
Hierarchical Behavioral Partitioning for Multicomponent Synthesis�

Nand Kumar
Triquest Design Automation

San Jose, CA 95008
nand@triquest-da.com

Vinoo Srinivasan Ranga Vemuri
Laboratory for Digital Design Environments, ECECS
University of Cincinnati, Cincinnati, OH 45221-0030

fvsriniva, rangag@ece.uc.edu

Abstract

Packaging technology has tremendously improved
over the last decade. Various packaging options such
as ASICs, MCMs, boards, etc. should be well explored
at early stages of the system-synthesis cycle. In this
paper we present a hierarchical behavioral partitioning
algorithm which partitions the input behavioral speci�-
cation into a hierarchical structure and binds all ele-
ments of the structure to appropriate packages from a
given package library. As an application to our parti-
tioner, we integrated the partitioner with a high level
synthesis tool to create an environment for multicom-
ponent synthesis and hierarchical package design. We
provide detailed partitioning algorithms and experimen-
tal results.

1 Introduction

High level synthesis converts a behavioral speci�-
cation of a digital system into an equivalent rtl de-
sign that meets a set of stated performance constraints
[1, 2, 3]. This rtl design can be partitioned into mul-
tiple segments to realize a multichip design. Partition-
ing rtl designs, however, has various drawbacks: (1)
Control lines could be crossing segment boundaries;
(2) Operators could be shared by operands in di�er-
ent segments, this results in poor performance due to
interchip communication; (3) The design is �xed dur-
ing synthesis and thus there is very little scope for cir-
cuit transformations to improve performance; (4) rtl
designs are much larger than their behavioral counter-
parts, thus, the solution space increases rapidly with
the size of the synthesized behavior, making the par-
titioning process very time consuming; and (5) Power
estimation/measurement for rtl designs is too time
consuming and not viable for very large designs.

Recent e�orts in system-level synthesis have led to
the development of high level synthesis systems that
can produce multichip digital systems [4, 5, 6]. These
systems, however, do not consider the impact of pack-
aging on high level synthesis and hence designs pro-
duced by these systems cannot e�ciently use avail-
able high performance packaging technology. For very
large, performance critical designs, an e�cient hierar-
chical behavioral partitioner, which fully explores var-
ious packaging options, is required to tackle the draw-
backs of rtl partitioning. The inputs to the Hierar-
chical behavioral partitioner are: (1) a behavioral spec-

�

This work was done at the University of Cincinnati and is

part of the Multicomponent Synthesis System project sponsored

in part by the U.S. Air Force Wright Laboratories under Con-

tract No. F33615-91-C-1811, and the ARPA RASSP program

monitored by the Wright Lab, US Air Force under contract no.

F33615-93-C-1316.

i�cation to partition; (2) parameterized register level
component library characterized for area, delay, and
switching activity; (3) package library with area, pins,
switching activity, clock speed, and cost information
for all packages; and (4) cost constraint C, in dollars
on the entire design. The output of the partitioner is:
(1) a set of behavioral speci�cations, which together
form the original speci�cation; (2) a set of structures
that realizes the hierarchical design; and (3) a binding
of the behavioral speci�cations and the structures to
appropriate cost e�ective packages from the package
library.

The input behavioral speci�cation (which may be
given in vhdl) consists of a set of communicating and
concurrently executing processes. This speci�cation is
internally represented as a process graph; with nodes in
this graph representing the processes, and edges being
communication channels. We formulate the hierarchi-
cal partitioning problem and propose a solution for the
hierarchical partitioning and package binding problem.
We show how our partitioner can be integrated with
a high level synthesis tool to create an environment
for multicomponent synthesis and hierarchical package
binding. Experimental results for a number of designs
are presented.

2 Problem Formulation

De�nition 2.1 A 1-level partition of a set N is a col-
lection, S, of nonempty sets (segments), such that:
� S is a collection of mutually disjoint sets, i.e.,
if C 2 S; D 2 S, and C 6= D, then C \D = �, and

� the union of S is the whole set N , i.e.,
S

s2S s = N :2

De�nition 2.2 A k-level partition, P, of a set N is a
set of 1-level partitions P1; P2; : : : ; Pk such that
� P1 is a 1-level partition of N , and
� for 1�i < k, Pi+1 is a 1-level partition of Pi: 2

De�nition 2.3 A k-level partition of a graph G =
(N;E) is a k-level partition of N , where N is the set
of nodes and E is the set of edges. 2

The performance attributes of the nodes in the
graph G and level 1 partition segments (each segment
is viewed as a sub-graph of G or a subset of processes
in the behavioral speci�cation) in the graph are de-
termined through scheduling and performance estima-
tion of individual nodes or segments [12, 13, 15]. Thus
for any segment, s 2 P1, the performance attributes
A(s); H(s); T (s); and B(s) (area, switching activ-
ity, clock period and pin count respectively) are com-
puted by the performance estimator built into the par-
titioning environment. This process is similar to the
scheduling and performance estimation steps in high
level synthesis [12, 15].

EURO-DAC ’96 with EURO-VHDL ’96
0-89791-848-7/96 $4.00 1996 IEEE

We have a set of packages p1; p2; p3 : : : pn in a pack-
age library L. Each package p has six attributes: A(p),
the area capacity; H(p), the maximum switching ac-
tivity; T(p), period of the fastest clock allowed by the
package; B(p), the number of pins available in p; C(p),
the dollar cost of p; and L(p) � 1 is the level number
of the package p. Level of a package is the level in the
packaging hierarchy at which the package can be used.
All bare-die packages are level one, ASICs and MCMs
are level two, boards are level three, and so on. The
de�ning level of a library is the smallest k such that
no package in the library has level greater than k. For
i > 1, packages with level i can contain only packages
with level i � 1 and level 1 packages contain the seg-
ments of the process graph. If p and q are two package
instances then, p � q denotes `p contains q'.

De�nition 2.4 For any instance, p, of a package from
the package library L:

If 2 � L(p) � k:

(a) area cost of the package a(p) =
X

p�q

a(q)

(b) heat cost of the package h(p) =
X

p�q

h(q)

(c) pin cost of the package b(p) =X

e2E

e; e spans package instances pa and pb; such that:

(L(pa) = L(pb) = L(p) � 1) ^ (p � pa) ^ (p 6� pb)

(d) clock period cost t(p) = maxp�q(t(q))

When L(p) = 1, the scheduler and performance esti-
mator will determine the above costs based on the level
1 segment in p. 2

Hierarchical Partitioning Problem: Given a pro-
cess graph, G = (N;E), a package library L with de�n-
ing size k , and a cost constraint C:
� �nd a (k-1)-level partition P = fP1; : : : ; Pk�1g of G
� Let Pk = fskg; where; sk = fsk�1 j sk�1 2 Pk�1g
that is, Pk contains exactly one segment (which in turn
contains all the segments in Pk�1) to be mapped to a
top most level package in the library.
� Now �nd a binding, B, which for 1 � i � k, binds
each segment in Pi to some level i package instance
from L, such that
for each instance, p, of any package from L:

a(p) � A(p), h(p) � H(p),
b(p) � B(p), t(S) � T (p).

subject to

Cost(P) =
X

instance p

C(p); Cost(P) � C. 2

3 The Behavior Level Hierarchical Par-
titioning Algorithm

The algorithm begins by partitioning the process
graph and mapping partition segments onto available,
cost-e�ective, bare-die packages. A graph is con-
structed from the partition generated at this level for
further partitioning at the next higher level of pack-
aging. The packaged partition segments form nodes
in the new graph; edges of the current graph which
connect nodes in di�erent segments, form the edges of
the new graph. At the next higher level of packag-

ing, this new graph is partitioned and mapped onto
cost-e�ective packages. This process continues until
the packaging hierarchy is exhausted. If, at a partic-
ular level, no solution is found, we back-track to the
previous level, tighten cost constraints, reconstruct the
old partition and continue.

Setting constraints is an important step in the al-
gorithm. Initially, on the �rst pass, overall area and
switching activity constraints for the entire design are
set to the minimum area and switching activity ca-
pacity of packages at the highest level in the package
hierarchy (since, eventually, the design hierarchy needs
to be mapped onto a package at the topmost level in
the package hierarchy). The cost constraint is set by
subtracting the cost of the smallest package at all lev-
els of packaging above level 1 from the total cost con-
straint, C. On subsequent invocations, if the algorithm
is back-tracking, cost constraint is set by multiplying
the previous iteration's cost for that level by a con-
straint tighten factor (CTF < 1). If the algorithm is
not back-tracking, cost constraint is generated by sub-
tracting the actual cost of packaging at lower levels of
packaging and the projected packaging cost at higher
levels (cost of smallest packages) from the total cost
constraint, C.

Algorithm 3.1 presents the hierarchical partitioning
and package design algorithm (HPP). hpp has access
to a multiway partitioning algorithm (MP { Algo-
rithm 3.2). When partitioning at any level, hpp �rst
extracts the graph G = (N;E) to be partitioned us-
ing the hierarchical netlist manager. It also sets the
cost, area, and switching activity constraints through
Set Constraint and then mp is invoked. mp explores
the design space by constructing a set of alternative
partitions; mp returns the �rst partition that satis�es
constraints, or, in the absence of a constraint satisfy-
ing solution, returns the best cost solution from the
set of partitions. mp returns a status ag along with a
solution (partition with segments bound to packages).
Based on the values of the status ag for the current
and previous levels, hpp decides to proceed to the next
higher level, back-track to previous level or terminate
reporting failure.

The mp invokes a K-way FM Algorithm (kway {
3.3) to partition a graph into multiple segments with
appropriate package bindings. K-way partitioning is
carried out by repeatedly invoking two-way fm [11] on
pairs of partition segments. To evaluate the cost of
level 1 partition segments, the K-way FM invokes the
scheduler, which estimates the performance attributes.
Scheduling is the �rst important step in the high level
synthesis process. The scheduler generates a time-
stamped and partially bound data ow graph, that sat-
is�es speci�ed constraints. Scheduling determines exe-
cution speed of the synthesized design in terms of clock
speed and number of clock cycles required to execute
all operations. For a given parameterized component
library, we can compute the area, average switching
activity, and clock speed costs from the schedule pro-
duced by the scheduler. An implementation of Paulin's
force-directed list scheduling [9], extended for commu-
nicating and concurrently executing processes [8], is
used. Switching activity estimation technique has been
reported in [7].

Algorithm 3.1 (HPP Algorithm: HierPartPack).
G: input graph (Behavioral speci�cation)
P: package set
C: overall cost constraint on design
HN: hierarchical netlist manager
StatArr[k]: Status of partitioning at level k
BtkArr[k]: The number of back-tracks at level k
MaxBtk: The limit on number of back-tracks at any level
k: levels in package hierarchy, level: current level
area: overall area constraint
switch: overall switching activity constraint
cost: cost constraint at current package level

HierPartPack(G, P, C)
begin
level 1 Glevel G Solution null
while level < k do

Set Constraint()
(status, Solution) MP(Glevel, P(level), cost,

area, switch, level)
StatArr[k] status
case status is

SUCC:
level level + 1
HN :: read partition(Solution)
HN :: construct netlist(level)

BEST:
if ((StatArr[level � 1] = SUCC) ^

(BtkArr[k] < MaxBtk)) then

BtkArr[k] BtkArr[k] + 1
level level � 1 /* back-track */

else
level level + 1
HN :: read partition(Solution)
HN :: construct netlist(level)

end if
FAIL:
if ((StatArr[level � 1] = SUCC) ^

(BtkArr[k] < MaxBtk)) then

BtkArr[k] BtkArr[k] + 1
level level � 1 /* back-track */

else
return(null)

end if
end case
Glevel HN :: read netlist(level)
/* retrieve next level netlist */

end while
return(Solution)

end

4 Multicomponent Synthesis

The multicomponent synthesis approach is demon-
strated in �gure 1. We integrate our hierarchical parti-
tioning environment with a high level synthesis system
to produce multicomponent designs with packaging hi-
erarchy. First, the partitioner hierarchically partitions
the input behavioral speci�cation and binds segments
at each level to appropriate packages. Multicompo-
nent synthesis is carried out by synthesizing all level 1
partition segments (set of interacting behavioral pro-
cesses) using a high level synthesis tool. We call this
integrated system, MSS (Multicomponent Synthesis
System) [10]. Design tradeo�s are performed by con-
sidering various partitions and carrying out scheduling
and performance estimation on proposed partition seg-
ments. The performance attributes of the synthesized
rtl designs are determined and compared against the
capacity and cost constraints imposed by the packages
they are bound to. Also, a global controller is automat-
ically placed on a partition segment and interconnected
with the rtl design segments. The global controller is

Algorithm 3.2 (Multiway Partitioning Algorithm).
G: input graph, P: package set
p: individual package from P
area: overall area constraint
switch: overall switching activity constraint
C: cost constraint on design
level: level in package hierarchy

MP(G, P, C, area, switch, level)
begin

min seg max(area/max area(p), switch/max switch(p))
max seg num cell(G) /* # of nodes in graph */
best cost 1 status FAIL Solution null
for num seg = min seg to max seg do

Best KWAY(G, P, num seg, level)
/* generate �rst partition */
num fm ite 1 num fm imp 1
status check constraint(Best, area, switch, C)
while (status 6= SUCC ^ num fm ite < MAX FM ITE ^
num fm imp < MAX FM IMP) do
S KWAY(G, P, num seg, level)
status check constraint(S)
num fm ite num fm ite + 1
best cost kway cost(Best)
if (status = SUCC) _ ((status = BEST) ^
(cost(S) < best cost kway)) then

Best S
end if
if (cost(S) < best cost kway) then

num fm imp 1
else

num fm imp num fm imp + 1
end if

end while
if status = SUCC then

return (status, Best)
elsif (status = BEST) ^ (cost(Best) < best cost) then

Solution Best
best cost cost(Best)

end if
end for
return(status, Solution)

end

placed on a partition segment whose package has the
most unused space. Details of the controller model to
support multicomponent partitioning are discussed in
[13, 14, 16].

At the end of multicomponent synthesis and hierar-
chical package design we have a multicomponent design
composed of interacting rtl design segments. The be-
havioral partitioning phase produces multiple behavior
segments that are completely synthesized to rtl de-
signs using a high level synthesis system such as dss
[12, 13]. Also produced is a hierarchical structural de-
sign (the leaf nodes in this design are the individual
rtl designs) that is mapped onto e�cient cost-e�ective
packages from a package library. We functionally val-
idate our approach by simulating the hierarchical rtl
design and the input behavior for the same set of test
vectors and comparing their outputs.

5 Results

We present results for a number of examples to
demonstrate the validity of our behavioral partition-
ing approach for multicomponent synthesis and hierar-
chical package design. Details of a few packages from
our library is shown in Table 1. Table 2 presents de-
tails of the number of lines of code in behavior level
vhdlspeci�cation and the number of processes for each
of our examples.

Algorithm 3.3 (k-way FM Algorithm: KWAY) .
G: graph G = (V;E)
P: available set of packaging options
S: fs1; s2; � � � ; sng a partition of G with k segments

KWAY(G, P, k, level)
begin
Best initialize() /* create initial partitions */
if level = 1 then /* pure behavior speci�cation

{ estimate attributes */
for all s 2 Best do

Schedule/Performance Estimate s
and generate A(s), H(s), B(s), and T(s)

end for
end if
best cost 0 S null cont part TRUE
ite cnt 1 imp cnt 1
for all s 2 Best do /* map partition segment

to package and �nd cost */
best cost best cost + cost(B(s))

end for
while cont part = TRUE do

for i = 1 to k�1 do
for j = i+1 to k do

two way fm(si; sj)

end for
end for
if level = 1 then /* pure behavior speci�cation

- estimate attributes */

for all s 2 S do
Schedule/Performance Estimate s
and generate A(s), H(s), B(s), and T(s)

end for
end if
curr cost 0
for all s 2 S do /* map partition segment

to a package in P and �nd the cost */
curr cost curr cost + cost(B(s))

end for
ite cnt ite cnt + 1
if curr cost < best cost then

imp cnt 1 Best S
/* save best partition seen so far */

else imp cnt imp cnt + 1 end if
if ite cnt = MAX ITE _ imp cnt = IMP CNT
then cont part FALSE end if

end while
return(Best) /* retrieve best partition */

end

Move Machine: The instruction set of the Move
Machine controls instruction and data ow. It does
not compute any data values. ALU operations are
assumed to be memory mapped. Fifo: Fifo models
a producer consumer problem. Shu�e: The Shu�e
is a high speed recon�gurable 32 bit shu�e-exchange
network for parallel signal processing. The Shu�e ex-
change is a commercial product of Texas Instruments,
Inc. dyn is a �ve process description that monitors and
maintains the dynamic length and maximum length to
which a queue in a producer-consumer problem grows.
alu is a nine process description of an arithmetic logic
unit. dyn1-dyn10 and alu1-alu5 are multiple processing
elements generated by making multiple instantiations
of dyn and alu respectively.

5.1 Multicomponent Synthesis and Hi-
erarchical Package Design

Tables 3 and 4 present results of multicomponent syn-
thesis and hierarchical package design for the design
examples in Table 2 with the package library shown in
Table 1. For the smaller examples (Move Mc - dyn2),
Table 3 presents the mapping of segments to packages
at three levels of design hierarchy. Due to lack of space

Hierarchical RT Level Design, bounded to Packages

Scheduling and

Performance Estimation

Estimates for all Processes

Area, Clock speed, Pin count

Switching Activity,

Hierarchical Behavioral

Partitioner

Information
Pin and Cost

Swithing, Area,

Constraints

Design

RTL

Library
Behavioral Synthesis
 System

segments bound to

appropriate packages

Level-1 behavioral

Level-1 RTL segments

Library

PackageP1 P2 P2

(Multiple interacting Processes)
Behavioral VHDL

Figure 1.Hierarchical Behavioral Partition-
ing for Multicomponent synthesis

we are not able to show this result for the other larger
designs. Table 4 presents the following results for all
designs in Table 2: (1) Number of back-tracks taken by
the algorithm / BTK(Max. back tracks allowed); (2)
Actual design cost/constraint; and (4) execution time.

For each example, the cost constraint was progres-
sively tightened until the algorithm failed to �nd a
cost-satisfying solution. In all cases, if a constraint-
satisfying solution existed, it was discovered by the al-
gorithm. For smaller examples, this was veri�ed by
manual examination. The results establish the valid-
ity of the algorithm. An interesting observation that
vindicates our choice of the back-tracking algorithm is
that in all our examples the most times the algorithm
ever back-tracks is three (Table 4). This is because the
algorithm back-tracks only if it can potentially �nd a
solution with better cost and, also, the algorithm con-
verges to a constraint-satisfying solution fairly rapidly.

Hierarchical RTL Partitioning: We also devel-
oped a Hierarchical rtl partitioner [14] as an alter-
nate approach. Here, we synthesize the input behavior
and then partition the resulting rtl design. Table 5
presents the results of the hierarchical rtl partition-
ing for the designs in table 2. Blanks indicate that
the input design was too large to be handled by the
rtl partitioner. For each example, the dollar cost so-
lution is bold-faced if it is better than the behavioral
counterpart. rtl partitioning yields better designs for
smaller examples where the number of synthesized rtl
components is relatively small (< 200). For larger ex-
amples multicomponent synthesis executes much faster
and also out-performs rtl partitioning in terms of the
quality of solutions produced. The behavioral parti-
tioner produced better quality results faster than rtl

partitioner because papritioning at the process level
and following our multicomponent synthesis approach

L(p) Name A(p)� B(p) H(p)+ T(p)� C(p)#

1 Tiny1 5 40 50 50 400

1 Tiny2 5 40 60 50 500

1 Small1 15 40 150 50 800

1 PGA-2 15 84 300 50 1300

1 PGA-6 20 169 1000 50 1800

2 Pl-1 6 40 50 50 250

2 Cer-1 15 40 200 50 500

2 PGA-1C 12 84 220 50 800

2 PGA-5C 20 169 1000 50 1500

2 MCM-3 400 169 3000 75 20000

3 Board-1 300 80 2000 100 300

3 Board-2 400 80 3000 100 400

3 Board-6 1000 128 12000 100 1200

* : sq. mm; + : 1000 node switches; - : ns; # : $

Table 1. Package Alternatives

Example Num Lines (vhdl) Num Proc

Mv Mc 75 3

Fifo 65 3

Shu�e 472 5

dyn1 132 5

dyn2 254 10

dyn3 376 15

dyn4 498 20

dyn5 620 25

dyn6 742 30

dyn7 864 35

dyn8 986 40

dyn9 1108 45

dyn10 1230 50

alu1 100 9

alu2 188 18

alu3 276 27

alu4 364 36

alu5 452 45

Table 2. Design Data for Examples

avoids the various drawbacks of rtl partitioning as
mentioned in section 1.

Hierarchical Package Design without Inte-
grated Scheduling: Since scheduling and perfor-
mance estimation are time consuming, we modi-
�ed kway-FM by replacing the schedule and perfor-
mance estimation steps by approximations for area and
switching activity. In this approach, individual pro-
cesses are �rst scheduled and performance estimated.
Then, for level 1 segments, the area and switching ac-
tivity costs of the individual processes in the segment
are summed to obtain the total area and switching ac-
tivity of the overall segment. These numbers are then
adjusted by a small percentage (10-30%) to take into
account the possible sharing of resources if the pro-
cesses had been actually scheduled together[14]. Ta-
ble 6 presents results of hierarchical partitioning and
package binding without an integrated scheduling and
performance estimation step.The better dollar cost for
each example is bold-faced. Invalid indicates that at
least one of the partition segments at level 1 does not �t
on available packages; thus, the design is not valid. The
approach with scheduling out-performs the approxima-
tion method, especially for the larger designs. How-
ever, (a) execution time for the approximation method
is very small; and (b) the estimated cost of packaging
the designs are fairly close to the solutions reported
by the algorithm with embedded scheduling algorithm.
This observation indicates that the approximation al-
gorithm should be used to quickly generate approxi-

Segments and Mapping

(si{pi)
Example Level-3 Level-2 Level-1

Mv Mc s21{Board-1 s11{PGA-5C s1{PGA-6
EXE

s12{PGA-1C s2{PGA-1
FET, DEC

Fifo s21{Board-1 s11{Pl-5 s1{Small1

FIFO

PRODUCER

CONSUMER

Shu�e s21{Board-2 s11{PGA-4C s1{PGA-4
shu�e-1

s12{PGA-4C s2{PGA-4
shu�e-2

s13{PGA-4C s3{PGA-4
shu�e-3

s14{PGA-4C s4{PGA-4
shu�e-4

s15{PGA-4C s5{PGA-4
output

dyn1 s21{Board-1 s11{Cer-3 s1{Small3

s1 p 1,s1 p pt

s1 p sl,s1 p 2

s1 p st

alu1 s21{Board-1 s11{Cer-2 s1{PGA-1
s1 nbp,s1 nap

s1 np,s1 outp

s2{Tiny1
s1 mp,s1 ap

s1 op

s12{Pl-1 s3{Tiny1
s1 dp,s1 sp

dyn2 s21{Board-1 s11{Cer-3 s1{Small-1

s2 p sl,s2 p pt

s2 p 2

s2{Tiny1
s2 p st,s1 p st

s12{Pl-5 s3{Small1

s1 p sl,s1 p pt

s1 p 1,s1 p 2

Table 3. Multicomponent Synthesis with
Hierarchical Package Design Results

Note: s{p denotes the mapping of segment s onto pack-
age p from the package library. Also, at level 1, number
of processes on each partition segment are presented.

mate dollar cost constraints to be imposed on the rig-
orous algorithm.

6 Conclusions and Discussion

We have presented a hierarchical behavioral par-
titioning and package design algorithm. We demon-
strated a methodology to integrate our partitioner with
a high level synthesis tool to create a multicomponent
synthesis and hierarchical package design environment,
MSS (Multicomponent Synthesis System) [10]. MSS
takes as input a multi process vhdl behavior, a pa-
rameterized component library, a package library, and
an overall cost constraint on the design and generates a
hierarchical rtl design while simultaneously construct-
ing a physical package hierarchy for the design.

We presented results to evaluate the performance
of the approach with respect to the quality of designs
produced and execution times for a number of design
examples. Hierarchical rtl partitioning and package
design yields good results for examples where the num-
ber of rtl components in the synthesized design are
less than 200. When partitioning at the rtl netlist
level, the design architecture is frozen (during high
level synthesis). Alternate multichip designs cannot be
explored during hierarchical rtl partitioning, whereas

MSS explores the design space by considering alter-
nate implementations during high level synthesis. Also,
thermal pro�ling of rtl designs is too time consuming
and is not viable for large designs. For almost all the
examples, MSS produces better results and executes
much faster than the hierarchical rtl partitioning. For
smaller designs, scheduling overhead can be reduced
through approximate estimation procedures to evalu-
ate the cost of level 1 segments form individual process
costs. From the results, we infer that the hierarchical
behavioral partitioning is both a suitable and a viable
approach to multicomponent synthesis and hierarchical
packaging.

References
[1] M.C. McFarland, A.C. Parker, and R. Camposano, \Tuto-

rial on High-Level Synthesis,"Proc. 25th Design Automation
Conference, pp. 330{336, June 1988.

[2] M.C. McFarland, A.C. Parker, and R. Camposano, \The

High-Level Synthesis of Digital Systems," Proc. of the IEEE,
Vol. 78, No. 2, pp. 301{318, Feb. 1990.

[3] R. Camposano, \From Behavior to Structure: High-Level

Synthesis," IEEE Design & Test of Computers, pp. 8{19, Oct.
1990.

[4] K. Kucukcakar, \System-Level Synthesis Techniques With

Emphasis on Partitioning and Design Planning," Ph.D. Dis-
sertation, Dept. of Electrical Engineering-Systems,University
of Southern California, CA, Oct. 1991.

[5] F. Vahid and D.D. Gajski, \Speci�cation Partitioning for

System Design," Proc. 29th Design Automation Conference,
pp. 219{224, June 1992.

[6] R. Gupta and G. De Micheli, \Partitioning of Functional

Models of Synchronous Digital Systems," Proc. ICCAD-90,
Santa Clara, pp. 216{219, Nov. 1990.

[7] Nand Kumar, Srinivas Katkoori, Leo Rader and Ranga Ve-

muri, \Pro�le-Driven Behavioral Synthesis for Low Power

VLSI Systems", IEEE Design & Test of Computers, pp. 70-
84, Fall 1995.

[8] R. Dutta, \Distributed Design-Space Exploration for High-

Level Synthesis Systems," Master's Thesis, Dept. of Electri-
cal and Computer Engineering, University of Cincinnati, OH,

1991.

[9] P.G. Paulin and J.P. Knight, \Force-Directed Scheduling for

the Behavioral Synthesis of ASIC's," IEEE Trans. Computer-
Aided Design, Vol. 8, No. 6, pp. 661{679, June 1989.

[10] R. Vemuri et al, \An Integrated Multicomponent Synthesis

Environment for Multichip Modules," Computer, pp. 62{74,
April 1993.

[11] C.M. Fiduccia and R.M. Mattheyses, \A Linear-Time

Heuristic for Improving Network Partitions," Proc. 19th De-
sign Automation Conference, pp. 175{181, June 1982.

[12] J. Roy, N. Kumar, R. Dutta, and R. Vemuri, \DSS: A Dis-

tributed High-Level Synthesis System," IEEE Design & Test
of Computers, pp. 18{32, June 1992.

[13] J. Roy, \Parallel Algorithms for High-Level Synthesis,"

Ph.D. Dissertation, Dept. of Electrical and Computer En-

gineering, University of Cincinnati, OH, Feb. 1993.

[14] N. Kumar, \High Level VLSI Synthesis for Multichip De-

signs" Ph.D. Dissertation, Dept. of Electrical and Computer

Engineering, University of Cincinnati, OH, Oct. 1994.

[15] R. Dutta, J. Roy, and R. Vemuri, \Distributed Design-

Space Exploration for High-Level Synthesis Systems," Proc.
29th Design Automation Conference, pp. 644{650, June 1992.

[16] N. Narasimhan, J. Roy, and R. Vemuri,

\Synchronous Controller Models for Synthesis from Commu-

nicating VHDL Processes," Proc. Ninth International Con-
ference on VLSI Design, pp. 198-204, Jan. 1996.

Num BkTrk/ Cost/Constraint Exec

Example BTK ($) Time (s)

Mv Mc 1/10 5600/5000 6

Fifo 0/10 1550/3000 2.7

Shu�e 0/10 13900/1200 59.8

dyn1 1/10 1900/2000 3.6

alu1 1/10 3100/2500 100.7

dyn2 2/10 3350/3200 212.7

dyn3 0/10 5000/5000 126.1

alu2 1/10 6700/5000 412.8

dyn4 0/10 6350/800 229.3

dyn5 0/10 8350/8000 349.5

alu3 0/10 12700/8000 579

dyn6 1/10 9850/9000 1470.7

dyn7 2/10 11200/10000 3141

alu4 3/10 14100/15000 1549.4

dyn8 1/10 11850/12000 1863.5

dyn9 1/10 13800/13000 3684.1

alu5 2/10 17750/18000 1626.4

dyn10 2/10 16850/15000 6452.2

Table 4. Hierarchical Behavioral Partition-
ing and Package Design

Num

RTL Btk/ Cost Exec Cost ($)

Example Comp BTK ($) Time (s) Constr.

Mv Mc 53 0/10 4250 13.2 5000

Fifo 76 0/10 1750 6.4 3000

Shu�e 379 - - - 12000

dyn1 128 0/10 1550 11.9 2000

alu1 65 0/10 1900 6.5 2500

dyn2 234 0/10 6200 6560 3200

dyn3 334 0/10 53000 113272 5000

alu2 123 0/10 5400 2976 5000

dyn4 - - - - 8000

dyn5 - - - - 8000

alu3 161 0/10 10850 6251 8000

dyn6 - - - - 9000

dyn7 - - - - 10000

alu4 205 0/10 53600 109850 15000

dyn8 - - - - 12000

dyn9 - - - - 13000

alu5 - - - - 18000

dyn10 - - - - 15000

Table 5. Hierarchical RTL Partitioning and
Package design

Btk/ Cost Exec Cost ($)

Example BTK ($) Time (s) Constr.

Mv Mc 1/10 6500 3 5000

Fifo 0/10 1550 1.1 3000

Shu�e 0/10 13900 29.8 12000

dyn1 0/10 1900 1.4 2000

alu1 0/10 3550 11.3 2500

dyn2 1/10 3600 9 3200

dyn3 0/10 Invalid 5.8 5000

alu2 1/10 6800 76.2 5000

dyn4 0/10 7150 10.3 8000

dyn5 0/10 Invalid 12.4 8000

alu3 1/10 11250 248.9 8000

dyn6 0/10 Invalid 26 9000

dyn7 1/10 11850 252.5 10000

alu4 1/10 Invalid 77.8 15000

dyn8 1/10 Invalid 438.9 12000

dyn9 2/10 Invalid 708.1 13000

alu5 1/10 Invalid 1092 18000

dyn10 2/10 Invalid 875 15000

Table 6. Partitioning without Scheduling

	CDROM Home Pafe
	1996 Home Page
	EURO-DAC96 Home Page
	Front Matter
	Table of Contents
	Session Index
	Author Index

