
Rapid Performance Estimation For System Design y

Sanjiv Narayan Daniel D. Gajski

Viewlogic Systems Inc. Dept. of Computer Science

Marlboro, MA 01752, USA Univ. of California, Irvine, CA 92717, USA

Abstract

The ability to gauge the e�ect of any design deci-
sion on system performance is important in the de-
sign process. Given a behavioral description and the
functional-unit allocation, we describe a method for
rapidly estimating the number of control steps required
to implement the design. Extensions for pipelined
functional units and multi-port memory accesses are
also presented. Using
ow-analysis, we then show how
process execution times and related performance met-
rics can be computed to aid design space exploration.

1 Introduction

System designmaps objects in a design speci�cation
(such as processes/procedures, variables, and commu-
nications channels) to a set of system components
(such as ASICs, memories, processors and buses). De-
sign space exploration forms an important phase in the
system design process, allowing the designer to choose
the best implementation that meets the constraints on
design parameters such as area, performance, packag-
ing and power dissipation.

We will illustrate some of the tradeo�s that can be
made during system design with Figure 1. Figure 1(a)
contains a partial description of a process that calls
procedures FILLBUF , XFM and SENDBUF to
receive data from bus B into array BUF1, transform
and store this data intoBUF2, and send out the result
over bus B respectively. Figure 1(b) shows one possi-
ble partitioning of the design into two groups, CHIP1
and CHIP2.

Several design decisions can be made that could
possibly a�ect system performance. The designer
might allocate a speci�c number of functional units
to implement process COMP . Alternatively, the de-
signer may decide to use pipeline functional units to
implement some or all of the computations in the de-
sign. In addition he/she may specify a �xed number
of memory elements with a speci�c number of ports to
implement variables BUF1 and BUF2. Each decision
will impact the number of control steps and overall ex-
ecution time required by process COMP .

The designer may decide to inline procedure calls in
the process (as shown for procedures FILLBUF and

yThis work at U.C. Irvine was supported by the Semicon-

ductor Research Corporation (grant #94-DJ-146).

SENDBUF) or implement a procedure as a separate
logic block (as shown for procedure XFM) depending
on the communication overhead associated with call-
ing a procedure. Variables in the speci�cation such
as BUF1 and BUF2 may be implemented using ei-
ther the same memory or distinct memory elements
(as shown in Figure 1(b)). The communications chan-
nels between process COMP , procedure XFM and
variables BUF1 and BUF2 may be implemented as
distinct buses or merged together into a single bus
based on how often data is transferred between them.
These decisions require estimates of how often a pro-
cedure is called within a process, how often a variable
is accessed in a process/procedure and/or how often
is data exchanged by a process over abstract commu-
nication channels.

For any given speci�cation, the set of possible de-
sign implementations is usually large enough to pre-
clude evaluation of each design point after synthesizing
an implementation it completely. Consequently, rapid
estimates of physical implementation parameters are
required to guide system-level partitioning decisions.

In this paper we will discuss the estimation meth-
ods for several performance related metrics. First, we
will describe a method to estimate the number of con-
trol steps required for implementing a process with a
given functional-unit allocation. Extensions for multi-
port memories and pipelined functional units will be
presented. Using probability-based
ow-graph analy-
sis, we will then demonstrate how the execution time
of the entire process, and average number of accesses
to procedures, variables, and communication channels
can be estimated.

(a) (b)

type BUS is record
 REQ, ACK : bit;
 DATA : integer;
end record
signal B : BUS

process COMP
 type MTYPE is array (255 downto 0) of integer;
 variable BUF1, BUF2 : MTYPE;
 procedure FILLBUF (M : in MTYPE);
 procedure XFM (M1, M2 : in MTYPE;);
 procedure SENDBUF (data : out integer);
begin
 FILLBUF (BUF1, B); −− read bus B
 for J in 1 to 255 loop
 XFM (BUF1, BUF2, J); −− xfm data
 end loop;
 for K in 1 to 255 loop
 SENDBUF (BUF2(K), B); −− write bus B
 end loop;
end process P;

BUF1

BUF2

XFM B

FILLBUF SENDBUF

process COMP

J

K

CHIP2

CHIP1

Figure 1: Mapping spec. objects to system components

EURO-DAC ’96 with EURO-VHDL ’96
0-89791-848-7/96 $4.00 1996 IEEE

2 Previous Work

Several system design tools have incorporated per-
formance estimation to assist the designer in make de-
sign tradeo�s.

Aparty [1] is an architectural partitioner which di-
vides the behavior of a system into multiple partitions,
each of which may represent a chip or a block on a
chip. The input to the estimators in Aparty is a set
of clusters, each consisting of several operations of the
design. Execution time is estimated as the number
of control steps produced by scheduling the functional
speci�cation using a scheduler.

The input to the BUD [2] high-level synthesis sys-
tem is a value trace (VT) representation of a behavior
and a trace �le containing the number of times each
operation was executed during simulation. BUD uses
a hierarchical clustering algorithm for partitioning the
operations of a single process into clusters. By assum-
ing an allocation of a single functional-unit for each
operation type, the operations in the cluster are as-
signed to control steps using a list scheduler. From the
trace �les provided for the VT, the probability of exe-
cution of each control step is determined, from which
the average execution time for the design is computed.

CHOP [3] predicts the feasibility of tentative par-
titions using a behavioral area-delay estimator. The
inputs to the estimator are a data
ow graph repre-
senting the behavior, the clock cycle and the design
library, and the output consists of a set of area-delay
pairs each of which represents a feasible implementa-
tion of the design. The estimator employs a statistical
model for the estimation of the number of registers,
multiplexers, and wiring lengths and delays.

The Vulcan [4] partitioning tool represents the be-
havior as a graph where vertices represent the opera-
tions in the behavior and dependence edges represent
the dependencies between the operations A delay cost
is associated with each vertex representing the max-
imum propagation delay of the corresponding opera-
tion. The execution time for the graph is computed
as the sum of the delays of the vertices in the longest
start-to-�nish path. If an edge connects two vertices
assigned to di�erent partitions, a unit delay is associ-
ated with the edge to re
ect the communication cost
involved.

Partif [5] transforms a set of hierarchically-
structured processes into a set of
attened processes.
Partif uses a set of well-de�ned partitioning primitives
(move, cut, split, merge and map) to achieve this hier-
archical re-organization. The number of control steps
depend on the number of states in the FSM represent-
ing the process. When FSMs are merged together dur-
ing partitioning, the number of control steps is simply
the addition or product of the number of control steps
in the FSMs, depending on whether they are being
combine sequentially or concurrently.

None of the above methods (with the exception of
BUD) compute the overall execution time of the de-

sign in the presence of iteration/control constructs.
A Loop-Directed Scheduling (LDS) algorithm was pre-
sented in [6] which analyzed branch probabilities to de-
termine the number of times each state was executed,
and used this to determine the total control steps in
the design. A similar approach was used in [7] to eval-
uate control-
ow based scheduling algorithms based
on total number of clock cycles required to execute a
behavioral description.

The performance estimation methods in each of
the above approaches falls into one of two categories.
Aparty, BUD, and LDS fall into the �rst category
where scheduling is used to determine the number of
control steps in the design. Scheduling gives accu-
rate results but is computationally expensive, typi-
cally O(n2), and using scheduling for evaluating hun-
dreds (or even thousands) of design points may be
impractical. CHOP, Vulcan and Partif belong to the
second category, where simpli�ed estimation models
are employed to obtain quick performance estimates.
However the results are not likely to be very accurate.
For example, simply adding the number of states in
two graphs (as in VULCAN) or two FSMs (Partif)
that are merged will grossly overestimate the number
of control steps required for the merged graph/FSM
(as potential sharing is not taken into account).

Clearly, an estimation technique is required that
provides that approaches the accuracy that schedul-
ing provides, while still avoiding the computational
complexity associated with it. We will now present
one such method.

3 Control-Step Estimation

A control step corresponds to a single state of the
control unit state machine. Operations in the speci-
�cation (such as addition and multiplication) are as-
signed to these control steps during synthesis. Given
a straight-line code process description and the alloca-
tion functional-units, we now describe an estimation
method for determining the number of control steps
for implementing the process.

3.1 The Operator-Use method

The Operator-Use method �rst partitions all state-
ments in the process into a set of nodes in such a way
that all statements in a node could be executed con-
currently.

Let T represent the number of distinct types of op-
erations in a process P . Let num(ti) and delay(ti)
represent the number and delay (in whole number of
clock cycles) of functional units available to implement
operations of type ti. Then, if there are occur(ti) oc-
currences (or uses) of an operation type ti in any node,

then at least d occur(ti)
num(ti)

� delay(ti)e control steps are

needed to execute operations of type ti. The number
of control steps needed for any node nj, csteps(nj), is

equal to the maximumnumber of control steps needed
to perform operations of any type in the node; that is,

csteps(nj) = max
ti2T

[d
occur(ti)

num(ti)
e � delay(ti)] (1)

Once the control steps for each of the N nodes have
been determined, the total number of control steps
required by the process P is determined as follows

csteps(P) =
X

nj2N

csteps(nj) (2)

Algorithm 3.1 : Operator-Use method

CreateNodes(P , N)
csteps(P) = 0
for each node nj 2 N loop

csteps(nj) = 0
for each operation type ti 2 T loop

csteps(nj ; ti) = [d occur(ti)
num(ti)

e � delay(ti)]

if csteps(nj ; ti) > csteps(nj) then
csteps(nj) = csteps(nj ; ti)

end if
end loop
csteps(P) = csteps(P) + csteps(nj)

end loop
return csteps(P)

Algorithm 3.1 shows the Operator-Use method to
determine the total number of control steps for process
P described with straight-line code. The procedure
CreateNodes partitions the statements in process P
into a set of N nodes. The statements in the process
are merged into nodes in such a way that dependen-
cies between the statements are maintained and the
total number of nodes is minimal. If statement S2
is dependent upon statement S1, then S2 is assigned
to a node that succeeds the node to which S1 is as-
signed. It is worth noting that unlike scheduling, the
Operator-Use method simply groups the statements
together into nodes independent of the clock cycle and
the amount of resources allocated to the design.

For each node, Algorithm 3.1 computes the num-
ber of control steps required to carry out operations of
each of the T di�erent operation types. The variable
csteps(nj ; ti) represents the number of control steps
needed in node nj for computing operations of type
ti. The variable csteps(nj), computed by Equation 1,
represents the number of control steps required to exe-
cute all the operations in node nj . The number of con-
trol steps determined for each node are then summed,
as in Equation 2, to determine the total number of
control steps for the entire process. If there are n
operations in the process, the method has a computa-
tional complexity of O(n).

The Operator-Use method is illustrated with the
example in Figure 2. The HDL statements of process
SumOf8 in Figure 2(a) compute two outputs o1 and
o2 as functions of eight inputs I1, i2 ... i8. Figure 2(b)

mult: (2/2)*4= 4

Estimated total
 control steps

n1

n
2

n3

(a)

a1 := i1 + i2
a2 := i3 + i4
a3 := i5 + i6
a4 := i7 + i8

m1 := a1 x a2
m2 := a3 x a4
o2 := a1 + a2
 + a3 + a4

o1 := m1 + m2

add: (3/2)*1= 2

max (2 , 4) = 4

add: (4/2)*1= 2

add: (1/2)*1= 1

max (2) = 2

max (1) = 1

(c)(b)

inum(t)it i delay(t)

add
mult

1
4

2
2

= 7

a1 := i1 + i2;
a2 := i3 + i4;
a3 := i5 + i6;
a4 := i7 + i8;
m1 := a1 x a2;
m2 := a3 x a4;
o1 := m1 + m2;
o2 := a1 + a2 + a3 + a4;

process SumOf8

 maximum node
 control steps

Figure 2: Operator-Use method: (a) HDL statements, (b)

allocation and delays, (c) control step estimates on nodes.

shows the resource allocation and delays in clock cycles
for the adder and multiplier used for implementing
the design. In Figure 2(c), the statements are merged
into three nodes n1; n2, and n3 as was described for
procedure CreateNodes in Algorithm 3.1.

Figure 2(c) shows the computation of the num-
ber of control steps for each node using Equation 1.
For example, consider the node n2, which has three
additions and two multiplication operations, that is,
occur(+) = 3 and occur(�) = 2. Since two multi-
pliers are allocated and each multiplication requires
four clock cycles, the two multiplication operations
will require at least four control steps to complete.
The three add operations in the node will have to be
performed by the two adders allocated for the design,
and will thus require at least two control steps to com-
plete. From Equation 1, we estimate that node n2
requires at least four control steps to perform its op-
erations. Summing the number of control steps over
all the nodes in the process, by using Equation 2, we
estimate that 7 control steps are required to imple-
ment the process described in Figure 2(a).

3.2 Extensions for Multi-Port Memories

We can extend the Operator-Use method for multi-
port memories by simply treating memory accesses as
operations. Accesses to the memory in a node are
then identical to the \occurrences" of an operator, the
number of ports available for accessing the memory are
equivalent to the number of functional units allocated
for implementing the design, and the memory access
time is equivalent to the delay of the functional unit.

Thus, for each array variable M (that will be im-
plemented with a memory) accessed within a node,
de�ne an operator tM such that,

occur(tM): no. of accesses to M within a node
num(tM): no. of ports in memory implementingM
delay(tM): memory access delay (in clock cycles)

Equation 1 can now be directly used to determine
the number of control steps for a given node.

3.3 Extensions for Pipelined Units

We can apply the Operator-Use method when
pipelined functional-units are used to implement cer-
tain operations. Consider an operation of type ti
which is implemented by a pipelined functional unit.
Let stages(ti) represent the number of pipeline stages
in the functional unit. If there are occur(ti) occur-
rences of operator type ti in a node, then each of the
num(ti) functional units allocated will on the average
perform doccur(ti) � num(ti)e operations from that
node. The functional unit pipeline will produce the
result of the �rst operation after stages(ti) steps, and
the results of the remaining (doccur(ti)�num(ti)e�1)
operations to be executed on that functional-unit will
require an additional (doccur(ti)�num(ti)e � 1) con-
trol steps. Thus, the contribution to a node's con-
trol steps as a result of operations implemented with
pipelined functional units is given by:

csteps(nj) = max
ti2TP

[(stages(ti) + d
occur(ti)

num(ti)
e � 1) (3)

� delay(ti)]

where TP represents the set of all pipelined functional
units allocated for the design.

It is interesting to note that Equation 4 reduces to
Equation 1 if we consider each non-pipelined func-
tional unit as being a single-stage pipelined functional
unit (stages(ti) = 1).

4 Probability-based
ow analysis

Before we discuss estimation of execution time and
other performance metrics, we will brie
y discuss a
method to determine the execution frequency of each
node in a control-
ow graph, given the transition prob-
abilities between the nodes in the graph.

Consider a graph G = (V;E), where V is the set of
vertices, and E is the set of directed edges eij con-
necting vertex vi to vj. The transition or branch prob-
ability of any edge eij is a measure of how often node
vj is executed, once control reaches vertex vi. Branch
probabilities may be determined in two ways. First,
probabilities may be computed statically. For exam-
ple, in the case of loop statements where the number
of iterations, n, is known, a probability of n�1

n
is as-

signed to the back-edge and 1
n
to the exit edge in the

corresponding control
ow graph. Second, the prob-
abilities may be obtained dynamically by simulating
the process on several sets of sample data, recording
how often the various branches were executed and con-
sequently, deriving the probabilities for the individual
branches.

We will illustrate probability-based
ow analysis
with the
ow-graph in Figure 3(a). To determine

(a)

freq(v1) = 1.0
freq(v2) = 1.0 x freq(v1)
freq(v3) = 0.5 x freq(v2)
freq(v4) = 0.5 x freq(v2) + 0.9 x freq(v4)
freq(v5) = 1.0 x freq(v3) + 0.1 x freq(v4)

freq(v1) = 1.0
freq(v2) = 1.0
freq(v3) = 0.5
freq(v4) = 5.0
freq(v5) = 1.0

(c)(b)

V
1

V2

V3

V4

V
5

e
35

e45
e
12

24
e

e
23

(0.5)

(0.5)

(0.9)

(0.1)

e44

Figure 3: (a)
ow-graph with branch probabilities, (b) corre-

sponding
ow equations, (c) node execution frequencies.

the execution frequencies of each node, we must �rst
construct a set of
ow-equations. The execution fre-
quency for any node vj depends on the execution
frequency of all its immediate predecessor nodes vi
weighted by the branch probability of the edge be-
tween vi and vj . For example, consider node v5, which
has two predecessor nodes v3 and v4. Node v5 will be
executed once for every execution of node v3, and 0:1
times for every execution of node v4. Thus,

freq(v5) = 1:0� freq(v3) + 0:1� freq(v4)
The complete set of
ow-equations for all the nodes

in the graph is shown in Figure 3(b). These can be
solved using techniques like Gaussian Elimination to
obtain individual node execution frequencies as shown
in Figure 3(c).

5 Execution Time Estimation

The execution time of a design is de�ned as the
average start to �nish time required by the computa-
tions in the design. Estimating the execution time is
important for two reasons. First, a performance con-
straint may have been speci�ed for certain portions of
the design. The designer must be able to evaluate the
impact of any design decision on the execution time of
computations performed in the design. Second, execu-
tion time constraints will in
uence the technology or
component libraries that can be used for design imple-
mentation. We now present a technique for estimating
the total execution time of a process.

If a process is described by straight-line code (i.e.
consists of a single basic block), the start-to-�nish ex-
ecution time for the process can be determined by
�rst estimating the number of control steps using the
Operator-Use method described in Section 3. Let
csteps(P) be the number of control steps estimated
for process P and let clk be the clock cycle selected
for the design implementation. Then the execution
time, ExecT ime(P), for the process is:

ExecT ime(P) = csteps(P) � clk (4)

In the general case, a process may consist of se-
quential statements that have branching and iteration
constructs (such as loops, if and case statements).
First, we determine the set of basic blocks in the pro-
cess. We then create an equivalent control
ow graph
model for the basic blocks in the process, determine
the branching probabilities, and apply
ow-analysis
as presented in Section 4 to determine the execution
frequency of each basic block.

Since each basic block consists of a set of sequential
assignment statements, we can determine the execu-
tion time for each basic block by �rst estimating the
number of control steps it requires using the Operator-
Use method and then applying Equation 4. To deter-
mine the execution time for the entire process, the ex-
ecution frequency freq(bi) of each basic block bi needs
to be weighed by the execution time, ExecT ime(bi),
for the basic block.

ExecT ime(P) =
X

bi2P

ExecT ime(bi)� freq(bi) (5)

Algorithm 5.1 : Execution Time Estimation

CreateBasicBlocks(P)
PerformFlowAnalysis(P)
for each basic block bi 2 P loop

csteps(bi) = Operator-Use (bi)
ExecT ime(bi) = csteps(bi) � clk

end loop

ExecT ime(P) =
X

bi2P

ExecT ime(bi)� freq(bi)

return ExecT ime(P)

The estimation of execution time is summarized
in Algorithm 5.1. Given the description of pro-
cess P , the the procedure CreateBasicBlocks cre-
ates the basic blocks for process P and procedure
PerformF lowAnalysis performs
ow analysis on the
control
ow graph as outlined in Section 4 to deter-
mine the execution frequencies for each basic block.
Then Operator-Use method is applied to determine
the number of control steps and consequently, the ex-
ecution time for each basic block. Finally, Equation 5
is used to determine the execution time for the entire
process P .

6 Other Performance-related Metrics

While the Probability-based Flow Analysis method
has also been used in other e�orts [6, 7] to determine
the execution time for a process, it can be extended
to compute other useful performance related metrics.
In Equation 5, by associating with each node the exe-
cution time of the corresponding basic block and per-
forming
ow analysis, we were able to compute the

Node Weight in Flow Graph

No. of Control Steps for node operations

Design Metric Estimated
after Flow−Graph Analysis

Total Execution Time for process

No. of Calls to a procedure in node

No. of Accesses to a variable in node

No. of Accesses to a channel/bus in node

Total Calls to procedure by process

Total Accesses to channel by process

Total Accesses to variable by process

Figure 4: Using Flow Analysis for Performance Estimates

execution time for the entire process. By associating
di�erent quantities with each node corresponding to a
basic block of a process, we can derive other perfor-
mance related estimates (summarized in Figure 4).

For example, if instead of ExecT ime(bi) in Equa-
tion 5, we weigh each basic block by the number of
times it calls a procedure, we will obtain the total
number of calls to the procedure by the entire pro-
cess after
ow analysis. This metric would be useful
in �nding those procedures that are called very fre-
quently by a process and perhaps inlining them for
a faster design implementation. Similarly, we could
determine the total number of accesses to a variable
within a process by associating with each node the
number of accesses to each variable made by the cor-
responding basic block. Variables that are accessed
more frequently are more likely to be grouped dur-
ing system partitioning in the same partition as the
process that accesses it to avoid o�-chip access delays.

Finally, by weighing each node with the number of
accesses to channels/buses in the corresponding basic
block, we can determine the total accesses to those
channels/buses by the entire process. This channel
access frequency estimate is extremely useful while
determining the rates at which data is transferred
over the channel by the process. For example, if
Access(P;C) denotes the number of times a channel
C is accessed by process P (as determined after
ow-
analysis), and Bits(C) represents the number of bits
transferred with each access, then the average rate at
which the process transfers data over the channel, C
can be computed as:

AveRate(P;C) =
Access(P;C)� Bits(C)

ExecT ime(P)
(6)

Such data transfer rate estimates are extremely use-
ful for deciding which channels can be implemented as
a single bus to minimize interconnect costs [8].

7 Experimental Results

The Operator-Use method has been implemented
as part of a system-level design framework [9] and in-
tegrated with a constraint-driven system partitioner
that partitions a system to satisfy area and perfor-
mance constraints.

Figure 5 compares the estimates produced by the
Operator-Use method with the actual number of con-
trol steps obtained by using a mobility-based list

19

14 11

14 13

6 6

Elliptical filter

Linear phase B−spline
 interpolated filter

Differential equation

AR lattice filter

Design example Operator−use
 method

 List
scheduling

Estimation
 Error

16 %

8 %

27 %

SumOf8 (Figure 2)

22

0 %

0 %77

Figure 5: Comparing Operator-Use with List scheduling.

scheduler on the example of Figure 2 and a number of
high-level synthesis benchmarks such as the Elliptical
�lter [10], the Linear phase B-spline interpolated �lter
[11], the Di�erential equation [12], and the AR lattice
�lter [13]. For each benchmark, an identical alloca-
tion was used for both the Operator-Use method and
the list-scheduler. The average error involved with the
control step estimation method is about 11%.

The Operator-Use method can be used to quickly
generate a large number of design points fairly accu-
rately by varying the resource allocation for the de-
sign. For the Di�erential Equation example, Figure 6
shows a plot of the number of controls steps (estimated
by the Operator-Use method and produced by a list
scheduler) against varying resource allocations.

There are two causes of discrepancies in the num-
ber of control steps estimated by the Operator-Use
method and those determined by scheduling. First,
the Operator-Use method operates at a statement-
level granularity and ignores the dependencies be-
tween the operations within a statement. For exam-
ple, if two adders with a delay of one clock cycle are
available, the method will conclude that the statement
A := B + C + D can be executed in one control step.
However, two control steps are needed in reality { one
to compute the partial sum \B + C", and another to
add D to the partial sum. Second, the Operator-Use
method does not account for the possibility of over-
lapped execution of operations which may be in dif-
ferent nodes. In such cases, the Operator-Use method
will usually overestimate the number of control steps
for a behavior.

Control Steps

Operator Use Estimate
List Scheduler

(1x, 1+, 1−) (2x, 1+, 1−) (3x, 1+, 1−) (4x, 1+, 1−)

Resource Allocation

25

5

10

15

20

Figure 6: Operator-Use method: Design space exploration

8 Conclusions

The need to explore large design spaces at the
system level requires rapid estimates of quality met-
rics. In this paper we have presented a method for
rapid estimation of the number of control steps re-
quired to implement a design. Our experiments have
demonstrated that the Operator-Use method can es-
timate the number of control steps with an average
error of 11% as compared to scheduling. Unlike other
approaches, our estimation technique does not per-
form computationally-expensive scheduling nor does it
make simplistic assumptions such as single functional-
unit allocation or summation of delays associated with
operator vertices.

We have shown how the estimation technique can
be extended to incorporate multi-port memory ac-
cesses and pipelined functional-units. We have shown
how
ow analysis can be used to estimate the overall
execution times for complex behavioral descriptions,
and to determine average accesses/calls to procedures,
variables, and channels/buses made by a process. We
believe that this technique is well-suited for rapidly es-
timating performance during design space exploration.

References

[1] E. Lagnese and D. Thomas, \Architectural partitioning for
system level synthesis of integrated circuits," IEEE Trans-
actions on Computer-Aided Design, July 1991.

[2] M. McFarland and T. Kowalski, \Incorporating bottom-
up design into hardware synthesis," IEEE Transactions
on Computer-Aided Design, September 1990.

[3] K. Kucukcakar and A. Parker, \CHOP: A constraint-
driven system-level partitioner," in Proceedings of the De-
sign Automation Conference, 1991.

[4] R. Gupta and G. DeMicheli, \Partitioning of functional
models of synchronous digital systems," in Proceedings of
ICCAD, 1990.

[5] T. Ismail, K. O'Brien, and A. Jerraya, \Interactive system-
level partitioning with Partif," in Proceedings of the Euro-
pean Conference on Design Automation (EDAC), 1994.

[6] S. Bhattacharya, S. Dey, and F. Brglez, \Performanceanal-
ysis and optimization of schedules for conditional and loop-
intensive speci�cations," in dac, 1994.

[7] M. Rahoumi and A. Jerraya, \Formulation and evaluation
of of scheduling techniques for control
ow graphs," in Pro-
ceedings of the European Design Automation Conference
(EuroDAC), 1995.

[8] S. Narayan and D. Gajski, \Synthesis of system-level bus
interfaces," in Proceedings of the European Design and
Test Conference, 1994.

[9] D. Gajski, F. Vahid, S. Narayan, and J. Gong, Speci�cation
and Design of Embedded Systems. Englewood Cli�s, NJ:
Prentice Hall, 1994.

[10] S. Kung, H. Whitehouse, and T. Kailath, VLSI and Mod-
ern Signal Processing. Prentice-Hall, 1985.

[11] D. Pang and L. Ferrari, \Uni�ed approach to general IFIR
�lter design using the B-spline function," in Proceedings of
Asilomar Conference on Signals, Systems & Computers,
1989.

[12] P. Paulin, J. Knight, and E. Girzyc, \HAL: A multi-
paradigm approach to datapath synthesis," in Proceedings
of the Design Automation Conference, 1986.

[13] R. Jain, M. Mlinar, and A. Parker, \Area-time model for
synthesis of non-pipelined designs," in Proceedings of IC-
CAD, 1988.

	CDROM Home Page
	1996 Home Page
	EURO-DAC96 Home Page
	Front Matter
	Table of Contents
	Session Index
	Author Index

