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Abstract

COMET is a system-level C and VHDL hard-
ware/software codesign methodology. This process is made
possible through the use of a rules file which adds timingand
area constraints to the C and VHDL descriptions that the
languages do not support. The methodology of COMET is
functional and has been tested. A neural network program
has been implemented to perform automatedhardware/ soft-
ware partitioning.

1. Introduction

The state of industrial computer-aided engineering(CAE)
tools used for hardware and software design is currently
at the structural level for hardware and the compiler level
for software. Industry has just begun to release behavior
synthesizers for computer hardware, but many problems
still exist. Much research has been done [10], but more
is still needed to solve these problems. There is also a
need for the next level of research involving partitioning the
system-level description into hardware and software as well.
There are many ways of approaching this research and many
tradeoffs to consider [9] [2] [11] [5].

1.1. Motivation

Figure 1 illustrates a typical top-down design process.
First, a conceptual system definition of the product is cre-
ated. This definition can be graphical, textual, symbolic
or any combination of these methods. Next, the defini-
tion is converted into a system representation. Once we
have a system representation, the design is ready for hard-
ware/software codesign. The codesign objective is to optim-
ally designate some parts of the system into software com-
ponents and other parts into hardware components.

Traditionallythe engineer has done everything from writ-
ing the conceptual system description to partitioning the
software and hardware, often using ad-hock methods such as
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Figure 1. Design abstraction and our focus.

past experience and knowledge of current design practices.
We are proposing a hardware/software COdesign METhod-
ology(COMET) that is capable of performing hardware and
software partitioning to reduce the overall design time of a
system.

1.2. Contributions of our Research

Our approach to hardware/software codesign has two ele-
ments: specification and codesign partitioning methodo-
logy. The specification methodology uses current program-
ming languages and a rules file to fully describe the sys-
tem. We assume that all software components are written in
standard C and we assume that all hardware components are
written in standard VHDL. The rules file consists of state-
ments about the system which neither C nor VHDL can de-
scribe and codesign constructs to aid in the process.

The codesign partitioning methodology uses the sys-
tem defined in C, VHDL and the rules file to partition
the system description along function boundaries into op-
timal hardware and software partitions. Once we have stat-
istics on each partition, COMET will suggest some hard-
ware/software solutions, and report all the partition inform-
ation to the engineer in a spreadsheet format. To perform
automated codesign partitioning, we developed a neural net-
work partitioner that determines hardware/software splits
based on desired goals.

The rest of this paper will continue with section 2 discuss-
ing related work in the hardware/software codesign field and
their differences from the COMET methodology. Section 3
will discuss the basis of the COMET methodology with em-
phasis on the estimators and the rules file. Section 4 will de-



scribe COMET’s methodology with emphasis on codesign
partitioning, interfacing, and the partitionevaluator. We will
finish with section 5 by demonstrating the results we have
generated thus far and conclude with the status of our re-
search.

2. Related Work and Their Differences

There is currently much research being done in the area of
hardware/software codesign. This section will review a few
of these major research efforts, and their differences from
COMET.

2.1. Related Work

The Cosyma hardware/software codesign system [2]
starts with the system described in Cx. Cx is a superset of
ANSI C where the extensions are timing, task concepts, and
task intercommunication. The designer must describe the
behavior of the hardware for possible implementation as a
C function. The Cosyma tool’s internal representation of the
system is described by ES (Extended Syntax) graphs. Par-
titioning and codesign occurs in the ES graph form and the
results are converted to C for software and HardwareC for
hardware. How the system is partitioned remains an open
question for the Cosyma system; however, their direction is
towards an iterative partitioning method. As for software
estimations, partitions are compiled and the object code is
simulated with an RTL (register-transfer-level) simulator.
The hardware estimations are performed by synthesizing the
hardware partitions and also feeding the results into the RTL
simulator.

The hardware/software codesign environment created by
[9] uses Verilog for the hardware description and C for the
software description. The input into their codesign tool con-
sists of a complete functional description of the system, a
technology description and performance goals. Partitioning
the input system is done by breaking it up into nontrivial se-
quences of operations. Each partition considered for hard-
ware is memory-mapped with an interrupt completion line
back to the controlling software. Software and hardware es-
timations are done on a ”cycle per input byte” comparison
with the parameters of cost and performance as the metrics
for codesign. The output of the tool is C software partitions,
Verilog hardware partitions and standard parts descriptions.

The Codesign Finite State Machine(CFSM) [1] is a rep-
resentation of a hardware/software codesign system. The in-
tent is to convert high level behavior languages like VHDL,
SpecCharts and others into a CFSM representation. Once
the system is in a CFSM, partitioning is done in an iterat-
ive fashion based on design metrics [1]. After partition-
ing, software is mapped intoS-graphs which are technology-
independent representations of the software components.
Then the S-graphs are mapped into portable C code for
compilation. The hardware partitions are converted from

CFSM’s into an abstract description. This description is
then logic synthesized to generate the final synchronous
hardware description.

SpecCharts [3] is another system specification language
for hardware/software codesign. The researchers have de-
veloped estimators for both software and hardware. Their
software estimator is based on a generic processor model
method of estimation [4]. Their hardware estimators can es-
timate based on many models such as a pin model, an area
model, and a performance model [10]. Through the use of
a graphical interface and graphical representations of their
estimations, hardware/software codesign can be done in an
interactive environment.

2.2. COMET Di�erences

COMET uses the C and VHDL languages directly ( along
with the rules file) to perform hardware/software codesign;
whereas, other tools make use of intermediate languages
that are not so universally know and have no commercial
synthesis tools to support them. The problem with using
these languages is that eventually it has to be converted to
C and some hardware description language like VHDL for
compilation and synthesis. C and VHDL are well known
languages and commercial synthesis tools already exist for
them. These factors will increase the quality of the codesign
result while preserving the original C and VHDL system de-
scription.

Another important difference is that our codesign process
does not require a functionally complete description to per-
form hardware/software codesign. Other codesign systems
require functionally complete descriptions to perform the
codesign because every partition has to be estimated. With
COMET, a VHDL or C stub can be created for those parti-
tions for which functional code cannot be generated, or has
yet to be generated.

Also, COMET can perform substitutional operations on
partitions where multiple options are available via the rules
file which others cannot do. This way we believe that we can
truly analyze the hardware/software tradeoffs of particular
options for a system.

Next, interfaces between hardware and software are con-
sidered important to the codesign process. Thus COMET
provides greater control of the interface methods via the
rules file. This removes restrictions to the possible commu-
nication methods between partitions. Some other systems
have not fully addressed the importance of interfacing hard-
ware and software partitions.

The codesign of a system can be an iterative ”design-
codesign-simulate-improve” loop where the original system
is refined until a quality system is achieved. By describing
the system in an intermediate language it incurs an iterative
”design-codesign-simulate-improve” loop in that language,
but then subsequent iterations must be done in the synthesis



languages. This is undesirable for two reasons: the design
cycle of the product increases and in the end there are two
system descriptions to manage. The most important differ-
ence is that all of these aspects are not found in any one other
tool.

3. The Basis of COMET

The approach one takes to hardware/software codesign is
important to its quality. Figure 2 illustrates our approach.
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Figure 2. Road-Map of the COMET tool.
Our codesign process starts with C, VHDL and a rules

file. The rules file will contain the engineering specifications
for the system including the design specifications and any
engineering scenarios that are applicable. Hardware timing
information can be embedded in the VHDL code or in the
rules file. The results of the codesign process are the original
C/VHDL source, the time and area estimations in spread-
sheet format and any C/VHDL code that is generated.

3.1. COMET Rules File

The rules file is the cohesive element between the soft-
ware C and the hardware VHDL. This section will discuss
some of the important features of the rules file.

One feature is the substitutional constructs
that it provides. These constructs allow functions to
have substitute time and area values for hardware and
software partitions without affecting the simulation. For
instance, in an answering machine application, it may
not be known whether the recording media is an audio
cassette or EEPROM. There could be a function called
”write message to media()” which prints a message that a
notice has been written. If we already knew the time and
area estimations available for the audio cassette and the EE-
PROM versions, the estimations would be entered as shown
in Figure 3.

To take advantage of reusable pre-existing components,
libraries are a necessity. There are rules allowing for the in-

.write_message_to_media = {EEPROM,audio_cassette};

.write_message_to_media.:hardware_only;

.EEPROM.:hardware.default.area = 100000 transistor;

.EEPROM.:hardware.default.timing = 10 msec;

.audio_cassette.:hardware.default.area = 10000 transistor;

.audio_cassette.:hardware.default.timing = 1 sec;

Figure 3. Answering Machine Example.

clusion of such a library. The syntax is similar to C where
”#include ”/home/library/old useful.rules”” will refer to a
physical location for an included library component and
”#include <previous design.rules>” looks at an environ-
ment variable for the included library path for the library
component.

.fft:hardware_to_software_interface = {FIFO_type,shared_mem};

.fft:software_to_hardware_interface = {simple_handshake};
(a)

.printf.:software_only;
all_hardware.queue.:hardware_only;
stimulus..:simulation_only;

(b)

Figure 4. Interface and exclusion constructs.
Interfaces between software and hardware are specified

via the rules file (Figure 4a). The engineer can select a few
methods for an interface and the COMET tool will choose
the best of those methods. There are also rules which force
partitions to be software only, hardware only, or simulation
only (Figure 4b). The simulation only rule will exclude any
partitions from being considered in the codesign process.

3.2. The Estimators

3.2.1. COMET Pro�ling

The main objective of profiling is to provide informa-
tion about the branching and iterative constructs of the C
and VHDL system to the estimators. Since the engineer will
be dealing with C and VHDL source, the profile informa-
tion should relate back to that source. The ideal profiler for
COMET is one that would just record the number of times a
basic block of C or VHDL was executed. It would also re-
port its findings in a way that fits into the rules file format.
We have examined public domain profilers and determined
that what our tool needs is not available. So, we have de-
veloped our own C/VHDL profiler. This profiler adds the
necessary code to VHDL and C such that when the system
is re-simulated the number of iterations of each profiled line
of VHDL and C is extracted. By knowing how many times
a line of C or VHDL is executed, we can compute the aver-
age probability for branches and the number of iterations for
loops.

3.2.2. The software estimator

The method of software estimation we are proposing is
a hybrid of both the established processor specific estimator
and the generic processor estimator. [4] Figure 5 illustrates
our method of software estimation.

We propose the use of processor-specific compilers with
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Figure 5. COMET software estimation.

a generic estimator. It turns out that the GCC compiler is
re-targetable and supports a host of target processors. GCC
also provides facilities of attaching debugging information
to the assembly that the compiler produces. This debug-
ging information relates the single line of C code to the num-
ber of instructions required to accomplish that code. We
use this debugging option to create processor-specific as-
sembly with relationships to the C code from which it was
generated. Thus, we have created an automated tool to ab-
stract the assembly instructions. This tool will convert the
processor-specific instructions into Time, Bytes and Instruc-
tion information for each line of C. Thus, we call it the TBI
generator. This effectively removes the specificity of the
processor, allowing for the use of a generic software estim-
ator.

Instead of using the assembly instructions for estimation,
we use the C source code and the output of the TBI generator
to do the same thing. The benefit of using C over assembly
is that we do not lose any information about the C constructs
that are lost when compiled. When profiling is used to en-
hance the estimators, the information about the looping con-
structs is more visible in C versis the assembly counterpart.
Since the engineer is familiar with C and VHDL loopingand
branching constructs, there is an understanding benifit to es-
timation in this fashion.

3.2.3. The hardware estimator

COMET uses an estimator based on a data flow graph
(DFG) approach of hardware modeling. This is analogous to
high-level or register-transfer-level(RTL) synthesis except
COMET stops short of the synthesis process. Our approach
to hardware estimation is to convert the VHDL into a DFG
representation while considering the profiled looping and
branching constructs. Afterwards, the DFG representation
is scheduled and functional units are allocated to compute
an estimate.

The VHDL-to-DFG program converts VHDL processes,
functions, and procedures into a DFG format similar to

that used in SYNTEST. [7] Our DFG format differs from
SYNTEST’s in that ours requires the computation of the
complete execution time for comparison to its software
counterpart.

Scheduling is done in the same manner as SYNTEST. [7]
After scheduling and allocation, the data path is examined to
determine the average execution time of the original VHDL
partition. We are planning to use the layout estimation tech-
niques found in [6] to produce area estimates for codesign
partitions.

4. Codesign Methodology of COMET

With the basics of the rules file and estimations already
explained , we can define the method by which COMET will
perform hardware/software codesign. The following are the
main steps that COMET will follow to achieve the codesign
process.

a) Unclustering C/VHDL partitions

b) Interfacing codesign partitions

c) Estimating hardware and software partitions

d) Automatically evaluating hardware/software partitions

The codesign process starts with unclustering the C
and VHDL system. Section 4.1 will discuss the method
COMET uses to uncluster C and VHDL into codesign par-
titions. After unclustering, the interfaces for each function
are gathered or generated. Interfaces are discussed in Sec-
tion 4.2. COMET will then estimate each partition in both
hardware and software. The generated results are gathered
for evaluation by COMET and the engineer. COMET sends
the gathered data to the codesign partition evaluator which
then suggests a hardware/software codesign partition. The
codesign partition evaluator is discussed in Section 4.3. The
codesign process can be iterative by going through steps a)
through d) again with either new rules informationor a more
robust system definition.

4.1. COMET Pre-Partitioning

The COMET methodology uses a function-level pre-
partitioning model for unclustering codesign partitions. In
essence, the pre-partitioner will uncluster the functions
within the C and VHDL descriptions into unique C and
VHDL partition files. Each resulting pre-partition file con-
tains only C or VHDL code. If no rules information exists,
each pre-partitioned function is then passed to the estimat-
ors. For VHDL, the hardware estimator will only estimate
sequential statements like functions, procedures, and pro-
cesses. For C, the entire language can be estimated.

Due to function-level pre-partitioning, there is always
an initial partition: the initial description of the system.
This provides a basis point for measuring the quality of the



codesigning system. This also allows for the rules file to
easily substitute or remove partitions from the codesign pro-
cess.

4.2. COMET Partition Interfacing

Dealing with the interfaces between hardware and soft-
ware partitions is an important issue in hardware/software
codesign. There are two basic types of interfaces:

� The interface between a hardware partition that is con-
trolling a software partition.

� The interface between a software partition that is con-
trolling a hardware partition.

The reason we do not consider hardware/hardware and
software/software interfaces is that they are inherent within
C and VHDL already. For VHDL, communication between
signals, variables, and functions are based on their con-
nectivity. If two signals are connected, they can commu-
nicate as long as the target signal can accept values while
the source signal can supply a value. For C, the soft-
ware/software interface uses the processor’s stack to push
variables before calling a function and to pop the variables
after the called function completes. Therefore, we need only
to consider the hardware/software and software/hardware
interfaces.
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In Figure 6 we introduce notation for the representation
of the interface between two partitions. We start by labeling
the current partition for interface consideration as ”I.” The
partition that ”I” is interfacing to is partition ”J.” The in-
terfaces between partitions ”I” and ”J” consist of software
and hardware interfaces. For a hardware partition ”I” which
is controlling a software partition ”J” (Figure 6), the in-
terfaces are HH(i,j) which stands for Hardware controlled
Hardware Interface from partition ”I” to partition ”J”; and
HS(i,j) which stands for Hardware controlled Software In-
terface from partition”I” to partition ”J.” For a software par-
tition ”I” which is controlling a hardware partition ”J”, the
interfaces are SH(i,j) which stands for Software controlled
Hardware Interface from partition ”I” to partition ”J”, and

SS(i,j) which stands for Software controlled Software Inter-
face from partition ”I” to partition ”J.”

Any type of interface is allowed wheither synchronous
or asynchronous. All that COMET requires is either a cost
estimates passed within the rules file or a C or VHDL rep-
resenting the interface desired. At present, if no interface
information is passed in the rules file, COMET will supply
memory-mapped interfaces between the hardware and soft-
ware partitions.

4.3. Hardware-Software Partition Evaluator

Once the estimators compute the time and area metrics
for the partitions and the interfaces, we can begin to decide
which partitions are better implemented in software or hard-
ware. The evaluator tries to maximize the flexibility of a
design by placing only the necessary partitions in hardware.
The method we are investigating now is a neural network
solution. The neural network uses McCulloch-Pitts binary
neuron model [8] for the placement of each codesign parti-
tion: 0 for hardware, 1 for software.

Due to the functional partitioning of the system we can
represent the connections of a system in what we are defin-
ing as a call graph. A call graph node represents a codesign
partition.(Figure 7) The directed arcs show a function call
from one codesign partition to another. The number of times
a function calls a partition is the weighted value for that dir-
ected arc. Each node has an associated average execution
time excluding the time from its called function.
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Figure 7. Decorated COMET call graph.
To compute the average execution of a given call graph

we can use the following equations.

AEtotal =

PX

i=0

TNEi (1)

TNEi =

PX

j=0;j!=i

(Iterji � (NEi +

X
`
j �Xi � (THHji + THSji � clk) +

Xj �X
`
i � (TSHji + TSSji � clk))) (2)



NEi = Xi � (clk � Si) +X
`
i �Hi (3)

At present, the partition evaluator will try to meet the
goal of a specific execution time and the number of memory
bytes required by the system. Our reasoning is based on the
micron size of transistors. As the transistor size decreases
to below .4 microns, the custom ASIC becomes pad limit-
ing leaving ample space for custom hardware, an embedded
processor and memory. Now the issue comes down to how
much memory can be placed in the ASIC versus the cus-
tom hardware. Therefore, knowing the size of the embed-
ded program become a major issue. To compute the aver-
age bytes for a functional node, we can extract the number
of bytes for a given partition from the execution time equa-
tions. This produces the following equations.

ABtotal =

PX

i=0

TNBi (4)

TNBi =

PX

j=0;j!=i

(Calleeji � (X
`
j �Xi �BHSji +

Xj �X
`
i �BSSji)) (5)

NBi = Xi �Bi (6)

With these equations (1-6), we can implement a neural
network hardware/software partitioner to meet the timing
and memory byte goals. The neural network operates in an
iterative fashion. Each iteration computes a new energy dif-
ference for that neuron and adds that to the current binary
neuron input. Based on the updated input the output is set
accordingly. Consecutive iterations occur in the same fash-
ion until the system stabilizes a solution.

5. Results and Status

5.1. Chroma-key Algorithm

The Chroma-key algorithm is used by [2] to benchmark
their Cosyma codesign system. The algorithm is used in
high-definition television studio equipment. The first of
the four implementation columns is the initial partition im-
plementation that is completely implemented in software.
This implementation resulted in a 93.51505 second execu-
tion with 51753 bytes. The second column of implementa-
tions has a goal of 1 second for execution and a goal of eight
kilobytesof memory. The result was 11.214297 seconds and
10083 bytes. The third column of implementations has a
goal of 20 seconds for execution and a goal of sixteen kilo-
bytes of memory. The result was 27.155764 seconds and
15994 bytes. The forth column of implementations has a
goal of 70 seconds for execution and a goal of thirty-two
kilobytesof memory. The result was 78.253448 seconds and
31968 bytes. The results were generated assuming a 20Mhz
68HC11 processor. The interfaces were assumed memory
mapped for software-controlled hardware and ISR memory
mapped for hardware-controlled software.

5.2. Status

The main goal of the chroma-key experiment was to
show that the methodology of COMET is operational. This
goal was achieved with approximately 95% automation. All
the components of COMET, including the neural network
partition evaluator, have been implemented in a preliminary
form. Given a profiled system, COMET can pre-partition
the system, generate hardware/software interfaces, estimate
the hardware and software costs, gather the estimated res-
ults in an integrated form and suggest a hardware/software
partition. The COMET tools are implemented in both a
command-line form and a common graphical user interface.

Also, work is underway to verify the quality of the estim-
ators as well as adding area estimation as a codesign para-
meter. We also expect complete automation of the COMET
codesign methodology soon. Also, in the workings, is an in-
dustrial system design to verify the functionality and useful-
ness of the COMET methodology in a market-driven indus-
trial atmosphere.
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