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Abstract

This paper describes a new and highly efficient approach
for weighted random pattern generation. In contrast to the
state-of-the-art approaches, where input specific weights
are computed, the proposed method is based on the
computation of global weights. This set of a very few
weights (e.g., 4 or 8) is pattern oriented and therefore,
with each weight the generation of the related random
patterns is uniquely specified. Starting with a deterministic
test pattern set and the inherent pattern specific weights,
columns or rows can be inverted such that the initial
weights are maximized in order to minimize the number of
random patterns. Our experiments with the prototype
system POWER-TEST (Pattern Oriented WEighted
Random TESTing) show that very high fault coverage can
be achieved with low computation and implementation
effort at low self-test hardware costs.

1  Introduction

With decreasing transistor dimensions and upcoming
significant wire delays, the importance of self-test
techniques is increasing, since a dynamic test application
at system speed is essential for the identification of
dynamic faults [1]. Here, the self-test of digital circuits
with randomly generated patterns is one of the most
efficient test strategies in a production environment [2, 3].
Especially, the extensions towards weighted random
pattern (WRP) testing significantly increases the test
efficiency by reducing the number of random patterns,
which is necessary to achieve a target fault coverage. All
these methods require both a technique for calculating the
specific input weights and an appropriate self-test
hardware for the generation of the weighted random
patterns. Each weight represents the probability that the
corresponding primary input is set to the logic value 1.

There exists a relatively large number of proposals [e.g., 2,
4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16] how an optimized
set of weights can be determined such that the required
number of random patterns is minimized. In all these
approaches the input-oriented weight computation can be

regarded as a common feature and strategy. In contrast to
these input-oriented approaches, the proposed new method
aims at calculating global, pattern-oriented weights.
Consequently, all inputs are stimulated with the same,
currently selected weight or, in the case of an inverted
input, with its complementary value.

In this paper we will show that the proposed method of
calculating and applying global weights for random testing
is very efficient, i.e., at low self-test hardware costs,
computation time and implementation effort. A high fault
coverage can be reached with significantly reduced pattern
counts.

In the following section the state-of-the-art in WRP testing
will be discussed by giving a brief classification and
summary of the different weight calculation approaches.
Then, based on a small example the basic ideas of the new
approach will be introduced. A detailed description of the
weight calculation algorithm can be found in section 3.
The proposed WRP test generation system has been
implemented as part of the test system INSPIRATION
(Incomplete Scan Path Integration). In section 4,
experimental data underline the efficiency of the proposed
method.

2  Motivation

One of the major benefits of WRP testing is, compared to
a test with stored (e.g., deterministic) patterns, the
drastically reduced data volume, since basically only the
weights for each input have to be stored. In addition, the
number of random patterns has been significantly reduced
with the introduction of unequiprobable weights.
Additional pattern count reductions can be obtained with
several weight distributions instead of one single. Several
papers address this extension in recent publications.

WRP generation methods and techniques can be classified
into functional and topological based [e.g., 2, 4, 5, 6] and
deterministic test pattern based strategies [e.g., 7, 8, 9, 10,
11, 12, 13, 15, 16]. In spite of some hypotheses in [16] that
the latter strategy is more efficient with respect to the
required test length, both strategies have shown to
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significantly reduce the random pattern count. The
commonly applied technique of using several weight
distributions has the inherent drawback of an increased
self-test hardware overhead.

In contrast to the discussed state-of-the-art approaches, the
new method aims at the computation of one single and
global weight that can be used for all inputs. Starting point
is a deterministic test pattern set that may contain also
unspecified bit positions. The initial global weight for
stimulating the inputs with a logical "1" is the relation
between the number of logical "1" and the number of bit
positions that are unequal to the don't care value.

In order to increase the probability for covering a given
test pattern, two manipulations will be introduced: (1) row
inversion and (2) column inversion. Both inversion
techniques can be applied to increase the number of 1's.
By the proposed iterative inversion technique (cf. section
3) the number of 1's and the fault detection probability can
be maximized. With each row inversion, the percentage of
completely inverted random pattern increases
proportionally. With any column inversion, the
corresponding input signal has to be inverted.

Figure 1 shows an example for an initial deterministic
pattern set (a) and the resulting pattern set (d). In more
detail, the interim result (b) is obtained from (a) by
inverting rows 2 and 5, an inversion of the second line in
(b) yields (c), and finally rows 3 and 4 will be inverted to
get the result (d). Thus, the weight could be increased
from initially 11/18 to 15/18. As validated by several fault
simulation phases instead of 221 random patterns in
average only 65 patterns are sufficient.

100101 	110111 	110111  	111011
011111 	001101  	110010 	111110 	
101001  	111011 	111011 	110111

➔ ➔ ➔

     (a)  (b)  (c) (d)

Figure 1 : Example for row and column inversions

Figure 2 shows an often cited situation where conventional
optimization algorithms fail in producing efficient results.
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Figure 2: AND-/OR-gate conflict and related pattern set

In this situation, no columns will be inverted since the
overall number of 1's can not be increased by this
operation. But obviously, an inversion of rows 6 to 10
would significantly increase the global weight from
initially 0.5 to 0.8 (=32/40). Consequently, the necessary
number of random patterns will be decreased, assuming an
appropriate WRP generation technique.

3  Weight Determination

Based on a set of partly specified deterministic test
patterns, where some bit positions have not been set to
either 1 or 0, the main goal of the weight computation is to
improve the efficiency of random test pattern generation.
Given the confidence C representing the probability that
all faults are detected by N random patterns, and the fault
detection probability pf, the number of required random
test patterns N can be calculated by

(1) N = ln (1-C) / ln (1-pf).

Since C is fixed, for instance at the value 0.999, only the
parameter pf can be modified. Given a deterministic test
pattern d (d1,...,dn) of width n and a global probability P
for generating random patterns, pf can be expressed by

(2) pf(d)= ∏ DPi { 
DPi:=P if di="1"
DPi:=(1-P) if di="0"    i=1,...,n

In Figure 3, the effect of increasing the global probability
P is illustrated by a small example. Here, it is assumed that
the pattern width n is 10, all values are specified and at the
x-axis, the global probabilities are given, ranging from 0 to
1. The two extreme values are related to a test pattern with
only 0's and 1's, respectively. The other eight values
assume that a test pattern is given with the appropriate
number of 1's and 0's. The y-axis shows the resulting test
length N to cover such a test pattern, assuming the
confidence C=99.9%. As indicated in Figure 3, with
increasing distance to the 0.5 value, the number of
necessary random patterns decreases.
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Figure 3 : Effect of varying the global probability P

3.2 Maximizing the Global Input Probability

In order to use this effect to increase of the random test
efficiency, a given deterministic test set has to be modified
with the major objective to increase the number of 1's and



the global input probability P.*  To modify the pattern set
two different inversion techniques and phases can be
distinguished:

(Ph1) column inversion
(Ph2) row inversion.

Both strategies, applied on a basic test pattern set, have
direct relations with the corresponding self-test hardware:
While strategy (P1) implies that the related input signals of
the circuit-under-test (CUT) will also be inverted during
the test application phase, row inversion (2) means that
random test patterns have to be completely inverted before
its application.

ad (Ph1):  Starting point of the column inversion
procedure is a given deterministic test pattern set. Then,
for any bit position it is checked whether its inversion will
yield an increased number of 1's. Whenever this is the
case, the related input of the CUT has to be inverted for
the test application or, if already marked as inverted, its
inversion will be omitted. Obviously, the order of
analyzing the input positions is arbitrary, assuming a
complete analysis of all inputs.

ad (Ph2): Assuming an initial column inversion, the
modified test pattern set has to be analyzed. Any test
pattern is assumed to be inverted, if its 0-count is greater
than its 1-count. Similar to phase (1), already marked
patterns can be omitted.

The introduced inversion phases are related to each other,
i.e., column inversion(s) may allow new row inversions
and vice versa. Therefore, the inversion procedure is only
stopped if two consecutive inversion phases do not
enhance the global value P. The basic procedures are
given in Figure 4.

procedure row_inversion;
begin
for i:=1 to the_number_of_patterns do
   if count1h[i]<count0h[i] then         (* horizontal count *)

begin invert(pattern[i]); pattern_set_is_changed:=true;  end
end;
procedure line_inversion;
begin
for i:=1 to pattern_width do
   if count1v[i]<count0v[i] then  (* vertical count *)

begin invert(pattern[i]); pattern_set_is_changed:=true; end
end;
procedure maximize_global_weight_P;
begin
   repeat pattern_set_is_changed:=false;
   row_inversion;
   line_inversion
   until pattern_set_is_changed=false;
end;
Figure 4 : The Basic inversion procedures

* This strategy is assumed for the result of this paper without loss
of generality, since the maximization of the number of 0's and
the minimization of P is a dual problem leading to the same
efficiency increase.

Since the maximization of P is only an indirect measure of
the required number of random test patterns, also different
optimization strategies have been analyzed. For instance,
according to equation (1) with each inversion the current
number of theoretically required random patterns can be
re-calculated. According to our evaluation results, this
strategy did not yield the expected efficiency improve-
ments, mainly due to the following reasons:

(a) The given deterministic pattern set is partly unspecified
and gives some indications which patterns are hard to
detect (e.g., if only a few bit positions are unspecified) or
can be easily identified (e.g., if only a few bit positions are
set to 1 or 0). Unfortunately, this is only an sign since in
general several alternative test patterns exist to cover the
same fault, and therefore, the number of specified bit
positions can significantly vary.

(b) The optimization strategy is dominated by a very few
test patterns with a low number of unspecified bit
positions, simultaneously neglecting the other patterns. A
re-calculation of the pattern count would only be
reasonable, if further analyses of these dominating test
patterns are performed in order to validate the uniqueness
of the patterns.

Due to these reasons, the weight determination has been
performed without any re-calculation of the random
pattern count N, but in order to prefer the treatment of
deterministic test patterns with a large number of specified
values, a threshold L has been introduced: Deterministic
test patterns are evaluated in phase (Ph1) and (Ph2), only
if its number of specified bit positions exceeds this
value L.

3.3 Weight Set Computation

Based on the modified deterministic test pattern set and on
the related scan-path inversions, one could use the
resulting global input probability for the random pattern
generation. But since this leads to only a slight reduction
of the pattern count in general, the following discussion is
focused on the computation of weight sets.

Assuming the possibility to generate random patterns with
weights in the interval [0,1], the optimum weight of each
single pattern is given by the quotient between the number
of 1's and its number of specified bit positions.
Conversely, assuming the granularity of 1/8 and 9 basic
weights, respectively, the number of patterns requiring
these weights is also known. This information can be used
to identify a set of a very few weights to improve the
efficiency of the produced random patterns. The
discussion of this effect is also part of the enclosed
experimental results (cf. section 5), the influence on the
self-test hardware structure will be discussed in the
subsequent section.



Input of the optimization procedure is a user-defined
maximum number of weights, typically 2, 4 or 8, which
will be iteratively selected during the test generation phase
in order to improve the test quality and to ensure the
realization of a cost-efficient self-test hardware. It should
be noted that single weights can be applied more than once
per iteration cycle if a lot of test patterns would require
this weight. The basic procedure for calculating these
weights is given by Figure 5.

...
read(the_number_of_selectable_weights);
...
procedure get_weight_set;
(*  Input is an array "count_ws" of length
"the_number_of_basic_weights", where for each weight the
number of related deterministic test patterns is stored *)
begin
divisor:=number_of_testpatterns/number_of_selectable_weights;
for i:=1 to the_number_of_basic_weights

weight_count_for_ws[i]:=round(count_ws[i]/divisor);
end;

Figure 5 : Basic procedure for the weight set computation

After having read the input data, a divisor is computed
which is determined by the quotient between the test
pattern count and the number of selectable weights. The
variable count_ws[i] contains the number of test patterns
requiring the i-th basic weight. Divided by the divisor, the
variable weight_count_for_ws[i]  indicates, how often the
basic weight i will be applied within the pattern generation
phase. Obviously, a weighting of the weights is performed
by this number.

In order to illustrate the weight set computation and
optimization procedure, the variables the_number_of_
selectable_weights  and number_of_testpatterns  are set to 8
and 136, respectively. Consequently, divisor  is 17.
Assuming that count_ws[0,1,2,3,4,5,6,7,8] is set to
[0,0,0,0,0,24,48,64,0] ,  the resul t ing array
weigh t_count_ for_ws [0,1,2,3,4,5,6,7,8] will be
[0,0,0,0,0,1,3,4,0]. In this case, half of the random test
patterns will be generated with the input probability 7/8
and the other half is generated according to the relation 1:3
with input probability 5/8 and 6/8.

4  Self-Test Hardware

According to the described weighting technique, the
required self-test hardware can be easily realized by a
single LFSR and a conventional weight calculation circuit,
plus the iterative selection of the necessary weights. The
basic structure of the proposed self-test hardware is given
in Figure 6, where one 4:1 multiplexer is used to toggle
between the three probabilities 0.625, 0.75 and 0.875. By
using the value 0.875 twice, half of the generated random
test patterns are generated with this weight that is
obviously very important to achieve a high fault coverage.

The hardware overhead imposed by the proposed self-test
structure is relatively low, since only a very few gates are
needed for the weight computation, one multiplexer is
required and, depending on its data width, one modulo-
counter for iteratively selecting the probabilities has to be
added. In contrast to the state-of-the-art approaches, where
due to the input specific weights also correlating inputs
have to be explicitly suppressed by introducing dedicated
test hardware structures (e.g., [5]), in the proposed
approach such correlations are excluded by construction.

According to the experimental results (cf. section 5) an
8:1-multiplexer and a 3-bit counter are sufficient to
achieve an almost complete fault coverage. As also shown
by the experimental data, the relative number of lines to be
inverted is such low that an inversion of the multiplexer
output is in almost all cases not relevant. Nevertheless, the
realization of this inversion would only require one
additional 'EXOR'-gate between the multiplexer and the
scan-in input. Here, one input is the multiplexer output,
the other input controls the inversion, e.g., by testing the
value 0 of an appropriate modulo-x counter.

5  Experimental Results

The described algorithms have been implemented in the
prototype system POWER-TEST (Pattern Oriented
WEigthed Random TESTing) as submodules of the test
system INSPIRATION (Incomplete Scan Path
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Figure 6 : Basic structure of the self-test hardware
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Benchmark
Circuit

 Fault Count
(detectable)

Random
Pattern
Count

Equiprobable
Random Patterns

PROTEST:
Input Oriented

Weighted Patterns

POWER-TEST:
Pattern Oriented

Weighted Patterns
FC [%] Undet.

Faults
FC [%] Undet.

Faults
FC [%] Undet.

Faults
c2670 2,408 2,000 88.0 290 97.9 50 97.6 51

10,000 88.0 290 99.2 19 (31*) 99.5 6
50,000 88.4 279 99.8 6 99.9 2

c5315 4,895 2,000 99.9 6 n.a. 99.8 10
10,000 99.9 3 n.a. 100.0 0
50,000 99.9 3 n.a.

c7552 6,876 2,000 94.7 365 97.6 165 96.8 212
10,000 95.8 292 99.3 47 98.6 93
50,000 96.8 218 99.6 25 99.5 29

s38584 30,237 2,000 94.8 1619 n.a. 96.8 844
10,000 98.1 727 n.a. 99.3 178
50,000 99.1 34** 99.9 31

* [6] after 7,554 weighted random patterns (input oriented); ** [6] after 42,426 weighted random patterns (input oriented)

Table 1: Comparison of fault coverage with different random pattern sets

IntegRATION) developed at the University of Karlsruhe
and FZI [17]. Based on the well-known ISCAS benchmark
circuits, the necessary basic set of partly specified
deterministic test patterns has been computed with the
integrated ATPG tool SPROUT-9v. Since the current
prototype implementation is tuned on combinational
circuits, it is assumed that sequential circuits offer a
complete scan design.

In order to show the efficiency of the new approach, we
have initially selected all benchmark circuits that are hard
to be tested with equiprobable random patterns, i.e., after
50,000 random patters with input weight 0.5 some
undetectable faults are left. For each circuit several
analyses have been performed with different initial values
(e.g., for the basic LFSR), and the below given numbers
are the median values of these runs. The random pattern
sequences have been produced by a LFSR with
characteristic polynomial x31+x3 +1. In Table 1, all
evaluation results are based on 8 weights, i.e., the self-test
hardware requires an 8:1-multiplexer for weight
distribution. The introduced threshold value L has been set
to 12, i.e., at least 12 bit positions have to be specified,
otherwise the related test pattern will not be taken into
account. In addition, the line inversion has been turned off
to discuss its effect separately at the end of this section.

Table 1 provides a detailed look on some benchmark
circuits by showing the achieved fault coverage during the
fault simulation phase, and offering a direct comparison to
the input oriented weight optimization by PROTEST [4].
As indicated by the achieved fault coverage and the
remaining undetected faults, the savings are significant in

the test pattern count compared with equiprobable
patterns, and the achieved test quality is in the same range
as provided by PROTEST. It should be noted that a main
advantage of the POWERT-TEST system is a simplified
weight computation and also a reduced test hardware
effort compared to input oriented test methods.

Table 2 provides the evaluation results for additional
sequential benchmark circuits where conventional random
testing would require the application of more than 10,000
patterns. Here, the remaining undetected faults are given
after having applied 10,000 equiprobable and weighted
test patterns, respectively. In order to show the effect of
varying the weight count, the optimization results are
given for four and eight weights. In the latter case, for the
benchmark circuit s526 (s641, s713) complete fault
coverage could be achieved already after 4255 (8854,
8854) weighted patterns. The achieved results underline
the efficiency of the proposed WRP strategy, and also
show that an increased number of weighs does not
guarantee and improved fault coverage and a reduced
pattern count.

Finally, it should be noted that all above given experi-
mental data are purely based on row inversions, since the
percentage of required line inversions typically was lower
than 5%. Therefore, for almost all benchmark circuits the
fault coverage did not show measurable improvements
when incorporating line inversions. Consequently, an
inclusion of the required extra logic in the self-test
hardware for a periodical inversion of complete test
patterns need not be realized to obtain the shown
improvements.



Circuit  Fault Undetected Faults after 10,000
Count
(detec-
table)

Equi-
probable
Random

Weighted Patterns
(POWER-TEST)

with
Patterns 4 Weights 8 Weights

s420 356 37 1 1
s526 491 2 0 (2130) 0 (4255)
s641 406 11 0 (5043) 0 (8854)
s713 470 11 0 (6377) 0 (8854)
s820 773 9 4 4
s832 775 17 4 2
s838 711 127 30 31
s953 893 10 1 1

s1196 1,044 25 18 17
s1238 1,051 16 13 12
s1423 1,241 7 1 2
s5378 3,837 51 28 22
s9234 5,564 801 193 190

s13207 8,386 688 196 204
s38584 30,237 727 211 178

Table 2: Experimental results without line inversions

According to the experimental data, an inversion rate of
more than 20% is required before significant coverage im-
provements can be achieved with line inversions. This is
the case for circuits s420 and s838 with a rate of 22.4%
and 21.5%, respectively. As indicated in Table 3, the
number of random patterns and aborted faults could be
significantly reduced: for circuit s420, the pattern count
could be decreased below the 10,000 limit. For circuit
s838, the number of undetected faults could be halved.

Circuit Line Undetected Faults after 10,000
Inversion

Rate
Equi-

probable
Random

Weighted Patterns
(POWER-TEST)

with
Patterns 4 Weights 8 Weights

s420 22.4 % 37 0 (3651) 0 (6122)
s838 21.5 % 127 12 15

Table 3: Improved results including line inversions

6  Conclusions

In this paper, a new and very promising approach for an
efficient weighted random pattern test has been
introduced. In contrast to the state-of-the-art approaches,
where for each circuit input specific weights are
determined, the proposed method is pattern oriented. The
evaluation of the prototype system POWERT-TEST
shows significant pattern count reductions over the
equiprobable random pattern test. Direct comparisons with
conventional input-oriented methods show a very similar
optimization quality. By construction, both the basic
weight generation procedures and the related self-test
hardware can be realized at very low implementation
effort.
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