
Mapping Statechart Models onto an FPGA-Based ASIP Architecture

Klaus Buchenrieder
Siemens AG

Corporate R&D
Otto-Hahn-Ring 6

81730 Munich, Germany
Klaus.Buchenrieder@zfe.siemens.de

Andreas Pyttel
Siemens AG

Corporate R&D
Otto-Hahn-Ring 6

81730 Munich, Germany
Andreas.Pyttel@zfe.siemens.de

Christian Veith
Siemens AG

Corporate R&D
Otto-Hahn-Ring 6

81730 Munich, Germany
Christian.Veith@zfe.siemens.de

Abstract
In this paper, we describe a system to map hardware-

software systems specified with statechart models on an
ASIP architecture based on FPGAs. The architecture
consists of a reusable CPU core with enhancements to exe-
cute the behavior of statecharts correctly. Our codesign
system generates an application-specific hardware control
block, an application-specific set of registers, and an
instruction stream. The instruction stream consists of a
static set of core instructions, and a set of custom instruc-
tions for performance enhancements. In contrast to previ-
ous approaches, the presented method supports extended
statecharts. The system also assists designers during
space/time tradeoff optimizations. The benefits of the ap-
proach are demonstrated with an industrial control
application comparing two different timing schemes.

1. Introduction

The preferred way to develop application-specific
reactive systems is either hardware-oriented or software-
oriented. The first approach is overall expensive, includes
the design of custom hardware, and is usually found in
low-volume markets such as military applications. The
second approach involves the low-level programming of
standard microcontrollers, and is geared towards
inexpensive solutions for high-volume markets, such as
electronic consumer goods.

The approach presented here is suitable for hardware-
software implementations. It is based on Application Spe-
cific Instruction Processors (ASIPs) [17], whose recent
popularity relies on results in the area of partitioning [14]
and instruction set selection methods [10]. ASIPs are
microprocessors with flexible architectures. ASIP research
focuses on optimized instruction sets that depend on
constraints and application requirements. One of the most
active areas in Codesign research is the partitioning of
system models into hardware and software modules, and to

generate appropriate interfaces between them. ASIP
research and partitioning research overlap, because
instruction sets imply partitions, and influence the size
and complexity of controllers and datapaths. In turn, they
affect compilers, and the instruction streams they generate
on the software side. Hardware-software partitioning
implies moving functionality between software and
hardware, which is similar to defining a „meta instruction
set„ encapsulating hardware operations.

Our design method is based on extended statechart
models. Statecharts constitute a widely accepted formalism
for the specification of concurrent reactive systems [2].
The central issue of our work is the efficient mapping of
extended statechart models to hardware structures. In
contrast to the previous approaches, our system generates
an application-specific hardware structure and an instruc-
tion stream that is tailored to it. The system is built on
results presented in [13], where a hardware-software design
method based on statechart/activity-chart combinations
was presented. However, the approach was found to be too
inefficient. Also, the chosen buses and protocols made it
difficult to support parallelism. The new approach
overcomes most shortcomings, and enables parallel imple-
mentations of statecharts in a natural way.

Throughout the research we studied the works of
Drusinsky and Harel [5], who describe a method for map-
ping induced statechart trees to programmable devices
using tree layout techniques. In [6], Drusinsky-Yoresh
describes a method to implement statecharts with conven-
tional logic blocks. The method is based on an exclusivity
encoding state assignment procedure, an extended version
of which is part of our own statechart synthesis method.
Both previous methods, however, can only handle basic
statecharts. The available methods to synthesize extended
statecharts need VHDL as an intermediate step: The
Statemate™ code generator produces behavioral VHDL,
which is often not synthesizable. Narayan, Vahid, and
Gajski [8] describe the SpecCharts language, which is a
statechart-based front end to VHDL. The SpecCharts

EURO-DAC ’96 with EURO-VHDL ’96
0-89791-848-7/96 $4.00 1996 IEEE

language is as powerful as extended statecharts, and also
contains communication mechanisms such as ports and
channels. However, the implementation of SpecCharts is
limited by the current state of behavioral VHDL synthesis.

Target
Implementation

Transition
Timings

Statemate™
Database

Simulation

Preliminary
Code Generation

Intermediate
Description

Statechart Model
(extended syntax)

Transition Control +
Datapath Configuration

Statechart Control
Synthesis

Code Generation

Assembly

Port Mapping

Port Encoding

Figure 1. Codesign system architecture.

There is a rich body of literature covering the specifi-
cation, design, and implementation of reactive systems. In
the telecommunication market, SDL [11] is widely used,
which has been recently enhanced with object-oriented
features. There are SDL toolkits featuring a wide range of
code generators. However, to our knowledge no method
exists for hardware/software generation from SDL models.
In [18], Selic et al. describe ROOM, an object-oriented
methodology based on statecharts. ROOM models consist
of concurrent actors, whose behavior is described with
non-concurrent statecharts. Code generators are available
for various target platforms and real-time operating system
kernels. Although applicable to embedded applications,
both these methods aim at distributed systems. The
synchrony hypothesis that statecharts are based on was
introduced by Berry, who introduced Esterel [1], an
imperative programming language for reactive systems.

The paper is organized as follows: In section 2, we
describe the design flow in our system, and present the
underlying ASIP architecture. Section 3 contains our
approach to the generation of hardware structures from
statechart descriptions. In section 4 we present an exam-
ple, and discuss the results we obtained. Section 5 summa-
rizes our approach, and proposes future work.

2. Design flow and ASIP architecture

In the area of ASIPs, there has been tremendous pro-
gress: In [17], Sato et. al. describe a codesign system for
ASIP development, which generates ASIP CPU cores
along with compilers and simulators. The system accepts
a set of C programs as input, which are profiled. The
instruction set architecture is based on GNU‘s abstract
machine model. Specific instruction sets are generated
using integer programming, as described in [10]. Liem et.
al. [16] use pattern matching to generate instruction set
architectures for DSPs. Van Praet et. al. [19] and Leupers,
Marwedel [15] present new approaches in the area of
retargetable compilers for ASIPs, where instruction sets
are extracted from existing architecture descriptions.

2.1. Input models and internal representation

An overview of the ASIP generation system is shown
in Figure 1. It is based on specifications expressed as ex-
tended statechart models. The statechart formalism was
introduced to overcome the limitations of conventional
finite state machines (FSMs): they are sequential in nature
and lack structuring elements. The state set of statecharts
is separated into basic states, AND-states and OR-states.
With AND-states, designers specify concurrency; with
OR-states, they specify hierarchical models. In statecharts,
there are transitions between basic states and also high-
level transitions between hierarchical elements in the
statechart. Figure 2 shows the top-level statechart of a
process control system used as a running example in this
paper. Dashed lines indicate concurrently active AND-
states; states containing other states are called OR-states.

Idle

@BUS_CONTROLLER

TEMP_VALID
/NEW_TEMP
:=TO_BUF

LEVEL_VALID
/LEVEL:=TO_BUF;
if LEVEL>MAX_LEVEL
then STOP_PUMP_1 end if

E@TEMPERATURE

E @OUTFLOW

SHUTDOWN_MSGSHUTDOWN_MSG

OFF

CONTROL

D

POWEROFF

POWERON

A@STARTUP

C

@SHUTDOWN

@AUTOMATIC_RUN

SHUTDOWN_MSG

STARTUP_FINISHED

MANUAL

B

MANUAL

AUTOMATIC

SHUTDOWN_MSG

SHUTDOWN_MSG

ON

SHUTDOWN_FINISHED

Figure 2. Process control statechart.

Conventional statecharts have no designated ports to the
outside world. Consider the process control system
depicted in Figure 7. It consists of pumps, valves, and a
fluid-filled tank, whose level is to be held at a certain

mark. To control actuators, we introduced external ports
for events, conditions, and data items into the model. The
port names are kept as attributes in statecharts. A set of
elements with the same port name form the protocol of
the port. The element type of the port (event, condition, or
data), the direction of the port (input, output, bidirec-
tional), its protocol, and its width all together are called
the type of the port. Conventional statecharts treat events
and conditions as „things that occur„ and „things that
persist„ without consideration for their physical imple-
mentation. Therefore, we added bitwidth attributes for
events and conditions to the formalism. The encoding of
events and conditions will be discussed in section 3.

An interface tool reads the elements of statechart
models, and builds an internal representation. The internal
model is implemented as an attributed tree, as every
statechart induces a tree representation [5,6]. The leaves of
the tree correspond to basic states, internal nodes represent
AND-states and OR-states. Nodes are attributed by lists
representing transition sources and destinations. The tran-
sitions are stored in a list structure. List elements point to
a symbol table containing the symbolic events, con-
ditions, and data items used in the model.

2.2. SCP ASIP architecture

The ASIP architecture SCP (StateChart Processor) pre-
sented here is based on a flexible CPU core architecture
that communicates with statechart controllers, imple-
mented as statechart logic arrays (SLA). An overview of
the ASIP architecture is shown in Figure 3. It is
implemented on a single FPGA with additional RAM.
The CPU core, called TEP (Transition Execution
Processor), consists of a control unit, a configurable
datapath and register file, and RAM for instructions and
data. The instruction stream is derived from the transitions
in the statechart. For every transition, a function with a
specific start address is generated. For degenerate
transitions, the code consists of a single return statement.
The size of the register file varies from three to 16 general-
purpose registers plus zero to 64 constant registers.

The inputs of the SLA are called configuration register
(CR), shown below the SLA in Figure 3. The CR holds
the configuration of the system, consisting of conditions,
current events, and states. The SLA produces two types of
outputs: feedback and addresses. Feedback is gated to the
event and state parts of the CR. Conditions are not fed
back, but updated in software. For all active transitions,
the SLA generates the corresponding starting addresses,
and updates the array of address registers. The number of
address registers corresponds to the maximum concurrency
found in the statechart model. In our example, the
maximum concurrency equals six.

Statechart
Logic
Array

Port
Registers

TEP Control
Register

File

GPR

Const

Cond. Events States

Trans. 1

Trans. n

EN

Data

Conditions

Events
Event Bus

Condition Bus

Memory
Datapath

ALU
+

Custom

PC

IR

EN

Figure 3. ASIP architecture.

The instructions of the CPU core are divided into basic
and custom functionality, and are distinguished by the two
highest bits in the opcode. Basic functionality includes
load/store operations, branch instructions, shifting, and
arithmetic/logical operations. The custom instructions are
determined in an interactive process using a combination
of simulation and analysis. Custom instructions are
implemented as separate elements in the datapath. For
custom instructions, any combination of arithmetic,
logical, and shifting operations is allowed. Designs are
only limited by the sizes of target FPGAs. The datapath of
the TEP could be built exclusively from custom elements
to speed up the system. On the other hand, a minimal
solution may be generated, if the timing characteristics are
consistent with the requirements.

An important part of the ASIP architecture are port in-
structions. Our architecture supports up to 64 ports, of
which 16 may be external. There are data ports, and also
ports for events, conditions, and states, which are all
available to the TEP. These ports are connected to the CR.
Thus, it is possible to alter statechart configurations per
hardware (using the SLA) or per software (generating port
instructions for the TEP). Event and condition ports are
bidirectional. State ports are input ports for the TEP, be-
cause only the SLA can write to the state parts of the CR.

The SCP operates in so-called „configuration cycles„. A
cycle starts with the TEP reading external events and
conditions into the corresponding parts of the CR, and
then enabling the SLA. The SLA produces the next
configuration, the addresses of the active transitions, and
enables the TEP. If no transition can be taken, all address
registers are reset. Depending on the contents of the
address registers, the TEP either executes the active tran-
sitions, or starts a new configuration cycle. Active tran-
sitions will often generate a new configuration. Therefore,
the TEP enables the SLA after their execution by enabling
the CR flip-flops. These „micro-steps„ are part of the
semantics of statecharts, and described in [3,7]. Note that
the transitions of a micro-step are executed serially,

although they are described as being concurrent in the
model. This is legal, because the execution of concurrent
transitions may not depend on an order according to the
semantics of statecharts (if it did this would imply the
presence of race conditions). With the execution of micro
steps, it is possible to run into endless loops, which no
amount of static analysis is able to detect. To our knowl-
edge, data flow analysis of statecharts is unsolved, even
more so for the extended statecharts of our approach. Thus,
simulation of the model is the only recourse.

2.3. Instruction selection and code generation

After building the internal tree representation, we per-
form a preliminary code generation step, which provides
timing information for the simulation of the model. For
every transition, the code generator produces a code
sequence assuming a minimal architecture with only three
registers, no constant registers, and no custom instruc-
tions. In our current implementation, our timing model is
very conservative, and assigns six cycles, the length of the
longest instruction, to every instruction except memory
operations, which take nine cycles. Additional penalties
are not required, as the system runs at 8 MHz. Thus, the
TEP is not slowed down by the memory bus. During
preliminary code generation, states, events, and conditions
are mapped to eight-bit wide symbolic ports. To illustrate
the use of the ports, consider the ten conditions used in
our example. They are mapped to two ports, the first fully
used, in the second only the lower two bits being used
(Figure 4). To set a condition in the first set, the port is
loaded, an OR-operation is performed with the desired
condition bit high, and the port is written back.

Using the timing information gained during preliminary
code generation, the most time-critical configuration cy-
cles can be found by simulating the model. Note that the
length of a configuration cycle is the sum of the length of
its individual micro-steps. Static analysis techniques
would be preferred, but this problem has been shown to be
NP-complete [4]. The critical cycles can be sped up by
generating custom instructions, and by moving variables
and constants to registers. The system points out the data
items and operations that need consideration. Currently,
there is no data flow analysis in our system. Therefore,
designers must improve transitions similar to assigning
„register„ declarations to variables in the C language.
When all timing requirements are fulfilled, we perform the
final code generation. Register variables and constants are
assigned a final GPR or constant register. The remaining
variables and constants are mapped to memory locations,
and desired custom instructions are inserted. All ports
(data, events, conditions, states) are mapped to port ad-
dresses, which completes the generated assembler code.

Pump-1 Pump-2 Valve-3 Heater

i=Buf-Index
Msg-Buf(i)
= /= 0

Level <= >
CritMax

Level >= <
Min-Level

Bus Controller Messages

Start/Stop/Timeout Events

New-Temp
>= 65

Level <
CritMin

Temp-Valid,Level-Valid

Startup/Shutdown

Poweron/Poweroff

Condition Ports

Event Ports

Data Ports

P0: 8bit IN (TO-Buf) P3: 4bit OUT (Out-Buf)
P1: 1bit OUT (Pump-1-Buf) P4: 4bit IN (Bus-Buf)
P2: 1bit OUT (Pump-2-Buf) P5: 4bit OUT (Heat-Buf)

C1 High

C1 Low

C2 Low

C2 High

E1 High

E1 Low

E2 High

E2 Low

Exclusivity Sets
{Off, Normal, Level_Too_High, Some_Error, Manual_Run,
 No_Pump, One_Pump, C}
{A, Still_Running, Partial_Down, Fatal, Almost, B}
{D}
{BC.Idle, Receiving, Start_Send, No_Data, Send}
{T.Idle, Do_Heat, Level_Ready, Valve_3_Open, Valve_3_Closed,
 Error, O.Idle}
{E, F, TO.Idle}

Figure 4. Port layout, exclusivity sets.

3. Statechart synthesis

Previous attempts at synthesizing statecharts only sup-
ported basic statecharts that consume and produce primi-
tive events similar to conventional FSMs. The tree imple-
mentation method [5] poses difficult communication and
timing problems, as pointed out in [6] and [13]. The PLA-
style implementation of [6] introduces the problem of un-
specified inputs which result in illegal transitions. The
presented method extends the results of [6] by supporting
conditions, encoded events, and complex actions. It also
adds extra hardware to avoid problems caused by unspeci-
fied inputs. High-level transitions are handled by transfor-
mations as illustrated in Fig. 5. After the transformations,
there are only transitions from and to basic states.

A
B

C
D

A
B

C

DB

CA
E1 E2

Figure 5. High-level state- Figure 6. Unspecified
chart transformations. inputs.

The implementation of statechart controllers is similar
to the implementation of controllers based on FSMs. It
consists of a state register - the configuration register CR -
and a logic array (SLA). The SLA is synthesized using
SIS [9] and TOS [12]. The remaining question is how to
encode the CR. The problem of finding efficient and ad-
missible encodings for the states of a configuration in a
statechart has been discussed in [6]. The problem is two-
fold: An encoding of a configuration must uniquely iden-
tify the concurrent states it is composed of. On the other
hand, combining the code words of individual states must
produce a unique configuration encoding. The general
problem of optimal statechart configuration assignments
amounts to reachability analysis of statecharts, which is
infeasible. It is obvious that concurrent states must be rep-
resented in non-overlapping parts of the configuration
word. States that can never be concurrent, however, can
share a portion of the configuration word. Therefore, it is
possible to split the states into concurrent exclusivity
sets, where the elements of each exclusivity set are
pairwise non-concurrent. A statechart with a maximum
concurrency of n requires n exclusivity sets. Our example
has a maximum concurrency of six requiring six ex-
clusivity sets (Figure 4). In [6], an algorithm is given to
find the largest exclusivity set in a statechart. We propose
a simpler greedy algorithm, which adds states to
exclusivity sets as it encounters them. Drusinsky-Yoresh
presents an encoding of 10 bit total length for his
example. For comparison, our algorithm produces an
encoding of 12 bit total length for that example. For our
example, the state encoding step results in a code word of
4+3+1+3+3+2 = 16 bit.

m2

m1

M1

M2

Valve1 Valve2

Valve3

Pump1 Pump2

Heat

Temperature

SCP

Level
System
Bus

Figure 7. Process control application

Conditions are encoded by allocating one bit for each
basic condition. This results in 10 bit for our example
(Figure 4). The method to encode events uses exclusivity
properties, similar to the state encoding: The events on a
port can share the same portion of the event code word.
Internal events of the statechart are exclusive to external

events, because they occur in micro-steps. Concurrent
internal events can only be generated by states in different
exclusivity sets. For our example, the results of the event
encoding algorithm are shown in Figure 4.

In [6], the problem of „unspecified inputs„ for
statecharts is mentioned. Consider the example depicted in
Figure 6, which has two exclusivity sets {A,B,Dummy}
and {C,D,Dummy}. If E1 is received in configuration A-
C, we expect B-C to be the next configuration. However,
the SLA will generate B-Dummy, because no input was
specified for the second exclusivity set. For statecharts, the
detection of unspecified inputs is NP-complete in the
number of inputs [4]. The trick here is not to try to
determine a priori which transitions have to be activated
by the SLA, but to detect after the fact which transitions
actually were activated. For that purpose, we introduce a
set of enable signals in the SLA. As every transition leads
from and to basic states, every transition „influences„ one
or more exclusivity sets. For the influenced exclusivity
sets, the enable signals are set, for the others, they are
reset. In the example, the transition on E1 generates an
enable signal for the first exclusivity set, and the
transition on E2 for the second. Thus, no enable signal
will be generated for the second set. Therefore, the falsely
generated dummy state will not be gated to the CR, and its
original content, C, will remain intact. The enable signals
can be computed easily from the statechart tree.

4. Example and results

As an example, we built a process control system for
chemical engineering. Two chemicals are mixed in a tank
and heated to a certain temperature. The product leaves the
tank through an outflow valve. An overview of the appli-
cation is shown in Figure 7. A part of the adjunct
statechart model is presented in Figure 2. The SCP‘s ports
control two pumps, three valves, measure the temperature,
control the heater, and measure the level of fluid in the
tank. Normally, the system runs in automatic mode, in
which it keeps the level of liquid between the marks m1
and m2, and the temperature at 65 degrees Celsius. In
emergencies, the operator sends a command to the
controller to gain complete control over the system until
the situation is corrected or the system is shut down.

The application´s SLA has 39 inputs and 71 outputs;
the CR is therefore 39 bits wide. There are 10 condition
inputs, 13 event inputs and 16 state inputs. The layout of
the CR is shown in Figure 4. The SLA has 29 feedback
outputs (13 events, 16 states), six enable outputs to the
state parts of the CR, and 36 address outputs for six ad-
dresses. There are 51 transitions in the application, there-
fore six bits are required to encode the transitions. The
implementation of the SLA takes 78 CLBs on a Xilinx

®

XC4000. We generated a fast and a slow version for the
implementation of the example´s TEP. Thus, the total
size of the SCP varies between 324 and 375 CLBs,
depending on the desired number of registers and custom
instructions. Fig. 8 shows the schematic of a custom
instruction generated for the fast implementation. The
timing results of the application are summarized in Table
1.

Figure 8. Custom instruction (-1/2*X+65).

Implementation Fast Slow

Shortest Transition
(cycles) 9 21

Longest Transition
(cycles) 330 441

Average Transition
Length (cycles) 29 43

Total Instruction
Length (cycles) 1473 2178

Critical Configur.
Length (cycles) 854 1364

Hardware Size
(CLBs) 375 324

Table 1. Process control system results.

5. Conclusion and future work

In this paper, we presented an approach to map hard-
ware-software systems specified with extended statechart
models onto a single-chip FPGA-based ASIP architecture.
We found that our codesign method is suitable for appli-
cation-specific control systems with real-time constraints.
The results show that industrial applications, such as the
control of a chemical process, fit on a single-chip FPGA.
This is a significant result, because many industrial con-
trollers can be replaced by a single-chip solution with our
approach. We have enhanced existing statechart synthesis
methods to support extended statecharts, and to produce
semantically correct implementations. Currently, we work
on supporting the history mechanism of statecharts. Fu-
ture work also includes parallel implementations of the
TEP, and improved timing analysis and area estimation.

6. References

[1] G. Berry, P. Couronne, G. Gonthier: Synchronous
Programming of Reactive Systems: An Introduction to
ESTEREL, Report Inst. Nat. Recherche Inf. Autom., Le
Chesnay, France, March 1987

[2] D. Harel: Statecharts: A Visual Formalism for Complex
Systems. Sci. Comp. Prog., vol. 8, pp 231-274, 1987.

[3] D. Harel, A. Pnueli, J.P. Schmidt, R. Sherman: On the
Formal Semantics of Statecharts. Proc. Symp. on Logic
in Comp. Sci., p. 54-64, 1987.

[4] D. Drusinsky: On Synchronized Statecharts. PhD Thesis,
Dept. of Comp. Sci., The Weizmann Inst. of Sci., 1988.

[5] D. Drusinsky, D. Harel: Using Statecharts for Hardware
Description and Synthesis. IEEE Trans. on CAD, vol. 8,
pp 798-807, July 1989.

[6] D. Drusinsky-Yoresh: A State Assignment Procedure for
Single-Block Implementation of State-charts. IEEE
Trans. on CAD, vol. 10, No 12, December 1991.

[7] A. Pnueli, M. Shalev: What is in a Step: On the
Semantics of Statecharts, Proc. Int. Conf. on Theor.
Aspects of Comp. Softw., 1991.

[8] S. Narayan, F. Vahid, D. Gajski: System Specification
with the SpecCharts Language, IEEE Design and Test of
Computers, December 1992.

[9] E. M. Sentovich, K. J. Singh, C. Moon, H. Savoj, R. K.
Brayton, A. Sangiovanni-Vincentelli: Sequential Circuit
Design Using Synthesis and Optimization, Proc.
ICCD´92, pp 328-333, 1992.

[10] A.Y. Alomari, M. Imai, J. Sato, N. Hikichi: An integer
programming approach to the instruction set selection
problem, IEICE Trans. Fundam. Electr. Commun.
Comput. Sci. (Japan), vol. E76-A, no. 10, p. 1849-57,
Oct. 1993.

[11] O. Haugen, R. Braek: Engineering Real-Time Systems. An
Object-Oriented Methodology Using SDL, Prentice-Hall 1993

[12] M. Pilsl: TOS 1.5 Reference Manual, Siemens AG,
Germany, November 1993.

[13] K. Buchenrieder, C. Veith: A Prototyping Environment
for Control-Oriented HW/SW Systems Using Statecharts,
Activity-Charts and FPGA‘s, Proc. Euro-DAC, 1994.

[14] D. Gajski, F. Vahid, J. Gong: A Binary-Constraint Search
Algorithm for Minimizing Hardware During Hardware-
Software partitioning, Proc. Euro-DAC, 1994.

[15] R. Leupers, P. Marwedel: Instruction set extraction from
programmable Structures, Proceedings EURO-DAC '94
with EURO-VHDL '94, p. 156-6.

[16] C. Liem, T. May, P. Paulin: Instruction set matching and
selection for DSP and ASIP code generation, Proc. of the
EDAC-ETC-EUROASIC, Paris, France, 1994, p. 31-37.

[17] J. Sato, A.Y. Alomari, Y. Honma, T. Nakata, A. Shiomi,
N. Hikichi, M. Imai: PEAS-I: A hardware/software
codesign system for ASIP development, IEICE Trans.
Fundam. Electron. Commun. Comput. Sci. (Japan), vol.
E77-A, no. 3, p. 483-91, March 1994.

[18] B. Selic, G. Gullekson, P. T. Ward: Real-Time Object-
Oriented Modeling, Wiley, 1994.

[19] J. Van Praet, G. Goossens, D. Lanneer, H. De Man:
Instruction set definition and instruction selection for
ASIPs, Proc. of the Seventh International Symposium on
High-Level Synthesis, p. 11-16, 1994.

	CDROM Home Page
	1996 Home Page
	EURO-DAC96 Home Page
	Front Matter
	Table of Contents
	Session Index
	Author Index

