
Fault Tolerant and BIST design of a FIFO cell

F. Corno, P. Prinetto, M. Sonza Reorda

Politecnico di Torino
Dipartimento di Automatica e Informatica

Torino, Italy

Abstract*

This paper presents a BIST design of a parametrized
FIFO component. The component is currently being
used in the standard library of Italtel, the main Italian
telecom circuit maker. Design choices have been
strongly influenced by industrial constraints imposed
by the Italtel design flow. To achieve the desired fault
coverage level for faults in the memory and in the
control logic, traditional BIST schemes had to be com-
bined with more advanced testing techniques. Different
parts of the circuits are tested with different strategies
and algorithms to account for their different nature:
critical parts of the design, such as the FIFO control
unit and the BIST controller, are tested with on-line test
techniques. The final implementation shows that a high
fault coverage is attained with an acceptable area
overhead and no speed penalty.

1. Introduction

This paper describes the design of a FIFO compo-
nent (Fig. 1) with BIST capabilities. The component is
now being used in the Italtel standard library and is
exploited in several industrial designs. The main con-
tribution of this paper is to show how the effectiveness
of complex BIST design can be improved, and brought
to acceptable fault coverage levels, through the cou-
pling with more advanced test architectures developed
for on-line testing schemes. In this case study, we
adopted fault tolerant schemes and self-checking com-
ponents to ensure that critical circuitry is correctly
working.

The original (i.e., non-BIST) FIFO specifications
are around a dual-port static RAM and feature the
following characteristics:

* This work has been partially supported by Italtel. Contact address:

Paolo Prinetto, Dipartimento di Automatica e Informatica, Politecnico di
Torino, Corso Duca degli Abruzzi 24, I-10129 Torino (Italy), e-mail
Paolo.Prinetto@polito.it

• empty and full indicators are provided, flagging
the status of the queue

• response time for read and write operations is
one clock cycle

• illegal operations (e.g., reading from an empty
FIFO) are correctly ignored

• simultaneous read and write operations are al-
lowed at any time.

Data
Input

Register

Write
Address
Register

DUAL-PORT
SRAM

Data
Output

Register

Read
Address
Register

Control Unit

write
ck

reset

full empty

read

data_in DODI data_out

wr_en

WA RA

Figure 1: block diagram of the FIFO component

Section 2 describes the design goals for the BIST
component stemming from company-wide industrial
constraints and from testability considerations. Starting
from the design goals, section 3 outlines the test strat-
egy, analyzing different possible architectures and
justifying the adoption of on-line test schemes. Section
4 analyzes the obtained result from the points of view
of testability, area and performance, while section 5
draws some concluding remarks.

2. Design goals

The constraints imposed by the targeted industrial
environment strongly limited design freedom and in-
fluenced final choices. In particular, the most compel-
ling constraints were:

• the component must follow a standard company-
wide BIST protocol, in order to be able to acti-
vate the BIST through the standard Boundary-
Scan Test Access Port

EURO-DAC ’96 with EURO-VHDL ’96
0-89791-848-7/96 $4.00 1996 IEEE

• the design must be as independent as possible of
the size of the embedded RAM. In particular, the
finite state machines (FIFO controller and BIST
controller) must depend neither on the depth nor
on the width of the FIFO

• no knowledge about the internal structure of the
RAM can be assumed, therefore special ad-
dressing structures [ShRo85] [VGSZ94] are not
applicable

• for manufacturing and testability reasons, ac-
cording to company-wide design rules, a strictly
synchronous design is required.

Furthermore, the following testability goals were
settled:

• the embedded RAM should be tested for signifi-
cant fault models, including at least stuck-at,
transition and coupling faults [ABFr90]
[AbRe83]

• to reduce overhead, the RAM test must be im-
plemented resorting to the same addressing logic
of the non-BIST component

• the data path (counters, comparators, multiplex-
ers, etc.) should be tested for single stuck-at
faults

• the control unit responsible for the “normal
mode” behavior is to be regarded as a critical
component, therefore 100% fault coverage is re-
quired

• in the BIST controller itself faults that shorten
the length of the test sequence or skip some test
procedure have to be covered

• the effects of multiple faults are neglected.

3. Test strategy

Given the above constraints, different design choices
concerning the BIST architecture were adopted. In the
analysis, the design has been decomposed in:

• the dual-port memory, inclusive of all decoding
logic

• the data path, consisting of all registers, count-
ers, multiplexers, comparators and random logic
surrounding the memory

• the normal-mode control unit, controlling the
FIFO behavior of the component while not under
test

• the BIST controller, i.e., the FSM responsible
for generating the correct sequence of operations
composing the test algorithm.

In the following, a test solution for each part of the
circuit will be discussed.

Memory

Since one goal of a BIST solution is to thoroughly
test the RAM according to significant fault models, a
RAM testing algorithm must be applied to the memory.
The specialized BIST controller is therefore intro-
duced, generating the required sequence of patterns to
be written to and read from the memory.

In the choice of the test algorithm, resource sharing
forces us to re-use the same addressing logic used in
the normal-mode behavior. In particular, the two mem-
ory ports are addressed by up-counters, therefore the
RAM should be regarded as single-order addressed
(SOA). The March B− test for SOA memories is se-
lected [vdGo93], that meets our fault coverage goals,
giving a 100% fault coverage for addressing faults,
stuck-at faults, transition faults, coupling faults, and
unidirectional linked faults. The March B− algorithm
has been modified to account for a m-bits wide memory
by adding a fifth march element [CPSB95].

Data Path

As far as the data path is considered, a functional
test is applied to these components by the BIST con-
troller while the March test is in progress. In particular,
registers are tested for stuck-at faults, read and write
counters are sometimes operated in parallel and their
contents compared, outputs of comparators are always
checked, even when their expected value is known, and
so on. With these principles, all functions of each
functional block in the data path are exercised and
verified. Some blocks exhibited a low fault coverage
with this functional test, mainly because their state was
almost stable (such as the “flag generator”, the FSM
generating the error signal) or their outputs were not
observable (such as the “pattern generator”, the FSM
generating 1/0 patterns to be written into the RAM. For
such components, a self-checking version has been
developed, by duplicating the circuit and comparing
the outputs.

Normal Mode Control Unit

Being the normal-mode control unit the most im-
portant component, special care has been taken to de-
vise its test strategy. Several solutions have been ex-
amined and tested. Figure 2 shows alternative archi-
tectures that have been examined: an arrow from a
block to another is present when the former is in
charge of testing the latter.

As a first hypothesis, the normal-mode control unit
could be merged with the BIST controller (Fig. 2a),
thus potentially reducing the area overhead. This solu-

tion has been discarded since there was no guaranteed
way of testing the faults in the portion of the combina-
tional logic computing the normal mode functions
while the circuit was in test mode. In other words, the
control unit did not excite the normal-mode state tran-
sitions while executing the test: the net result was that
the normal-mode behavior was not tested at all, except
by accident.

From the above considerations, all acceptable solu-
tions must contain separate normal-mode and BIST
controllers; three alternatives were examined. One first
alternative (Fig. 2b) could employ the BIST controller
to apply a functional test to the normal-mode control
unit. Since it is very difficult to achieve high fault cov-

erages with functional tests for FSMs, we discarded
this option.

In a second alternative (Fig. 2c) one could imple-
ment the normal-mode control unit as a self-checking
FSM, by duplicating it or by adopting more sofisticated
schemes [Lala85]. This would guarantee a very high
fault coverage, provided an extensive set of inputs is
applied to the FSM inputs; unfortunately, the
good/faulty indication would show up during the nor-
mal functioning of the circuit and not during the dedi-
cated BIST phase. This in unacceptable, since it would
require modifying the system-level test strategy, by
requiring a functional test to follow BIST.

A last examined alternative (Fig. 2d) was to build a

normal
+BIST

control unit

data path
+

memory

normal mode
control unit

data path
+

memoryBIST
controller

normal mode
control unit

data path
+

memoryBIST
controller

normal mode
control unit

normal mode
control unit

data path
+

memoryBIST
controller

normal mode
control unit

normal mode
control unit

(a) (b)

(c) (d)

Figure 2: alternative test architectures

Normal mode
control unit

LFSR

Voter
2/3

from CU BIST

to CU BIST

N_T

to Data Path

comparator
tree

4

4

4

4

12
4

4

Normal mode
control unit

Normal mode
control unit

3

M
U

X

M
U

X

Figure 3: fault-tolerant Normal-mode Control Unit

fault-tolerant normal-mode control unit, e.g., by triple
redundancy. Since the control unit is small (one flip-
flop and some tens of gates), the area overhead for
triplication is comparable with other solutions. In the
final circuit implementation, this last solution has been
adopted (Fig. 3): the outputs of the triplicated normal
mode control unit feed a 2/3 voting whose outputs are
used in the data path. The critical part of the circuit is
represented by the voting and multiplexing logic: the
BIST controller therefore performs an exhaustive test
on this combinational logic. In particular, an LFSR is
used to generate all possible 3-bit combinations for
each of the 4 channels of the voter. The correct re-
sponse is checked by comparing the outputs of different
channels.

BIST Controller

The last component that needs to be considered and
tested is the BIST controller itself. A self-checking
architecture must be implemented to avoid that a fault
in the BIST controller could flag a circuit as good
without actually performing the test.

In particular, a set of critical faults has been identi-
fied via fault simulation, where a critical fault is de-
fined as a fault in the BIST logic that could possibly
mask some faulty behavior in the non-BIST logic, by
misinterpreting the status indications or by skipping
some test phase.

Since the goal was to avoid the presence of critical
faults in the BIST controller, a MISR has been em-
ployed to compute a signature of the flip-flops and
outputs during the test sequence, ensuring that the
correct sequence of states has been traversed and that
the correct values have been applied to the data path.
The effect of aliasing proved to be negligible.

4. Implementation Analysis

The BIST component has been designed in the Syn-
opsys environment with the SGS-Thomson ISB24000
technology. The additional area has been measured and
Table 1 reports the size of the components (excluding
the RAM) for different synthesis strategies. The equa-
tions are parametrized by the RAM width (m) and
depth (N). The term “patt_gen” is the contribution of a
small FSM generating alternating bit patterns
[CPSB94], whose size does not depend linearly on the
RAM size. Area overhead values are also plotted in
Fig. 4.

max testability 3245 + 136.75log2N + 64.5m +
patt_gen (=428)

min area 3168 + 136log2N + 63.75m +
patt_gen (=424)

min delay 3173 + 136log2N + 63.75m +
patt_gen (=428)

Table 1: area overhead

Concerning timing overheads, the component has
been designed so that the critical path (lying on the
path from a clock edge to an empty/full indication)
does not contain any component relevant to BIST. In
other words, the operating speed of the FIFO does not
decrease as a consequence of the insertion of the BIST
circuitry.

The attained fault coverage was quite satisfying, and
is reported in Table 2. The apparently low fault cover-
age of the data path is mainly due to multiplexers that
exclude primary inputs during test and to output wires,
which are not testable under any BIST scheme.

The described component is currently in use at Ital-
tel for FIFO components of various sizes embedded in
larger designs. The only parts that depend on the FIFO
dimensions are address counters (log2N bits wide),
input and output buffers and comparators (m bits wide)
and the expected signature for the BIST controller.
Critical parts of the design, including control units,
multiplexers and voters, are independent of the FIFO
size, therefore their size and testability are guaranteed.

Block TFC% fault model test strategy

memory
array

100.00 fault classes
detailed in
section 3

BIST

data path 83.88 stuck-at functional test-
ing

normal-
mode

control
unit

N/A fault tolerance by
triplication

voters 100.00 stuck-at BIST exhaustive
test

BIST
controller

74.65 stuck-at self-checking
via signature

analysis

Table 2: test effectiveness

5. Conclusions

This paper showed the design of a FIFO component
with BIST capabilities. A careful analysis of the possi-
ble test architectures shows that, in order to guarantee
sufficient fault coverage in complex BIST schemes,
different test strategies must be applied to different
parts of the circuit.

In particular, critical parts of the design, amounting
to the normal mode control unit and to the BIST con-
troller, were particularly difficult to test with traditional
BIST solution. Only the adoption of more advenced
testing strategies, such as on-line self-cheching and
fault-tolerant circuits, allowed us to improve the test-
ability of the design.

6. Acknowledgments

The authors wish to thank Dr. Stefano Barbagallo,
Dr. Andrea Burri, and Dr. Davide Medina of the Italtel
Design Center for their useful discussions and sugges-
tions and Alfredo Benso and Laura Biason for partici-
pating in the design of the component.

7. References

[ABFr90] M. Abramovici, M.A. Breuer, A.D. Friedman:
“Digital Systems Testing and Testable Design”,
Computer Science Press, 1990

[AbRe83] M.S. Abadir, H.K. Reghbati: “Functional Test-
ing of Semiconductor Random Access Memo-
ries”, Computing Surveys, Vol.15, No.3, Sep-
tember 1983

[CPSB95] P. Camurati, P. Prinetto, M. Sonza Reorda, S.
Barbagallo, A. Burri, D. Medina: “Industrial
BIST of Embedded RAMs”, IEEE Design and
Test of Computers, Fall 1995, pp. 86-95

[Lala85] P.K. Lala: “Fault Tolerant & Fault Testable
Hardware Design”, Prentice Hall, 1985

 [ShRo85] M. Shephard, D. Rodgers: “Asynchronous FIFOs
Require Special Attention”, ITC’85: IEEE Inter-
national Test Conference 1985, pp. 445-450

[vdGo93] J. van de Goor: “Using March Tests to test
SRAMs”, IEEE Design and Test of Computers,
March 1993, pp. 8-14

[VGSZ94] J. van de Goor, I. Schanstra, Y. Zorian: “Fault
Models and Test for Ring Address Type FIFOs”,
VTS’94: IEEE VLSI Test Symposium, 1994

[VdGZ93] J. van de Goor, Y. Zorian: “Effective March
Algorithms for Testing Single-Order Addressed
Memories”, EDAC’93: IEEE European Design
Automation Conference, 1993, pp.499-505

4
8

16
32

64

4

8

16

32

64

0

2000

4000

6000

8000

10000

12000

A
re

a

m

N

Figure 4: area overhead

Figure 5: schematic of the FIFO BIST

	CDROM Home Page
	1996 Home Page
	EURO-DAC96 Home Page
	Front Matter
	Table of Contents
	Session Index
	Author index

