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Abstract

This paper is about a new electro-mechanical mod-
eling paradigm based on hardware description lan-
guages which paves the way to mechatronical HW/SW-
Cosimulation. The strategy is illustrated by an ezample
from automotive system design: a processor-controlled
wheel suspension following BMW’s electronic damper
control. Its suitability in function and performance is
shown by system simulation.

1. Introduction

If electronics has to be designed for mechatronic sys-
tems, the term ’hardware’ includes electronics as well
as mechanics which might be of macro or micro scale.
We will focus on macro-mechanics here, but most of
our work applies to micro system technologies as well.
Our primary goal is to support the design of electronics
and software running on (embedded) controllers while
keeping track of the mechanic’s influence. Especially,
aspects of HW /SW-Codesign should be able to be stud-
ied, e.g. deciding to do signal filtering in software or
electronical hardware. In that vein, the most impor-
tant objective is to preserve the hardware description
language (HDL) based methodology for electronics de-
sign. Several problems arise when mechanical compo-
nents are to be included in a HW /SW-Cosimulation.

e Mechanics and electronics time constants may dif-
fer by orders of magnitude. This is especially true
if macro-mechanical components are taken into ac-
count. For instance, the eigenfrequency of a car’s
wheel is in the range of about 10 hertz. In elec-
tronics, we are talking about megahertz. One
might argue that these differences would dispense
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us from investigating the dynamic interference be-
tween electronics and mechanics. The contrary
is true. Extensive controlling algorithms are run
on (embedded) controllers. Their execution time
again is in the range of milliseconds, giving rise to
dynamic interaction between mechanics and elec-
tromnics.

e For mechanical components, appropriate models
have to be supplied to include them into an elec-
tronics simulation. Within this paper we will stick
to multibody mechanics with concentrated rigid
bodies. Distributed models described by finite el-
ements or partial differential equations are not dis-
cussed. Even with this restriction, it is difficult to
address the vectorial nature of mechanics. A ve-
locity in mechanics is a quantity which cannot be
directly mapped onto a voltage or current, since
its direction would not be taken into account. Ad-
ditional to that, the system description should be
accomplished by a minimal number of state vari-
ables to enable an efficient simulation.

e Even if a proper model has been developed, the
question remains, how to incorporate it into a cou-
pled simulation of mechanics and electronics.

In the following, section 2 discusses previous work
on HW /SW-Cosimulation while section 3 outlines our
approach. Section 4 introduces a demonstrator for
mechatronic HW/SW-Cosimulation. In sections 5 and
6 several modeling prerequisites are developed, i.e.
the development of efficient processor models running
software and a straight-forward way from mechanical
multibody systems to analog hardware description lan-
guage models. Section 7 comments on mechatronic
HW /SW-Cosimulation and shows some results for the
demonstrator. Finally, the paper is concluded with a
short summary in section 8.



2 Previous Work

Many approaches for HW/SW-Cosimulation have
been proposed in the last years [1, 2, 3, 4, 5, 6, 7].

1. The most straight-forward way is to model the sys-
tem’s processor using a hardware description lan-
guage and to execute its software by simulating
the model [1, 2]. The required amount of CPU-
time for simulation is large but tractable if the
respective model is consequently formulated in a
behavioural manner.

2. In [3], simulator cores dedicated for certain proces-
sors are used to speed up simulations. The im-
proved simulation performance has to be paid with
a loss of flexibility.

3. Another method to tackle the performance prob-
lem is to further abstract the descriptions of hard-
ware and software [4]. Here, both hardware and
software are modeled by a ’process’ structure.
This makes sense if synthesis tools are available
and applicable to generate software and hardware
from these high-level descriptions. This is often
not the case in mechatronic system design.

4. In [5], a workstation runs a simulator for the hard-
ware part and directly executes a program rep-
resenting the software part. This can be done,
if target architecture and simulation workstation
are of equal type. Typically, the resulting timing
between hardware simulation and software execu-
tion does not fit anymore. Thus, dynamic inter-
ference between hardware and software, as needed
in mechatronic HW /SW-Cosimulations, cannot be
properly assessed.

5. Another approach maps the software portion of
the system to the programming language alike
part of VHDL, while the hardware is modeled in
classical manner with the same language [6]. Here,
again the timing between hardware and software
cannot be taken into account correctly.

6. All the above approaches are restricted to pure
electronic systems. In [7] also mechatronic aspects
are discussed, but the HW /SW-Cosimulation is di-
rected to the hardware-in-the-loop strategy, which
requires a physical testbed, say a teststand for
shock-absorbers, for mechanical components. Of-
ten, it is possible to develop proper mechanics
models. In these cases, a pure simulation strat-
egy which takes into account software, electronics
and mechanics is to be preferred.

3 The Approach

We believe that model development for components
and their coupling is the key problem for HW/SW-
Cosimulation of mechatronics systems. Thus, we
propose a new electro-mechanical modeling paradigm
which promotes the mapping of heterogeneous sys-
tem models to analog and digital hardware description
languages which can be cosimulated with existing si-
mulators. This strategy is illustrated by an example
from automotive system design: a processor-controlled
wheel suspension following BMW’s electronic damper
control.

As detailed in section 2, only the first two strategies
for HW/SW-Cosimulation are suitable to extend them
to mechatronic systems. We consequently employ be-
havioural VHDL models to achieve the required simu-
lation performance. For instance, the micro-processor
is characterized by its instruction set, some internal
registers, the interrupt handling and the external sig-
nal’s timing. An ADC is modelled by its translation
specification and the respective timing. Nothing else is
modelled.

The vectorial nature of mechanics is handled by
transforming the cartesian coordinates of mechanical
systems into a set of new scalar variables - so-called
generalized coordinates - which can be interpreted as
state variables from system theory. If the number of
generalized coordinates equals the number of degrees of
freedom of the mechanical system, a minimal set of or-
dinary differential equations can be derived. Note that
the respective kinematic structure has to be taken into
account to allow a proper interpretation of the simula-
tion results.

The formulation of the mechanics models is car-
ried out in an analog hardware description language.
In this way, the problem of mechatronic HW/SW-
Cosimulation is mapped to the well-investigated prob-
lem of mixed-mode electronics simulation.

4 Demonstrator: Processor-Controlled
Wheel Suspension

For illustration purposes, a processor-controlled car
wheel suspension is modeled and subjected to a mecha-
tronic HW/SW-Cosimulation, see Fig. 1. Our demon-
strator follows BMW’s electronic damper control [10].
Its objective is to achieve a better compromise between
driving safety and comfort. A micro-controller with
its software sets the damper’s constant - and thus the
damping force - depending on the road condition. For
safety reasons, excitations in the eigenfrequency do-
main of car body (1 Hz) and wheel (10 Hz) require



larger damping forces. If the road excitation is not
critical, lower damping forces lead to better comfort.
The detection of safety-relevant vibrations is done by
sensing the car body acceleration. The resulting signal
is processed and fed into the micro-controller, which
decides on the damping constant. The mechanical part
in this system consists of wheel, axle, spring, car body
and a shock-absorber with switchable damping. Elec-
tronics is given through the acceleration sensor, ADC,
DAC, signal processing and the micro-controller run-
ning the software.

Assembler-Program:

IOPORT: EQU  $0010 Data_ 8,

’ Memory | ., CPU

org $FFFE 16
S

DATA: EQU  $0900
STATE: EQU $0960

dw  START

org $1000
START: RWb
clra
DAT,
sta STATE

A Clk
sta  IOPORT
LOOP:

jst CALC s output_port
bra  LOOP
end =

2952000 PI1O input_port
‘ Ida STATE ADC BAa

acceleration
of car body

required
damping

Figure 1. Processor-controlled semi-active
car wheel suspension.

5 Electronics Modeling

The controller model’s performance is very critical
for the overall simulation time consumption, since the
algorithm implemented in software is executed many
times during the simulation. This calls for a behav-
ioural model, since this type of model requires much
less simulation time, than any kind of structural model.
While the internal timing of the controller including
processor, memory and I/O-circuitry can be neglected,
it is important to model the external bus and - de-
pending on the system - the interrupt system correctly,
to enable proper simulation of the software’s timing
and function. This in turn is indispensible for sim-

ulating the mechatronic system’s behaviour. Typical
functional models, written in some other programming
language, often ignore these points and are thus not
suitable, even if they can be integrated into the simu-
lation process.

To obtain the required simulation speed this model
should execute as fast as possible. The basic idea goes
as follows:

e Sequential VHDL-Statements execute as fast as
code written in any other programming language
on the same computer.

e These statements are executed every time the
VHDL-core resumes the process.

= Wirite the processor model as a single process,
which is only scheduled if neccessary.

The only way to decrease the execution-time of the
controller-model, is the use of another programming
language, that better utilizes the instruction set of the
computer used for the simulation. But it is not sure,
that the improvement in simulation-speed becomes sig-
nificant, since the procedures required to interact with
the simulator-core introduce an overhead, which is at
least in the same order of magnitude as the overhead
introduced by the limitations of the VHDL-compiler.

The demonstrator contains a model of a Motorola
6805 compatible microcontroller which consists of
800 Lines of VHDL-code. The model was verfied by
running the testprograms for the existing microcon-
troller and was completed in a few days.

In addition to the model of the microcontroller, a
program to be executed is necessary. The obvious
source of this program are the executable files produced
by the software-development system used for this con-
troller. These files are loaded into the controller model
whenever the simulation starts.

6 Mechanics Modeling

In the following, a straight-forward way from me-
chanical multibody systems to HDL models is shown.
First, reasonable abstractions have to be identified, e.g.
motivated by symmetry considerations of the geometri-
cal configuration. Next, the kinematic structure of the
system is fed into some mechanical engineering mod-
eling tool which produces symbolic equations. Several
tools are available, see [8]. The resulting equation set
consists of nonlinear, ordinary, differential equations.
Finally, the equations are formatted in an analog HDL.
The described flow will be illustrated in the following



by performing the mechanics modelling for the demon-
strator introduced above.

In modern cars, the two axles are almost equally
loaded. Therefore, only one axle has to be modelled,
since the motion of front and rear axle are nearly de-
coupled. Even more, if the road surface is of equal
shape for left and right wheel, just a quarter of a car
has to be taken into account for symmetry reasons. For
a wheel suspension, vertical dynamics is the major ef-
fect. Therefore, the wheel suspension system can be
abstracted to a two-mass system, consisting of rigid,
concentrated bodies, see Fig. 2, and considering just
the vertical motion of the bodies. In this way, the gen-
eralized coordinates which determine the system state
can be identified in a quite natural way; they are chosen
to be the vertical coordinates of the two bodies. The
tire is modelled by a simple spring; its damping ef-
fect can be neglected. The resulting two mass model is
a common abstraction for investigating a suspension’s
dynamics [11].

ddamper FE kspring

Figure 2. Abstraction of wheel suspension for
mechanics modeling.

Many modeling tools for multibody systems have
been devised, see [8]. We employed *T'Si Dynamics’ [9]
to do the basic mechanics modeling. T'Si Dynamics is
a Mathematica package and uses its comfortable sym-
bolic equation handling opportunities. First, the kine-
matic structure as shown in Fig. 2 has to be formulated
in terms of rigid bodies and joints. Two rigid bodies
are taken into account: the car body (or chassis) and
the axle including the wheel. The joints assure that
the motion of the bodies is restricted to vertical move-
ment. To take into account the effects of suspension
spring, shock absorber and tire spring, their potential
energy is formulated. Finally, TSi Dynamics automat-
ically derived the following set of ordinary differential
equations:

mbodyi"body = ksprin_q(maz:le - mbody) +

ddamper (:ilaz:le - :i"body)

mamle:ia,z:le = ktire(mroad - mamle) -
kamle(mamle - mbody) -

ddamper (:l‘laz:le - :i"body)

where m denotes masses, k spring constants, d
damper constants and z vertical positions. Some ad-
ditional features inject nonlinearities, e.g. the shock
absorbers damping’s constant depends on whether it
is in push or pull mode and of course the controller’s
requirements. Finally, the model is easily formulated
in an analog hardware description language. We chose
MAST® ! for this purpose.

Note that solvers for analog HDLs might run into
problems for more complex mechanics models. Nu-
merical integration is still a topic in mechanical en-
gineering. Often, the solution of sets of mechanical
differential equations depends on the clever choice of
integration scheme and initial conditions.

7 Mechatronical
HW /SW-Cosimulation

Mechatronical HW /SW-Cosimulation has to over-
come several difficulties. The coupling between hard-
ware and software resembles the one faced in classical
HW /SW-Cosimulation. We propose the application of
a black-box model on the level of the controller. Es-
pecially, software is not modelled which dispenses us
from remodelling for every software update.

The cosimulation of digital and analog system com-
ponents is a necessary prerequisite for mechatronics
HW/SW-Cosimulation. Typically, digital simulation
is carried out in an event-driven manner. The out-
put of a component is recalculated if and only if the
inputs have changed. The advantage of this mode of
operation is due to the fact that just about 5 or 10
% of a digital circuit is active at a time. In contrast
to this, analog components are simulated by solving
sets of ordinary differential equations. Synchronization
and efficient data exchange between analog and digital
simulation have been investigated for years. Lots of
so-called mixed-mode simulators have been developed
in the last years.

The cosimulation of mechanical and electronical
components requires a generalized view and description
of analog components. If we stick to multibody systems
here, the mechanics modeling is mostly performed by
Lagrange’s approach or by the Newton-Euler method
[8]. Some of the respective tools produce sets of sym-
bolic ordinary differential equations. Others do not,

IMAST is a registered trademark of Analogy Inc.



since more complicated systems tend to result in ex-
ploding sets of equations. These tools alter the system
matrices for every time step. This mode of operation
cannot easily be mapped to analog electronics simu-
lators. Nonetheless, for system simulation simplified
models can be employed, since the task is to verify
the system’s - not the component’s - behaviour. Thus,
we formulate symbolic mechanics models in an analog
hardware description language which can be directly
simulated together with other analog electronics.

[(1)damping
(1)d0

Toom o ET) oo E E oo oo oo
a5 axie 025 ()body.08

Figure 3. Simulation of semi-active car sus-
pension: top traces show vertical, rela-
tive movement of axle (solid line) and car
body (dashed line); damping values: '0'=soft
damping, 'I'’=hard damping; bottom traces
'd0’-'d7’: digital value of body acceleration.

By system simulation of a processor-controlled semi-
active car wheel suspension, we show the method’s suit-
ability in function and performance. The simulation is
carried out on a coupled simulator which is commer-
cially available. It contains two simulator cores, i.e.
Leapfrog® 2 (VHDL, digital) and Saber® 3 (MAST,
analog) which are well-known from electronic and mi-
croelectronic circuit design. The results for an axle of
a car running over a roadstep 5 cm high are shown in
Figure 3. At the top, the vertical, relative movement of
axle and body are depicted. At the bottom, the digital
’damping’ signal shows the damping value: ’0’ = soft
damping, ’1’ = hard damping. The signals ’d0’ to 'd7’
represent the digital value of the current body acceler-
ation. After running over the step, wheel and car body
are accelerated vertically. The car body’s acceleration
is fed into the controller which switches to hard damp-
ing after some time. The relative, vertical postions of
car body and wheel increase to 50 mm which corre-

?Leapfrog is a registered trademark of Cadence Design
Systems.
3Saber is a registered trademark of Analogy Inc.

sponds to the height of the step. Finally, if the car
body acceleration has decreased under a certain limit,
the controller switches to soft damping again.
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Figure 4. Shock absorber compression ver-
sus time, with switching the damping con-
stant (solid line), without switching (dashed
line), unit = m.

Fig. 4 shows results of the same simulation run and
depicts the compression of shock absorber and sus-
pension spring. After riding over the road step, the
damper is compressed by about 58 mm, as depicted by
the solid line. Some time later, the suspension spring
has pressed the shock absorber into its previous posi-
tion. For comparison purposes, the dashed line shows
the shock absorber’s compression without switching to
hard damping. The simulation was carried out on a
SUN Sparc 20 and took 63 CPU-seconds for the digi-
tal part and 37 CPU-seconds for the analog part. The
digital time encloses the simulated execution of about
380000 assembler statements. Analog and digital frac-
tion can be simulated on different workstations to ac-
complish a further speedup.

8 Summary

We proposed a new modeling paradigm for mecha-
tronical HW /SW-Cosimulation which is based on hard-
ware description languages. In this way, various do-
mains, i.e. software, digital and analog electronics and
mechanics can be cosimulated without developing new
simulation tools. Moreover, model exchange between
simulators is promoted.

Several modeling prerequisites were developed, the
development of efficient controller models running soft-
ware and a straight-forward way from mechanical
multibody systems to analog hardware description lan-
guage models. All these models are combined in a
mechatronical HW/SW-Cosimulation suitable to as-



sess the dynamic interference between software, elec-
tronics and mechanics. Especially, the simulation of
function end timing of software allows a closer look on
the system behaviour. The system’s software itself is
not modeled; it can be directly fed into the controllers
memory. Thus, software updates do not require to re-
model the system.

The proposed strategy for mechatronical HW/SW-
Cosimulation enables a thorough system analysis and
is thus an important prerequisite for mechatroncal
HW/SW-Codesign. For example, trade-offs, e.g. per-
forming signal filtering in hardware or software, can be
investigated.
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