CoWare— A design environment for heterogeneous har dwar e/softwar e systems

Karl Van Rompaey, Diederik Verkest, Ivo Bolsens, Hugo De Man

IMEC, Kapeldreef 75, B-3001 Heverlee, Belgium
E-mail: {r onpaey, ver kest, bol sens, deman}@ nec. be

Abstract

In this paper the design problems encountered when de-
signing heterogeneous systems are studied and solutionsto
these problems are proposed. It will be shown why a single
heterogeneous specification method ranging from concept
to architecture is required and why it should cover issues
as modularity, design for reuse, reuse of designs and reuse
of design environments. A heterogeneous system design en-
vironment based on co-specification, co-simulationand co-
synthesis is proposed and its application is illustrated by
means of a spread spectrum based pager system.

1. Introduction

Thedesign processfor a DSP system must bridgethe gap
between the heterogeneous functional specification and its
heterogeneous i mplementation. The shorter time to market
and exponentially growing complexity of systems requires
an increase of design productivity by at least one order of
magnitude by the end of the decade. The goal of this contri-
butionisto reflect on the impact of DSP systems and VLSI
technology on design technology needs.

In section 2, we andyze the characteristics of DSP sys-
tems to derive initia requirements for a system design en-
vironment. Section 3 focuses on the design problems of
heterogeneous system design. From these, additional con-
straints for the specification method are derived. A data
model and language for the specification of heterogeneous
systems is proposed in section 4. The effectiveness of this
specification method is illustrated by a spread spectrum
based pager example in section 5. Finally, in section 6, itis
shown how the same data model can be used for modeling
off-the-shelf processors. These models are used in proces-
sor independent interface synthesistools.

2. Characteristics of heterogeneous systems

A typical example of a heterogeneous system, a spread
spectrum based pager, isillustrated in Figure 1. Most DSP

EURO-DAC ' 96 with EURO-VHDL '96
0-89791-848-7/96 $4.00 [J 1996 IEEE

systems of thiscomplexity, consist of oneor more main DSP
paths, dow control loops and areactive control system tak-
ing events of aslow environment or slow statusinformation
from the DSP paths. The control loop and reactive control
system set the mode or parameters of the DSP paths.

The main DSP path is usualy a concatenation of data
flow componentstransformingtheformat of thedata. When
these data-flow components operate on unfragmented sig-
nal wordsthey can best be specified as data-flow algorithms
(e.g. in DFL), while others that manipulate individua bits
of the signal can better be described as an FSM with datap-
ath (e.g. in VHDL). The data-flow componentsin the DSP
path, which can operate at fairly different data- and execu-
tionrates, areinternally strongly connected data-flow graphs
with sparse external communication. Hence, from an im-
plementation point of view they are seldom partitioned over
severa hardware components. Rather they will be merged.

The dow synchronizationloopsand mode control, which
run in parale with the data-flow, have reactive semantics
and can best be described with a Program State Machine
model [5] which is ahierarchy of program-states, in which
each program state represents a distinct mode of computa-
tion. The dlow nature of the synchronization and mode con-
trol make them natural candidates for softwareimplementa
tion (e.g. in C). The same holdsfor the low data-rate parts
of the system (frame extraction, channel decoding).

From the above it follows that at the conceptual level
DSP systems need a lot more than data-flow models (SDF,
DDF) for their complete specification. Also control-flow
oriented and reactive modelsare required. Hence, thereisa
need for a co-specification environment that allowsthe sys-
tem components to be described with the most appropriate
host language. Next we will take alook at the problemsin-
volved in implementing heterogeneous systems.

3. Heter ogeneous system design problems

Today the conceptua specifications used by system de-
signersare barely understood by chip architects, thinkingin
VHDL terms (if already). Hence most specificationsarefirst
trand ated i nto (non-executabl e and ambiguous) English and

DLL Sample
clock
generation

AFC

fm
Tracking Correlator Chip i BM rs/c
S ST Rl P17 C;?:csueon godel g e De?y:awr M cslc co:/[;rler l—
Acquisition estimator Filter

1rsls

1 1o | pdaa

System
Conirol
Frame |Data
— User Interface

l I

Display Keyboard

(@)

SR ASIC Boundary

T
5

o]

rrrrrr
CONTROL
BUTTONS

212l .
to External RAM (64kbyte)
DISPLAY External (EP)ROM

(b)

Figure 1. Functional specification (a) and pos-
sible implementation (b) of a pager.

thenvirtually redesigned in VHDL for the hardware compo-
nents and C or assembly for the software components. Al-
though the hardware and the software components have a
tight interaction, both hardware and software are designed
separatdy. Only after system assembly, the softwareisrun
on the hardware. As a consequence, the hardware realizing
thehardware/softwareinterface can beerroneousor far from
optimal, requiring aredesign of the system.

Another problem is the ever increasing complexity of
systems, which is coped with by designers by means of
reuse, modularity and design abstraction.

Reuse: What was acomplex systeminthepastisused asan
abstract and reusable component in future systems (ALUs
are used in an ARM processor core, which in turnis used
as acomponent in apager system). In most design environ-
ments, reusable components are characterized according to
amodel and stored in alibrary. In heterogeneous system de-
sign, thearchitectures consist of communi cating processors:
reuse happens at the processor level. Therefore, thereis a
need for aprocessor model that allowsto modd off-the-shelf

processors on an as-is basis to support a “ Reuse of Design”
methodol ogy.

The main difficulty in reusing off-the-shelf processors
lies in the fixed communication protocols they use. When
processors with incompatible protocols have to be inter-
faced, protocol conversions are required. A good sdlection
of theprotocol ispossibleonly when all processorsinvolved
in the communication are known because it isinfluenced by
anumber of factors such as the required speed and robust-
ness of the data transfer, or the relation between the clocks
of the processors. Therefore, we advocate a “Design for
Reuse” methodol ogy which supports a strict separation be-
tween functional and communication behavior. Initidly, a
component is described purely functional. Later, when the
component is used in the system, the design environment
must alow to plug in the most appropriate communication
behavior. Thisapproachisin contrast with current hardware
(VHDL) design practices, where communication and func-
tional behavior are mixed.

Modularity: In modular designs, the complete system
functionality is split into communicating components of
manageable complexity. The advantage of this approach is
that the components can bereused and that thesystem iseas-
ier to adapt and maintain. The disadvantageisthe overhead
because of the inter-component communication or because
the compiler does not optimize over the component bound-
aries. Therefore, the inter-component communication se-
manti cs should be such that modularity can be removed eas-
ily when merging two componentsinto asingle component.

Design Abstraction: In the past, a lot of effort has been
put in design environmentsthat allow to implement today’s
system components. Languages with associated simulators,
tuned towards specific applicationdomains, allow to specify
and simul ate components at a high abstraction level. Hard-
ware compilers can implement the component description
onto processors with highly specialized architectures. Soft-
ware compilers allow to generate machine code for off-the-
shelf programmable processors. Instruction set simulators
allow to debug the machine code at different levels of ab-
straction. However, what is missing is the glue that links
these design environments together and automatically in-
terfaces the generated or off-the-shelf processors according
to the system specification. Hence, a system design envi-
ronment should alow to include existing design environ-
ments easily and should provide synthesis tools for hard-
ware/hardware and hardware/software interfacing that are
processor and design environment independent.

The gap between the conceptual system specificationand
the system implementationisrapidly becoming themost im-
portant bottleneck of the design process. Thereisaneed for
aformal and executable specification hand-over from sys-

tem designer to system implementor and an environment
that allows to gradualy refine the system designer’s spec-
ification to an architecture, which serves as a specification
understood by the chip architects (hardware: VHDL, soft-
ware: C). Processor independent hardware/hardware and
hardware/software interfacing are key issues. Simulationis
required after every refinement step and at any abstraction
level. To cope with complexity, system level simulations
at different abstraction levels and mixed software/hardware
simulations are essential. Off-the-shelf components and
their design environmentsmust bereused and in-housecom-
ponents should be designed for reuse.

4. Heter ogeneous system specification method

From the above requirements, adatamodel and language
has been devel oped on which the CoWare system design en-
vironment is built. In the data model, alot of attention has
been paid to theinter-component communication semantics,
which isthe key to effective solutionsfor modularity, “De-
signfor Reuse”, “Reuse of Designs’, communication refine-
ment and interface synthesis.

Modularity in the specification is provided by means
of processes. Processes contain language encapsul ations!
which are used to describe the behavior of a system com-
ponent. Communication between processes takes place
through a behaviora interface, consisting of ports. For two
processes to be able to communicate, their ports must be
connected with a channel. The communication semantics
are based on the concept of the Remote Procedure Call
(RPC), i.e. one process can trigger the execution of athread
in another process. The semantics of the datamodel objects
is summarized bel ow.

A single process can have multiple host language encap-
sulationsdescribing different implementationsfor the same
component, or for the same component represented at differ-
ent abstraction levels. For example the Chip Matched Fil-
ter in the pager example of Figure 1 was initially described
by means of a DFL encapsulation (conceptua level). Dur-
ing refinement, this DFL encapsul ation was compiled by the
Cathedral compiler [10] intoaVHDL encapsulation, which
is the processor implementation of the Chip Matched Fil-
ter behavior (structural-level). If a process has multiple en-
capsulations, then these should al be functionaly equiva
lent. Encapsulations can be primitiveor hierarchical. A hi-
erarchical encapsulation is one described with the CoWare
language. In a CoWare encapsulation one can instantiate
processes and connect their ports with channels. All other
encapsulations are primitive and consist of a context and a
number of threads. The context contains code that is com-
monto al threadsinthe encapsulation, i.e. variables/signals

1 Currently C, DFL, VHDL and CoWare are supported.

and functions as alowed by the semantics of the host lan-
guage. As such the context providesfor inter-thread (intra-
process) communication.

Portsare objects through which processes communicate.
Portscan be primitiveor hierarchical. Hierarchicd portsare
used to describe protocol conversions and data formatting
processes. A primitiveportisused inall other cases. It con-
sists of a protocol and a data type parameter.

Protocol s define the communi cation semantics of a port.
Protocols can be primitive or hierarchical. Each primitive
protocol indicates another way of datatransport and is char-
acterized by a data direction (in, out, or inout) and a con-
trol direction (master, dave). The control directionindicates
whether the protocol activates an RPC (master) or services
an RPC (dave). In the remainder of this text, ports with
adave/master protocol are dso referred to as save/master
ports. Hierarchica protocols refine the primitive protocol
with atiming diagram and the associated 1/O terminals.

A thread is asingle flow of control within aprocess. A
process can contain multiple threads. We distinguish be-
tween slave threads and autonomousthreads. Slavethreads
are uniquely associated to dave portsand their code is exe-
cuted when the slave port is activated. Autonomousthreads
are not associated to any port and their codeis executed, af -
ter system initialization, in an infinite time-loop.

A channél ispoint-to-point. Two portsthat are connected
by achannel can exchange data. A channel can be primitive
or hierarchical. A primitivechannel providesfor unbuffered
communication. It has no behavior: it isamedium for data
transport. In hardware it isimplemented with wires, in soft-
ware it is implemented with a function cal. A hierarchi-
cal channel refines a primitive channel by specifying a be-
havior. At the conceptual level, a hierarchical channel can
be used to model a communication channel, e.g. to model
bandwidth limitations. At the implementation level, a hier-
archical channel isused to specify acommunication buffer,
eg. aFFoO.

The CoWare data model supports three communication
mechanisms. Communi cation always happens between two
threads. If thethreadsare part of the same process, we speak
about intra-process communication. If the threads are part
of different processes, we speak about i nter-process commu-
nication in which case we make a further distinction based
on the protocol. Intra-process communication is done by
making use of shared variables/signalsthat are declared in
the context of the process. Avoiding that two threads access
the same variable at the same time is host language depen-
dent. Itistheuser’sresponsibility to protect critical sections
using the mechanisms provided in the host language. Inter-
process communication with a primitive protocol is RPC
based. Onamaster port theRPC functioncan beusedtoini-
tiateathread in aremote process. TheRPC functionreturns
when the dave thread has completed. In the slave thread

[

ip

Chip Matched

n

ilter

§o

Chip Matched Filter + Phase Correction

thread ip {
intin[0..15], out[0..7];

in[0..15] = Read(ip); thread ip {
‘;‘éfé?;,;] Ztﬁ[wopg]:[onlsl); _______ .: int in[0..15], out[0..7];
I3 INLINE / in[0..15] = Read(ip);
P /~ out[0..7] = CMF(in[0..15]);
= op / _
Y . int PC_in[0...7], PC_out[0..7];
AL /
Phase Correction / PC_in[0..7] = out[0..7];
— /~ PC_out[0..7] = Pcorr(PC_in[0..7]);
1[:1[3?;]’ —— / 4..{ }ch(op. PC_out[0..7]);
< /7 Pl
op in[0..7] = Read(ip); R
out[0..7] = Pcorr(in[0..7]);
RPC(op, out[0..7]);
b

Figure 2. Merging of processes.

(uniquely associated with aslave port), theRead and Write
functionscan be used to access the dave port. Inter-process
communication with a hierarchical protocol is completely
defined by thetiming diagram and terminals of the protocal.

The protocol hierarchy provides a clear separation be-
tween functional and communication behavior. Initidly, a
component isdescribed purely functional. In such adescrip-
tion one can perform abstract actions on a port. The a-
lowed actions are determined by the primitive protocol of
the port. In addition, one can attach a behavior, aso called
dave thread, to a dave port. Later, when the component
isinstantiated in a system, the primitive protocol isrefined
intothebest suited hierarchical protocol, takinginto account
the other system components. Thisfixesthetimingdiagram
and terminal s used to communi cate over that port. Next, the
port containing the hierarchical protocol is made hierarchi-
cal to add the required communication behavior that imple-
ments the timing diagram of the selected hierarchical pro-
tocol. This method reduces the amount of protocol conver-
sionsneeded at the system leve and allows to postpone the
selection of the communication protocol and itsimplemen-
tation until late in the design process, in this way achiev-
ing the requirements of “Design for Reuse’. The concept of
hierarchical protocolsis aso useful to model off-the-shelf
components (“Reuse of Design”), because the timing dia-
grams according to which aprocessor communicatesare ab-
stracted iniit.

Due to the selection of RPC as inter-process communi-
cation, the classification of protocols and the structuring of
aprocess in encapsul ations with context and threads, anin-
lining transformation can beimplemented that allowsto re-
move modularity. The transformation allows to merge pro-
cesses into asingle process?. In the process of merging, all
RPC calls are in-lined: each dave thread isin-lined in the

?Merging of processesis only allowed when the processes have an en-
capsulation in the same host language.

Tracking & Acquisition Sample Clock Generator | | AID converter
Context c { thread { op clock 4
int delta; int total, delta;
" e of| S
op i H
delta = RPC(ip); H
thread op { total = total + delta; A4
=
-
unlock(c): total = 0; H H
i } : A4
) H -
" H Chip Matched Filter
e =
ion

s
5
o

write(op, delta); RPC(0p);

thread ip {

lock(c read); if (total > threshold) {
int corr[0..13]; AFC
Phase Cort

Fi
recti

corr[0..13] = Read(ip);
lock(c, write);
delta = t&a(cort[0..13]);
unlock(c);

; i

Figure 3. The pager described with RPC.

Correlator & Noise Estimator

codethat calsit viaan RPC statement. Thisin-liningtrans-
formation eliminates the overhead that accompanies remote
procedure calls. It reduces the number of threads and there-
fore the overhead that accompanies the switching between
threads. Findly, it allows compilers to optimize over the
boundaries of the original processes. Figure 2 shows the
effect of merging the Chip Matched Filter process and the
Phase Correction process of Figure 1.a. On the right-hand
side the RPC call in the Chip Matched Filter process has
been replaced with the code of the slave thread in the Phase
Correction process.

5. Thedesign of a pager

In this section, the data model explained above will be
applied to the design of a spread spectrum based pager.

Conceptual specification. Figure 1.a shows how the pager
was describedin CoWare. Each component correspondsto a
process implementing a specific function of the pager. This
functional decompositiondeterminestheinitia partitioning.
The arrows in between the processes indicate communica
tion via a Remote Procedure Call (RPC) mechanism. Fig-
ure 3 shows the RPC communication in detail for part of the
pager design. Theblocksin thefigure correspond to thepro-
cesses from Figure 1.a. The small rectangles on the perime-
ter of the processes are the ports. The shaded portsare mas-
ter ports, the others are dave ports.

The Sample Clock Generator process contains an au-
tonomousthread that performsan RPC over itsinput port ip
tothe Tracking & Acquisition processto obtain anew value
for delta, which is added to some internd variable until a
threshold is exceeded, at which point an RPC call isissued
tothe A/D converter process. Inthisway the Sample Clock
Generator processimplements asawtooth function of which
the period isinfluenced by the value of delta. In the Track-
ing & Acquisition process, thedavethread op services RPC
cals over the port op by writing the value of the variable
delta to the port. The variable delta is declared in the con-
text of the Tracking & Acquisitionprocess andisupdated by

another dave thread ip, which is called from the Correlator
& Noise Estimator process.

This exampl e shows how the context isused for commu-
nication between threads inside the same process whereas
the RPC mechanism is used for communication between
threadsin different processes.

Figure 1.b shows the architecture description of the
pager. Architectures are again specified as an interconnec-
tionof processes. The processes, representing processor im-
plementations, are described with astructural VHDL encap-
sulation and have ports with a hierarchical protocol. The
architectural description isthe result of anumber of refine-
ment steps.

Partitioning and mapping. In afirst step, partitioning and
mapping, as indicated in Figure 1, takes place. The NCO,
Down-conversion, and Decimation processes, for example,
aremerged and mapped in hardware onto an appli cation spe-
cific DSP Cathedral processor [10] mainly because the sam-
plerate of the merged processes is identica, which implies
that they can be clocked at the same frequency. The Track-
ing & Acquisition, Frame Extraction, and User Interface
processes, for example, are merged and mapped on a pro-
grammable processor. For this design an ARM®6 processor
ischosen. To obtain amaximal degree of flexibility as much
of the functionality as possible is implemented in software
on the ARM6. The Tracking & Acquisition process has to
be implemented in software because the algorithm used to
perform tracking and acquisition may require modification
depending on the application domain of the pager system.
The Correlator & Noise Estimator processisnot includedin
software because the input rate for the Correlator & Noise
Estimator is too high to redlize a real-time communication
between the ARM 6 and the Phase Correction process. Inad-
dition an estimation of the number of cyclesrequiredto exe-
cute each function onthe ARM 6 showsthat theimplementa-
tion of the Correlator & Noise Estimator processin software
leaves insufficient time to perform tracking and acquisition
in between every two symboals.

Communication selection. After partitioning and map-
ping, communication selection is performed. In the archi-
tecture of Figure 1.b the processors can, in principle, oper-
ate concurrently because each processor has its own thread
of control. This can be achieved by refining the RPC based
communi cation scheme to pipeline the processors. dl pro-
cessors operate concurrently and at 1/0 pointsthey synchro-
nize. In the CoWare design environment the refinement of
the communication mechanism is performed by making use
of a hierarchical channel. Hierarchical channels, the CB
components in Figure 1.b, replace a primitive channel by a
process that describes how communi cation over that channel

Encapsulated C process on an Encapsulated processor

rocessor HW model /2\
PROCESSOR

processor SW model
I E
© 1)

Figure 4. Mapping a C process on a pro-
grammable processor.

iscarried out.

Implementation of components. The next step isto com-
pile the merged components into an implementation.

The merged User Interface, Tracking & Acquisition and
Frame Extraction process isimplemented in software on an
ARM core by means of the tool SYMPHONY which im-
plements a (software) process on a programmabl e processor
and connects it with the (hardware) processes it communi-
cates with. Thistask is schematically depicted in Figure 4.
SYMPHONY makes use of a library of processor models
and 1/0 scenario models both described using the CoWare
data model, to generate the 1/0O device drivers and the hard-
ware interfaces. The I/O device drivers link the original C
process (1) to the software interface of the processor (3).
The hardware interface makes the link between the hard-
wareinterface of theprocessor (2) and theorigina processes
(4) externa to the processor.

For the CB components an encapsulation with a gate-
level VHDL description is selected from alibrary.

All other components are compiled with the Cathedral
silicon compiler [10] into aVHDL encapsulation.

Interface synthesis. Findly, all processors haveto beinter-
faced: i.e. their protocolshave to be made compatible. This
isdone by INTEGRAL [8], a processor independent, hard-
ware/hardware interfacing tool. The tool takes two timing
diagramsand aprotocol independent description of thecom-
munication behavior and generates a gate-level VHDL de-
scription of acircuit that interfacesthetwo timing diagrams.

6. M odeling off-the-shelf processors

In the architecture of a heterogeneous system off-the-
shelf processors, such as the ARM core, are used. These
processors come with their own simulation and compilation
environment. For example the ARM core comes with a C-
compiler and an instruction set simulator (ARMul ator). Af-

ter integration of the ARM design environment, it must be
possible to compile a component described in C with the
ARM C-compiler and simulate it withthe ARMulator. Asa
conseguence, pluggingin new compilersand simulatorsinto
the system design environment must be easy and should not
requirenew toolsto bewritten. Furthermore, it must be pos-
sibleto interfacethe off-the-shelf processor to the other sys-
tem components. For that purpose, architecture and proces-
sor independent hardware/hardware and hardware/software
interface tools are required. To build such tools, processor
models are required. These models abstract the design in-
formation needed to perform interface synthesis and alow
to reuse the processor in different system contexts.

Programmable processors require both hardware and
software interfacing, and hence are abstracted in a hard-
ware modd and a software model. The processor hard-
ware model formalizes the information that is available in
the hardware section of thedatasheet. In Figure4, thishard-
ware model is represented by the rectangle marked “pro-
cessor HW model” and the portsat the outside of the rect-
angle's perimeter. All ports have hierarchica protocols:
they consist of terminals and a timing diagram (including
timing constraints) as is shown in Figure 4 for one particu-
lar port. The processor software model formalizes theinfor-
mation that is available in the software section of the data
sheet. In Figure4, this software model isrepresented by the
rectangle marked “processor SW model” and the ports at
theinside of the rectangl€'s perimeter. The software model
identifies, for example, what ports can be used as interrupt
portsand what their characteristics are (priority of theinter-
rupt, maskableinterrupt or nat, ...). For the ARM processor,
the memory and co-processor interfaces are modeled as bi-
directional (inout) master ports, and theirqg and fiq portsare
modeled as slave ports. The software model aso contains
abehavioral descriptionthat containsall code for processor
specific actions such asinstalling interrupt vectors, or read-
ing and writingto specific memory locationsviathe memory
port.

7. Conclusions

To date, some system design environmentsinclude hard-
ware/software co-design and support heterogeneous system
implementation (programmable processors combined with
custom and off-the-shelf hardware components). However,
they are based on asingl e specification paradigm often com-
bined with asingleassociated specification language[2, 3, 6,
7, 9]. The specification paradigm reflects the target applica-
tion domain which usually is control-oriented. The benefit
of such an approach isin its high analytic potential that a-
lows automation of design tasks such as hardware/software
partitioning, (formal) analysis of timing properties, or the
optimi zation of thedesign withrespect totiming constraints.

True heterogeneous system design environments[1, 4],
in contrast to the above approaches, start from a heteroge-
neous specification in which different paradigms and lan-
guages can be combined and, as such, are not application do-
main oriented. The benefit of this approach, at the expense
of anaytic power, isthe ability to arbitrarily couple smula
tion paradigms and tools, alowing a designer full freedom
in expressing each part of the system in the most appropriate
language. Both ESCAPE and Ptolemy are oriented to het-
erogeneous system simulation combining different smula
tion paradigms. Unlike ESCAPE and Ptolemy, the environ-
ment presented in this paper isimplementation oriented.

The CoWare environment supports the design of hetero-
geneous hardware/software systems. It allowsto model sys-
tems at the conceptual level, at the architectural level, and
allows to represent the refinement process from specifica
tion to implementation. The CoWare environment allows
to abstract off-the-shelf processor through the use of pro-
cessor models, and all ows the automati ¢ generation of hard-
ware/hardware and hardware/software interfaces, based on
these processor models.

Acknowledgments. We gratefully acknowledge the fi-
nancial support for this research of ESTEC under the
SCADES-2 and SCADES-3 projects, and of OMI under the
Standards-2 project.

References

[1] J.Bucketa. PTOLEMY: A framework for simulating and
prototyping heterogeneous systems. International Journal
on Computer Simulation, Jan 1994.

[2] P.Chouet a. The Chinook hardware/software co-synthesis
system. Proc. ISSS 95, pp. 22-27. Cannes, Fr, Sep 1995.

[3] R.Ernstetal. Hardware-software cosynthesisfor microcon-
trollers. IEEE Design & Test, pp. 64-75, Dec 1993.

[4] H. Fleurkenset al. ESCAPE: A flexible design and simula-
tion environment. Proc. SASIMI 93. Nara, Japan, Oct 1993.

[5] D. Gajski et al. Specification and Design of Embedded Sys-
tems. Prentice-Hall, 1994.

[6] R. Guptaeta. Hardware-software cosynthesis for digital
systems. |EEE Design & Test, pp. 29-41, Sep 1993.

[7] A.Jerrayaetal. SOLAR: Anintermediateformat for system-
level modeling and synthesis. In J. Rozenblit and K. Buchen-
rieder, editors, Computer Aided Software/Hardware Engi-
neering, |EEE Press, 1994.

[8] B.Linetal. Synthesisof concurrent system interface mod-
ules with automatic protocol conversion generation. Proc.
ICCAD 94, pp. 101-108, San Jose, CA, Nov 1994.

[9] S. Narayanetal. System specification with the SpecCharts
language. |EEE Design & Test, pp. 6-13, Dec 1992.

[10] J.Vanhoof et al. High-Level Synthesisfor Real-Time Digital
Sgnal Processing. Kluwer Academic Publ., Boston, 1993.

	CDROM Home Page
	1996 Home Page
	EURO-DAC96 Home Page
	Front Matter
	Table of Contents
	Session Index
	Author Index

