
EURO-DAC ’96 with EURO-VHDL ’96
0-89791-848-7/96 $4.00  1996 IEEE

CoWare – A design environment for heterogeneous hardware/software systems

Karl Van Rompaey, Diederik Verkest, Ivo Bolsens, Hugo De Man

IMEC, Kapeldreef 75, B-3001 Heverlee, Belgium
E-mail: frompaey,verkest,bolsens,demang@imec.be

Abstract

In this paper the design problems encountered when de-
signing heterogeneous systems are studied and solutions to
these problems are proposed. It will be shown why a single
heterogeneous specification method ranging from concept
to architecture is required and why it should cover issues
as modularity, design for reuse, reuse of designs and reuse
of design environments. A heterogeneous system design en-
vironment based on co-specification, co-simulation and co-
synthesis is proposed and its application is illustrated by
means of a spread spectrum based pager system.

1. Introduction

The design process for a DSP system must bridge the gap
between the heterogeneous functional specification and its
heterogeneous implementation. The shorter time to market
and exponentially growing complexity of systems requires
an increase of design productivity by at least one order of
magnitude by the end of the decade. The goal of this contri-
bution is to reflect on the impact of DSP systems and VLSI
technology on design technology needs.

In section 2, we analyze the characteristics of DSP sys-
tems to derive initial requirements for a system design en-
vironment. Section 3 focuses on the design problems of
heterogeneous system design. From these, additional con-
straints for the specification method are derived. A data
model and language for the specification of heterogeneous
systems is proposed in section 4. The effectiveness of this
specification method is illustrated by a spread spectrum
based pager example in section 5. Finally, in section 6, it is
shown how the same data model can be used for modeling
off-the-shelf processors. These models are used in proces-
sor independent interface synthesis tools.

2. Characteristics of heterogeneous systems

A typical example of a heterogeneous system, a spread
spectrum based pager, is illustrated in Figure 1. Most DSP

systems of this complexity, consist of one or more main DSP
paths, slow control loops and a reactive control system tak-
ing events of a slow environment or slow status information
from the DSP paths. The control loop and reactive control
system set the mode or parameters of the DSP paths.

The main DSP path is usually a concatenation of data-
flow components transforming the format of the data. When
these data-flow components operate on unfragmented sig-
nal words they can best be specified as data-flow algorithms
(e.g. in DFL), while others that manipulate individual bits
of the signal can better be described as an FSM with datap-
ath (e.g. in VHDL). The data-flow components in the DSP
path, which can operate at fairly different data- and execu-
tion rates, are internally stronglyconnected data-flow graphs
with sparse external communication. Hence, from an im-
plementation point of view they are seldom partitioned over
several hardware components. Rather they will be merged.

The slow synchronization loops and mode control, which
run in parallel with the data-flow, have reactive semantics
and can best be described with a Program State Machine
model [5] which is a hierarchy of program-states, in which
each program state represents a distinct mode of computa-
tion. The slow nature of the synchronization and mode con-
trol make them natural candidates for software implementa-
tion (e.g. in C). The same holds for the low data-rate parts
of the system (frame extraction, channel decoding).

From the above it follows that at the conceptual level
DSP systems need a lot more than data-flow models (SDF,
DDF) for their complete specification. Also control-flow
oriented and reactive models are required. Hence, there is a
need for a co-specification environment that allows the sys-
tem components to be described with the most appropriate
host language. Next we will take a look at the problems in-
volved in implementing heterogeneous systems.

3. Heterogeneous system design problems

Today the conceptual specifications used by system de-
signers are barely understood by chip architects, thinking in
VHDL terms (if already). Hence most specifications are first
translated into (non-executable and ambiguous) English and

8M cs/c4 cs/c AD
 converter

1 rs/s

Display Keyboard

Data

System
Control

7 cs/s

AFC

DLL

8M rs/c

NCO

Chip
Matched

Filter

Correlator
 & Noise
estimator

 Tracking
 &
Acquisition

Frame
Extraction

User Interface
rs/c : real samples / chip
cs/c : complex samples / chip
cs/s : complex samples / symbol

M : oversampling factor

Phase
Correction

4 cs/c

Sample
clock

generation

I Q P data

8 cs/c

real data

complex data

control data

fm

Decimator
M

(a)

to
DISPLAY

2

X-tal

CLK_NCO

CH_PH

SEL_PSK

CDMA_L

DECIM_SHIFT

MPY_NCO

PHASE_OFFSET

AGC_FCTR

PN_SWAP

8*M rs/c

4 cs/c 8 cs/c7 cs/s

 ASIC Boundary

DECIM_FCTR

BYP_CMF

 to / from
A/D

SYNC_RX_CLK

SYNC_RXSYM_CLK

PN_I

ADDRESS_READ

 Phase
Correction

Chip
Matched

Filter

 ARM
 Interface

Pilot & Traffic
PN I & Q codes
SRAM

Cordic NCO

Decimator & Down-converter

8*M cs/c

ARM6

CTRL

A[32:0]

D[32:0]

CLK

Decim M

CB CB CB

C
B

CB

Correlation
&

Noise
estimation

CB
CB

C
B

 Clock
Generator
 NCO

from
CONTROL
BUTTONS to

External RAM (64kbyte)
 External (EP)ROM

UART

C
B

C
B

(b)

Figure 1. Functional specification (a) and pos-
sible implementation (b) of a pager.

then virtually redesigned in VHDL for the hardware compo-
nents and C or assembly for the software components. Al-
though the hardware and the software components have a
tight interaction, both hardware and software are designed
separately. Only after system assembly, the software is run
on the hardware. As a consequence, the hardware realizing
the hardware/software interface can be erroneous or far from
optimal, requiring a redesign of the system.

Another problem is the ever increasing complexity of
systems, which is coped with by designers by means of
reuse, modularity and design abstraction.

Reuse: What was a complex system in the past is used as an
abstract and reusable component in future systems (ALUs
are used in an ARM processor core, which in turn is used
as a component in a pager system). In most design environ-
ments, reusable components are characterized according to
a model and stored in a library. In heterogeneous system de-
sign, the architectures consist of communicating processors:
reuse happens at the processor level. Therefore, there is a
need for a processor model that allows to model off-the-shelf

processors on an as-is basis to support a “Reuse of Design”
methodology.

The main difficulty in reusing off-the-shelf processors
lies in the fixed communication protocols they use. When
processors with incompatible protocols have to be inter-
faced, protocol conversions are required. A good selection
of the protocol is possible only when all processors involved
in the communication are known because it is influenced by
a number of factors such as the required speed and robust-
ness of the data transfer, or the relation between the clocks
of the processors. Therefore, we advocate a “Design for
Reuse” methodology which supports a strict separation be-
tween functional and communication behavior. Initially, a
component is described purely functional. Later, when the
component is used in the system, the design environment
must allow to plug in the most appropriate communication
behavior. This approach is in contrast with current hardware
(VHDL) design practices, where communication and func-
tional behavior are mixed.

Modularity: In modular designs, the complete system
functionality is split into communicating components of
manageable complexity. The advantage of this approach is
that the components can be reused and that the system is eas-
ier to adapt and maintain. The disadvantage is the overhead
because of the inter-component communication or because
the compiler does not optimize over the component bound-
aries. Therefore, the inter-component communication se-
mantics should be such that modularity can be removed eas-
ily when merging two components into a single component.

Design Abstraction: In the past, a lot of effort has been
put in design environments that allow to implement today’s
system components. Languages with associated simulators,
tuned towards specific application domains, allow to specify
and simulate components at a high abstraction level. Hard-
ware compilers can implement the component description
onto processors with highly specialized architectures. Soft-
ware compilers allow to generate machine code for off-the-
shelf programmable processors. Instruction set simulators
allow to debug the machine code at different levels of ab-
straction. However, what is missing is the glue that links
these design environments together and automatically in-
terfaces the generated or off-the-shelf processors according
to the system specification. Hence, a system design envi-
ronment should allow to include existing design environ-
ments easily and should provide synthesis tools for hard-
ware/hardware and hardware/software interfacing that are
processor and design environment independent.

The gap between the conceptual system specification and
the system implementation is rapidly becoming the most im-
portant bottleneck of the design process. There is a need for
a formal and executable specification hand-over from sys-

tem designer to system implementor and an environment
that allows to gradually refine the system designer’s spec-
ification to an architecture, which serves as a specification
understood by the chip architects (hardware: VHDL, soft-
ware: C). Processor independent hardware/hardware and
hardware/software interfacing are key issues. Simulation is
required after every refinement step and at any abstraction
level. To cope with complexity, system level simulations
at different abstraction levels and mixed software/hardware
simulations are essential. Off-the-shelf components and
their design environments must be reused and in-house com-
ponents should be designed for reuse.

4. Heterogeneous system specification method

From the above requirements, a data model and language
has been developed on which the CoWare system design en-
vironment is built. In the data model, a lot of attention has
been paid to the inter-component communication semantics,
which is the key to effective solutions for modularity, “De-
sign for Reuse”, “Reuse of Designs”, communication refine-
ment and interface synthesis.

Modularity in the specification is provided by means
of processes. Processes contain language encapsulations1

which are used to describe the behavior of a system com-
ponent. Communication between processes takes place
through a behavioral interface, consisting of ports. For two
processes to be able to communicate, their ports must be
connected with a channel. The communication semantics
are based on the concept of the Remote Procedure Call
(RPC), i.e. one process can trigger the execution of a thread
in another process. The semantics of the data model objects
is summarized below.

A single process can have multiple host language encap-
sulations describing different implementations for the same
component, or for the same component represented at differ-
ent abstraction levels. For example the Chip Matched Fil-
ter in the pager example of Figure 1 was initially described
by means of a DFL encapsulation (conceptual level). Dur-
ing refinement, this DFL encapsulation was compiled by the
Cathedral compiler [10] into a VHDL encapsulation, which
is the processor implementation of the Chip Matched Fil-
ter behavior (structural-level). If a process has multiple en-
capsulations, then these should all be functionally equiva-
lent. Encapsulations can be primitive or hierarchical. A hi-
erarchical encapsulation is one described with the CoWare
language. In a CoWare encapsulation one can instantiate
processes and connect their ports with channels. All other
encapsulations are primitive and consist of a context and a
number of threads. The context contains code that is com-
mon to all threads in the encapsulation, i.e. variables/signals

1Currently C, DFL, VHDL and CoWare are supported.

and functions as allowed by the semantics of the host lan-
guage. As such the context provides for inter-thread (intra-
process) communication.

Ports are objects through which processes communicate.
Ports can be primitive or hierarchical. Hierarchical ports are
used to describe protocol conversions and data formatting
processes. A primitive port is used in all other cases. It con-
sists of a protocol and a data type parameter.

Protocols define the communication semantics of a port.
Protocols can be primitive or hierarchical. Each primitive
protocol indicates another way of data transport and is char-
acterized by a data direction (in, out, or inout) and a con-
trol direction (master, slave). The control direction indicates
whether the protocol activates an RPC (master) or services
an RPC (slave). In the remainder of this text, ports with
a slave/master protocol are also referred to as slave/master
ports. Hierarchical protocols refine the primitive protocol
with a timing diagram and the associated I/O terminals.

A thread is a single flow of control within a process. A
process can contain multiple threads. We distinguish be-
tween slave threads and autonomous threads. Slave threads
are uniquely associated to slave ports and their code is exe-
cuted when the slave port is activated. Autonomous threads
are not associated to any port and their code is executed, af-
ter system initialization, in an infinite time-loop.

A channel is point-to-point. Two ports that are connected
by a channel can exchange data. A channel can be primitive
or hierarchical. A primitive channel provides for unbuffered
communication. It has no behavior: it is a medium for data
transport. In hardware it is implemented with wires, in soft-
ware it is implemented with a function call. A hierarchi-
cal channel refines a primitive channel by specifying a be-
havior. At the conceptual level, a hierarchical channel can
be used to model a communication channel, e.g. to model
bandwidth limitations. At the implementation level, a hier-
archical channel is used to specify a communication buffer,
e.g. a FIFO.

The CoWare data model supports three communication
mechanisms. Communication always happens between two
threads. If the threads are part of the same process, we speak
about intra-process communication. If the threads are part
of different processes, we speak about inter-process commu-
nication in which case we make a further distinction based
on the protocol. Intra-process communication is done by
making use of shared variables/signals that are declared in
the context of the process. Avoiding that two threads access
the same variable at the same time is host language depen-
dent. It is the user’s responsibility to protect critical sections
using the mechanisms provided in the host language. Inter-
process communication with a primitive protocol is RPC
based. On a master port the RPC functioncan be used to ini-
tiate a thread in a remote process. The RPC function returns
when the slave thread has completed. In the slave thread

ip

op

ip

Chip Matched Filter + Phase Correction

thread ip {
 int in[0..15], out[0..7];

 in[0..15] = Read(ip);
 out[0..7] = CMF(in[0..15]);
 {
 int PC_in[0...7], PC_out[0..7];

 PC_in[0..7] = out[0..7];
 PC_out[0..7] = Pcorr(PC_in[0..7]);
 RPC(op, PC_out[0..7]);
 };
};

INLINE

thread ip {
 int in[0..15], out[0..7];

 in[0..15] = Read(ip);
 out[0..7] = CMF(in[0..15]);
 RPC(op, out[0..7]);
};

Chip Matched Filter

thread ip {
 int in[0..7], out[0..7];

 in[0..7] = Read(ip);
 out[0..7] = Pcorr(in[0..7]);
 RPC(op, out[0..7]);
};

op

Phase Correction

ip

op

Figure 2. Merging of processes.

(uniquely associated with a slave port), the Read and Write
functions can be used to access the slave port. Inter-process
communication with a hierarchical protocol is completely
defined by the timing diagram and terminals of the protocol.

The protocol hierarchy provides a clear separation be-
tween functional and communication behavior. Initially, a
component is described purely functional. In such a descrip-
tion one can perform abstract actions on a port. The al-
lowed actions are determined by the primitive protocol of
the port. In addition, one can attach a behavior, also called
slave thread, to a slave port. Later, when the component
is instantiated in a system, the primitive protocol is refined
into the best suited hierarchical protocol, taking into account
the other system components. This fixes the timing diagram
and terminals used to communicate over that port. Next, the
port containing the hierarchical protocol is made hierarchi-
cal to add the required communication behavior that imple-
ments the timing diagram of the selected hierarchical pro-
tocol. This method reduces the amount of protocol conver-
sions needed at the system level and allows to postpone the
selection of the communication protocol and its implemen-
tation until late in the design process, in this way achiev-
ing the requirements of “Design for Reuse”. The concept of
hierarchical protocols is also useful to model off-the-shelf
components (“Reuse of Design”), because the timing dia-
grams according to which a processor communicates are ab-
stracted in it.

Due to the selection of RPC as inter-process communi-
cation, the classification of protocols and the structuring of
a process in encapsulations with context and threads, an in-
lining transformation can be implemented that allows to re-
move modularity. The transformation allows to merge pro-
cesses into a single process2. In the process of merging, all
RPC calls are in-lined: each slave thread is in-lined in the

2Merging of processes is only allowed when the processes have an en-
capsulation in the same host language.

Phase Correction

Correlator & Noise Estimator

Tracking & Acquisition

ip

Sample Clock Generator A/D converter
op clock

Chip Matched Filter

Down-conversion
ipop

Decimation

AFC
NCO

context c {
 int delta;
}

thread op {
 lock(c,read);
 write(op, delta);
 unlock(c);
};

thread ip {
 int corr[0..13];

 corr[0..13] = Read(ip);
 lock(c, write);
 delta = t&a(corr[0..13]);
 unlock(c);
};

thread {
 int total, delta;
 const threshold;

 delta = RPC(ip);
 total = total + delta;
 if (total > threshold) {
 RPC(op);
 total = 0;
 }
};

Figure 3. The pager described with RPC.

code that calls it via an RPC statement. This in-lining trans-
formation eliminates the overhead that accompanies remote
procedure calls. It reduces the number of threads and there-
fore the overhead that accompanies the switching between
threads. Finally, it allows compilers to optimize over the
boundaries of the original processes. Figure 2 shows the
effect of merging the Chip Matched Filter process and the
Phase Correction process of Figure 1.a. On the right-hand
side the RPC call in the Chip Matched Filter process has
been replaced with the code of the slave thread in the Phase
Correction process.

5. The design of a pager

In this section, the data model explained above will be
applied to the design of a spread spectrum based pager.

Conceptual specification. Figure 1.a shows how the pager
was described in CoWare. Each component corresponds to a
process implementing a specific function of the pager. This
functional decomposition determines the initial partitioning.
The arrows in between the processes indicate communica-
tion via a Remote Procedure Call (RPC) mechanism. Fig-
ure 3 shows the RPC communication in detail for part of the
pager design. The blocks in the figure correspond to the pro-
cesses from Figure 1.a. The small rectangles on the perime-
ter of the processes are the ports. The shaded ports are mas-
ter ports, the others are slave ports.

The Sample Clock Generator process contains an au-
tonomous thread that performs an RPC over its input port ip
to the Tracking & Acquisition process to obtain a new value
for delta, which is added to some internal variable until a
threshold is exceeded, at which point an RPC call is issued
to the A/D converter process. In this way the Sample Clock
Generator process implements a sawtooth function of which
the period is influenced by the value of delta. In the Track-
ing & Acquisition process, the slave thread op services RPC
calls over the port op by writing the value of the variable
delta to the port. The variable delta is declared in the con-
text of the Tracking & Acquisitionprocess and is updated by

another slave thread ip, which is called from the Correlator
& Noise Estimator process.

This example shows how the context is used for commu-
nication between threads inside the same process whereas
the RPC mechanism is used for communication between
threads in different processes.

Figure 1.b shows the architecture description of the
pager. Architectures are again specified as an interconnec-
tion of processes. The processes, representing processor im-
plementations, are described with a structural VHDL encap-
sulation and have ports with a hierarchical protocol. The
architectural description is the result of a number of refine-
ment steps.

Partitioning and mapping. In a first step, partitioning and
mapping, as indicated in Figure 1, takes place. The NCO,
Down-conversion, and Decimation processes, for example,
are merged and mapped in hardware onto an application spe-
cific DSP Cathedral processor [10] mainly because the sam-
ple rate of the merged processes is identical, which implies
that they can be clocked at the same frequency. The Track-
ing & Acquisition, Frame Extraction, and User Interface
processes, for example, are merged and mapped on a pro-
grammable processor. For this design an ARM6 processor
is chosen. To obtain a maximal degree of flexibility as much
of the functionality as possible is implemented in software
on the ARM6. The Tracking & Acquisition process has to
be implemented in software because the algorithm used to
perform tracking and acquisition may require modification
depending on the application domain of the pager system.
The Correlator & Noise Estimator process is not included in
software because the input rate for the Correlator & Noise
Estimator is too high to realize a real-time communication
between the ARM6 and the Phase Correction process. In ad-
dition an estimation of the number of cycles required to exe-
cute each function on the ARM6 shows that the implementa-
tion of the Correlator & Noise Estimator process in software
leaves insufficient time to perform tracking and acquisition
in between every two symbols.

Communication selection. After partitioning and map-
ping, communication selection is performed. In the archi-
tecture of Figure 1.b the processors can, in principle, oper-
ate concurrently because each processor has its own thread
of control. This can be achieved by refining the RPC based
communication scheme to pipeline the processors: all pro-
cessors operate concurrently and at I/O points they synchro-
nize. In the CoWare design environment the refinement of
the communication mechanism is performed by making use
of a hierarchical channel. Hierarchical channels, the CB
components in Figure 1.b, replace a primitive channel by a
process that describes how communication over that channel

d

ack

str

φ

HW
inter-
faces

Encapsulated C process on an Encapsulated processor

I/O
device
drivers

processor HW model

processor SW model

PROCESSOR

C

2
3

1
4

Figure 4. Mapping a C process on a pro-
grammable processor.

is carried out.

Implementation of components. The next step is to com-
pile the merged components into an implementation.

The merged User Interface, Tracking & Acquisition and
Frame Extraction process is implemented in software on an
ARM core by means of the tool SYMPHONY which im-
plements a (software) process on a programmable processor
and connects it with the (hardware) processes it communi-
cates with. This task is schematically depicted in Figure 4.
SYMPHONY makes use of a library of processor models
and I/O scenario models both described using the CoWare
data model, to generate the I/O device drivers and the hard-
ware interfaces. The I/O device drivers link the original C
process (1) to the software interface of the processor (3).
The hardware interface makes the link between the hard-
ware interface of the processor (2) and the original processes
(4) external to the processor.

For the CB components an encapsulation with a gate-
level VHDL description is selected from a library.

All other components are compiled with the Cathedral
silicon compiler [10] into a VHDL encapsulation.

Interface synthesis. Finally, all processors have to be inter-
faced: i.e. their protocols have to be made compatible. This
is done by INTEGRAL [8], a processor independent, hard-
ware/hardware interfacing tool. The tool takes two timing
diagrams and a protocol independent descriptionof the com-
munication behavior and generates a gate-level VHDL de-
scription of a circuit that interfaces the two timing diagrams.

6. Modeling off-the-shelf processors

In the architecture of a heterogeneous system off-the-
shelf processors, such as the ARM core, are used. These
processors come with their own simulation and compilation
environment. For example the ARM core comes with a C-
compiler and an instruction set simulator (ARMulator). Af-

ter integration of the ARM design environment, it must be
possible to compile a component described in C with the
ARM C-compiler and simulate it with the ARMulator. As a
consequence, plugging in new compilers and simulators into
the system design environment must be easy and should not
require new tools to be written. Furthermore, it must be pos-
sible to interface the off-the-shelf processor to the other sys-
tem components. For that purpose, architecture and proces-
sor independent hardware/hardware and hardware/software
interface tools are required. To build such tools, processor
models are required. These models abstract the design in-
formation needed to perform interface synthesis and allow
to reuse the processor in different system contexts.

Programmable processors require both hardware and
software interfacing, and hence are abstracted in a hard-
ware model and a software model. The processor hard-
ware model formalizes the information that is available in
the hardware section of the data sheet. In Figure 4, this hard-
ware model is represented by the rectangle marked “pro-
cessor HW model” and the ports at the outside of the rect-
angle’s perimeter. All ports have hierarchical protocols:
they consist of terminals and a timing diagram (including
timing constraints) as is shown in Figure 4 for one particu-
lar port. The processor software model formalizes the infor-
mation that is available in the software section of the data
sheet. In Figure 4, this software model is represented by the
rectangle marked “processor SW model” and the ports at
the inside of the rectangle’s perimeter. The software model
identifies, for example, what ports can be used as interrupt
ports and what their characteristics are (priority of the inter-
rupt, maskable interrupt or not, ...). For the ARM processor,
the memory and co-processor interfaces are modeled as bi-
directional (inout) master ports, and the irq and fiq ports are
modeled as slave ports. The software model also contains
a behavioral description that contains all code for processor
specific actions such as installing interrupt vectors, or read-
ing and writing to specific memory locations via the memory
port.

7. Conclusions

To date, some system design environments include hard-
ware/software co-design and support heterogeneous system
implementation (programmable processors combined with
custom and off-the-shelf hardware components). However,
they are based on a single specification paradigm often com-
bined with a single associated specification language [2, 3, 6,
7, 9]. The specification paradigm reflects the target applica-
tion domain which usually is control-oriented. The benefit
of such an approach is in its high analytic potential that al-
lows automation of design tasks such as hardware/software
partitioning, (formal) analysis of timing properties, or the
optimizationof the design with respect to timing constraints.

True heterogeneous system design environments [1, 4],
in contrast to the above approaches, start from a heteroge-
neous specification in which different paradigms and lan-
guages can be combined and, as such, are not application do-
main oriented. The benefit of this approach, at the expense
of analytic power, is the ability to arbitrarily couple simula-
tion paradigms and tools, allowing a designer full freedom
in expressing each part of the system in the most appropriate
language. Both ESCAPE and Ptolemy are oriented to het-
erogeneous system simulation combining different simula-
tion paradigms. Unlike ESCAPE and Ptolemy, the environ-
ment presented in this paper is implementation oriented.

The CoWare environment supports the design of hetero-
geneous hardware/software systems. It allows to model sys-
tems at the conceptual level, at the architectural level, and
allows to represent the refinement process from specifica-
tion to implementation. The CoWare environment allows
to abstract off-the-shelf processor through the use of pro-
cessor models, and allows the automatic generation of hard-
ware/hardware and hardware/software interfaces, based on
these processor models.

Acknowledgments. We gratefully acknowledge the fi-
nancial support for this research of ESTEC under the
SCADES-2 and SCADES-3 projects, and of OMI under the
Standards-2 project.

References

[1] J. Buck et al. PTOLEMY: A framework for simulating and
prototyping heterogeneous systems. International Journal
on Computer Simulation, Jan 1994.

[2] P. Chou et al. The Chinook hardware/software co-synthesis
system. Proc. ISSS 95, pp. 22-27. Cannes, Fr, Sep 1995.

[3] R. Ernst et al. Hardware-software cosynthesis for microcon-
trollers. IEEE Design & Test, pp. 64-75, Dec 1993.

[4] H. Fleurkens et al. ESCAPE: A flexible design and simula-
tion environment. Proc. SASIMI 93. Nara, Japan, Oct 1993.

[5] D. Gajski et al. Specification and Design of Embedded Sys-
tems. Prentice-Hall, 1994.

[6] R. Gupta et al. Hardware-software cosynthesis for digital
systems. IEEE Design & Test, pp. 29-41, Sep 1993.

[7] A. Jerraya et al. SOLAR: An intermediate format for system-
level modeling and synthesis. In J. Rozenblit and K. Buchen-
rieder, editors, Computer Aided Software/Hardware Engi-
neering, IEEE Press, 1994.

[8] B. Lin et al. Synthesis of concurrent system interface mod-
ules with automatic protocol conversion generation. Proc.
ICCAD 94, pp. 101-108, San Jose, CA, Nov 1994.

[9] S. Narayan et al. System specification with the SpecCharts
language. IEEE Design & Test, pp. 6-13, Dec 1992.

[10] J. Vanhoof et al. High-Level Synthesis for Real-Time Digital
Signal Processing. Kluwer Academic Publ., Boston, 1993.

	CDROM Home Page
	1996 Home Page
	EURO-DAC96 Home Page
	Front Matter
	Table of Contents
	Session Index
	Author Index

