm/projects/msr/msr.html

Figure 5. Functional components of an ECU

SAB
80C166

ROM RAM

In
te

rf
ac

e
C

irc
ui

t

In
te

rf
ac

e
C

irc
ui

t

CRS

CAS

TCW

AMM

IV 1

IV 2

IV 3

IV 4

EFP

Bus System

 OS (OSEK)

Air intake
System

TV

EFP

EFP-
Relais

AMM

IV 1-4

Engine

TA CASCRSTCW

ECU
E

xh
au

st

Cl 15

CL15

CAN

TASK 2

TASK n

TASK 1

•
•
•

Application

Kernel

Timer

Event
Handling

Interrupt
Handling

Communi-
cation

lation of the

whole

 system under development is possible.
Current research results in the area of Hardware/Software
Codesign have been taken into consideration during the
implementation of the Rapid Prototyping-interfaces to and
from IRTISD [19], [20]. Thus, special interfaces to Rapid
Prototyping-environments have been provided with the aim
of running code generated within MESA on several com-
mercial RP-systems. It can also be downloaded onto plat-
forms running real-time operating systems like OSEK.
Rapid Prototyping and -Verification has been performed in
this manner for several ECU’s on SAB80C166-platforms
and the real-time operating system OSEK. This method has
proven to be exact and a good support for ECU-designers
in the automotive sector. MESA has been used successfully
in several pilot projects between the members of MSR in
the last year.

6 Conclusions and future work

A design methodology for real-time embedded systems
has been developed. At the example of an electronic control
unit (ECU) in an automotive system this methodology has
proven to be useful for designers and especially meets the
requirements for the specification of embedded real-time
systems. An important improvement can be seen in the sys-
tematic discovery of errors or incomplete specifications in
the early design phases. The IRTISD-environment as an
implementation of the described methodology has been
successfully used in several industrial projects in the auto-
motive sector.

Future work will be concentrated on several subjects.
The integrated HTML-based specification environment
will be improved to support the designer additionally in the
early design phases.

The integrated object-oriented specification and model-
ling language with the internal name ObjectCharts will be
improved and systematically integrated into the design
environment.

At last, the current work in the area of Hardware/Soft-
ware-Codesign and Simulation Backplane [12] technology
will be continued.

References

[1] K.D. Müller-Glaser, J. Bortolazzi, "An Approach to
Computer Aided Specification" in

IEEE Journal of Solid-State Circuits

, Vol. 25, No.2
April 1990, pp. 335-345

[2] D.J. Hatley, and I.A. Pirbhai, "Strategies for Real-Time
Specification", Dorset House Publishing, New York 1988

[3] T. DeMarco, "Structured Analysis and System
Specification", Prentice-Hall, Englewood Cliffs, NJ, 1979

[4] D. Harel, A. Pnueli, J.P. Schmidt, and R. Sherman, "On the
formal Semantics of Statecharts", in

Proc. 2nd Symp. on
Logic in Computer Science

 1987, pp.54-59
[5] S. Narayan, F. Vahid, and D.D. Gajski, "System

Specification and Synthesis with the SpecCharts
Language", in

Proc. of ICCAD

 1991, pp. 266-269
[6] R. Saracco, J.R.W. Smith, and R. Reed,

"Telecommunications Systems Engineering using SDL",
North-Holland, Amsterdam 1989

[7] R. Gerlich, T. Stingl et al.,
"Experiences with an Extended SDL Environment",

ESTEC Workshop on Systems Engineering

,
Nordwijk, 1995

[8] CCITT Recommendation Z.100, "Specification and
Description Language SDL"

[9] VHDL System Design, The VHDL Consulting Group,
Version 2.1, 1991

[10] J. Rumbaugh, P. Blaha, W. Premerlani, F. Eddy, and
W. Lorensen, "Object-Oriented Modelling and Design",
Prentice-Hall, Englewood Cliffs, NJ, 1991

[11] J. Ernst, and K.D. Müller-Glaser, "Using The 1994 CDIF
Standard As Data Exchange Format for Early Design
Phases in Automotive Electronics", Technical Report
FZI/ESM-Computer Science Research Center, 1995

[12] S. Schmerler, Y. Tanurhan, K.D. Müller-Glaser,
"A Backplane Approach for Cosimulation in High-Level
System Specification Environments",

Proc. of the 1995
European Design Automation Conference

, 1995
[13] Sang H. Son, Ed.,

"Advances In Real-Time Systems",
Prentice Hall, Englewood Cliffs, 1995

[14] K. D. Müller-Glaser, J. Bortolazzi, Y. Tanurhan,
"Towards a Requirements Definition, Specification and
System Design Environment",

Proc. of the 1992
European Design Automation Conference

, 1992
[15] E. Sax, Y. Tanurhan, K.D. Müller-Glaser,

"Integrated Design Process Support with VHDL-A",

Proc. of the 1995 EUROSIM Congress

, 1995
[16] OSEK consort,,

"The OSEK Operating System - Application Program
Interface", 1995

[17] A. Smailagic,D.P. Siewiorek, D. Anderson, et al.,
"Benchmarking an Interdisciplinary Concurrent Desin
Methodology for Electronic/Mechanical Systems",

Proc. of the 32nd Design Automation Conference

, 1995
[18] J.-P. Soininen, T. Huttunen, K. Tiensyrjä, and H. Heusala.,

"Cosimulation of Real-Time Control Systems",

Proc. of the 1995 European Design Automation
Conference

, 1995
[19] Th. Benner, R. Ernst, and A. Österling,

"Scalable Performance Scheduling for Hardware-Software
Cosynthesis",

Proc. of the 1995 European Design
Automation Conference

, 1995
[20] G. Koch, U. Kebschull, W. Rosenstiel,

"A Prototyping Environment for Hardware/Software
Codesign in the COBRA Project",

3rd International
Workshop on Hardware/Software Codesign

, 1994

	CDROM Home Page
	1996 Home Page
	EURO-DAC96 Home Page
	Front Matter
	Table of Contents
	Session Index
	Author Index

