COMET: A Hardware-Software Codesign M ethodol ogy*

Michael J. Knieser
Department of Computer Engineering
Case Western Reserve University
Cleveland, OH 44106
knieser @al pha.ces.cwru.edu

Abstract

COMET is a systemleved C and VHDL hard-
ware/software codesign methodology. This processis made
possiblethroughthe use of a rulesfilewhichaddstimingand
area constraints to the C and VHDL descriptions that the
languages do not support. The methodology of COMET is
functional and has been tested. A neural network program
has been implemented to performautomated hardware/ soft-
ware partitioning.

1. Introduction

Thestate of industrial computer-aided engineering(CAE)
tools used for hardware and software design is currently
at the structurd level for hardware and the compiler level
for software. Industry has just begun to release behavior
synthesizers for computer hardware, but many problems
dtill exist. Much research has been done [10], but more
is dtill needed to solve these problems. There is dso a
need for the next level of research involving partitioningthe
system-level descriptioninto hardware and softwareaswell.
There are many ways of approaching thisresearch and many
tradeoffsto consider [9] [2] [11] [5].

1.1. Motivation

Figure 1 illustrates a typical top-down design process.
First, a conceptua system definition of the product is cre-
ated. This definition can be graphical, textual, symbolic
or any combination of these methods. Next, the defini-
tion is converted into a system representation. Once we
have a system representation, the design is ready for hard-
ware/software codesign. The codesign objectiveistooptim-
ally designate some parts of the system into software com-
ponents and other parts into hardware components.

Traditionally theengineer has doneeverything fromwrit-
ing the conceptua system description to partitioning the
softwareand hardware, often using ad-hock methods such as

*This work was partially supported by Rockwell Automation, Allen-
Bradley.

EURO-DAC ' 96 with EURO-VHDL '96
0-89791-848-7/96 $4.00 [J 1996 IEEE

Christos A. Papachristou
Department of Computer Engineering
Case Western Reserve University
Cleveland, OH 44106
cap@al pha.ces.cwru.edu

‘ Conceptual System Deﬁniﬁon‘

System Representation
n

¥
l Initial System Representation‘

OUR FOCUS

odesign Partitiol

ASIC Behavior

T
v
Register Transfer Level University Tools,

L L IBM & Synopsys

Figure 1. Design abstraction and our focus.

l Firmware Behavior ‘ l

v
‘ Assembly ‘ ‘

past experience and knowledge of current design practices.
We are proposing a hardware/software COdesign METhod-
ology(COMET) that is capable of performing hardware and
software partitioning to reduce the overall designtime of a
system.

1.2. Contributions of our Research

Our approach to hardware/software codesign hastwo el e-
ments: specification and codesign partitioning methodo-
logy. The specification methodology uses current program-
ming languages and a rules file to fully describe the sys-
tem. We assume that al software components are writtenin
standard C and we assume that all hardware componentsare
written in standard VHDL. The rules file consists of state-
ments about the system which neither C nor VHDL can de-
scribe and codesign constructsto aid in the process.

The codesign partitioning methodology uses the sys-
tem defined in C, VHDL and the rules file to partition
the system description aong function boundaries into op-
tima hardware and software partitions. Once we have stat-
istics on each partition, COMET will suggest some hard-
ware/software solutions, and report al the partitioninform-
ation to the engineer in a spreadsheet format. To perform
automated codesign partitioning, we devel oped aneurd net-
work partitioner that determines hardware/software splits
based on desired goals.

Therest of thispaper will continuewith section 2 discuss-
ing related work inthe hardware/software codesign field and
their differences from the COMET methodol ogy. Section 3
will discussthe basis of the COMET methodol ogy with em-
phasison the estimatorsand therulesfile. Section 4 will de-

scribe COMET’s methodol ogy with emphasis on codesign
partitioning, interfacing, and the partitionevaluator. Wewill
finish with section 5 by demonstrating the results we have
generated thus far and conclude with the status of our re-
search.

2. Related Work and Their Differences

Thereiscurrently much research being donein thearea of
hardware/software codesign. This section will review afew
of these mgjor research efforts, and their differences from
COMET.

2.1. Related Work

The Cosyma hardware/software codesign system [2]
starts with the system described in Cx. Cx is a superset of
ANSI Cwherethe extensionsare timing, task concepts, and
task intercommunication. The designer must describe the
behavior of the hardware for possible implementation as a
Cfunction. The Cosymatool’sinternal representation of the
system is described by ES (Extended Syntax) graphs. Par-
titioning and codesign occurs in the ES graph form and the
results are converted to C for software and HardwareC for
hardware. How the system is partitioned remains an open
guestion for the Cosyma system; however, their directionis
towards an iterative partitioning method. As for software
estimations, partitions are compiled and the object code is
simulated with an RTL (register-transfer-level) simulator.
The hardware estimationsare performed by synthesizingthe
hardware partitionsand a so feeding theresultsinto the RTL
simulator.

The hardware/software codesign environment created by
[9] uses Verilog for the hardware description and C for the
softwaredescription. Theinputinto their codesign tool con-
sists of a complete functional description of the system, a
technology description and performance goals. Partitioning
theinput systemisdoneby breakingit up into nontrivial se-
guences of operations. Each partition considered for hard-
ware is memory-mapped with an interrupt completion line
back to the controlling software. Software and hardware es-
timations are done on a " cycle per input byte’” comparison
with the parameters of cost and performance as the metrics
for codesign. The output of thetool is C software partitions,
Verilog hardware partitions and standard parts descriptions.

The Codesign Finite State Machine(CFSM) [1] isarep-
resentation of ahardware/software codesign system. Thein-
tentisto convert high level behavior languageslike VHDL,
SpecCharts and others into a CFSM representation. Once
the system isin a CFSM, partitioning is done in an iterat-
ive fashion based on design metrics [1]. After partition-
ing, softwareismapped into S-graphswhich aretechnol ogy-
independent representations of the software components.
Then the S-graphs are mapped into portable C code for
compilation. The hardware partitions are converted from

CFSM’s into an abstract description. This description is
then logic synthesized to generate the final synchronous
hardware description.

SpecCharts [3] is another system specification language
for hardware/software codesign. The researchers have de-
veloped estimators for both software and hardware. Their
software estimator is based on a generic processor model
method of estimation [4]. Their hardware estimatorscan es-
timate based on many models such as a pin model, an area
model, and a performance model [10]. Through the use of
agraphical interface and graphica representations of their
estimations, hardware/software codesign can be donein an
interactive environment.

2.2. COMET Differences

COMET usestheCand VHDL languagesdirectly (along
with the rulesfile) to perform hardware/software codesign;
whereas, other tools make use of intermediate languages
that are not so universally know and have no commercia
synthesis tools to support them. The problem with using
these languages is that eventualy it has to be converted to
C and some hardware description language like VHDL for
compilation and synthesis. C and VHDL are well known
languages and commercia synthesistoolsaready exist for
them. These factorswill increase the quality of the codesign
result while preserving theoriginal C and VHDL system de-
scription.

Another important differenceisthat our codesign process
does not require a functionally complete description to per-
form hardware/software codesign. Other codesign systems
require functionally complete descriptions to perform the
codesign because every partition has to be estimated. With
COMET, aVHDL or C stub can be created for those parti-
tionsfor which functional code cannot be generated, or has
yet to be generated.

Also, COMET can perform substitutional operations on
partitionswhere multiple optionsare available viatherules
filewhich otherscannot do. Thisway we believethat we can
truly analyze the hardware/software tradeoffs of particular
optionsfor a system.

Next, interfaces between hardware and software are con-
sidered important to the codesign process. Thus COMET
provides greater control of the interface methods via the
rulesfile. Thisremovesrestrictionsto the possible commu-
nication methods between partitions. Some other systems
have not fully addressed the importance of interfacing hard-
ware and software partitions.

The codesign of a system can be an iterative "design-
codesign-simulate-improve’ loop wherethe original system
isrefined until aquality system isachieved. By describing
the system in an intermediate language it incurs an iterative
" design-codesign-simulate-improve” loop in that language,
but then subsequent iterations must be donein the synthesis

languages. Thisis undesirable for two reasons: the design
cycle of the product increases and in the end there are two
system descriptions to manage. The most important differ-
enceisthat al of these aspectsare not found in any one other
tool.

3. TheBasisof COMET

The approach onetakesto hardware/software codesignis

important to its quality. Figure 2 illustrates our approach.

C/VHDL System
Representation

Engineering Specs

\METHODOLOGY i
I

i i
1 I
i o oD %
] I
i Software C__| [Hardware VHDL | | i
] I
1

i i
| I
i i
| i
1 I

[Software C] [Hardware VHDL] Area and Time
| | Estimations

Figure 2. Road-Map of the COMET tool.

Our codesign process starts with C, VHDL and a rules
file. Therulesfilewill contai nthe engineering specifications
for the system including the design specifications and any
engineering scenarios that are applicable. Hardware timing
information can be embedded in the VHDL code or in the
rulesfile. Theresultsof thecodesign processaretheoriginal
C/VHDL source, the time and area estimations in spread-
sheet format and any C/VHDL code that is generated.

3.1. COMET Rules File

The rules file is the cohesive e ement between the soft-
ware C and the hardware VHDL. This section will discuss
some of theimportant features of therulesfile.

One feature is the substitutional constructs
that it provides. These constructs alow functions to
have substitute time and area values for hardware and
software partitions without affecting the simulation. For
instance, in an answering machine application, it may
not be known whether the recording media is an audio
cassette or EEPROM. There could be a function caled
"write_message to_media()” which prints a message that a
notice has been written. If we aready knew the time and
area estimationsavailable for the audio cassette and the EE-
PROM versions, the estimationswoul d be entered as shown
inFigure 3.

To take advantage of reusable pre-existing components,
libraries are anecessity. There arerules allowing for thein-

.write_message_to_media = {EEPROM,audio_cassette};
.write_message_to_media.:hardware_only;
.EEPROM.:hardware.default.area = 100000 transistor;
.EEPROM.:hardware.default.timing = 10 msec;
.audio_cassette.:hardware.default.area = 10000 transistor;
.audio_cassette.:hardware.default.timing = 1 sec;

Figure 3. Answering Machine Example.

clusion of such alibrary. The syntax is similar to C where
"#include "/home/library/old_useful .rules’ will refer to a
physica location for an included library component and
"#include <previous design.rules>" looks a an environ-
ment variable for the included library path for the library
component.

fft:hardware_to_software_interface = {FIFO_type,shared_mem};
fft:software_to_hardware_interface = {simple_handshake};

@
.printf.:software_only;
all_hardware.queue.:hardware_only;
stimulus..:simulation_only;

(b)

Figure 4. Interface and exclusion constructs.

Interfaces between software and hardware are specified
viatherulesfile (Figure 4a). The engineer can select afew
methods for an interface and the COMET tool will choose
the best of those methods. There are a'so rules which force
partitionsto be software only, hardware only, or simulation
only (Figure 4b). Thesimulation only rulewill exclude any
partitionsfrom being considered in the codesign process.

3.2. The Estimators
3.2.1. COMET Profiling

The main objective of profiling is to provide informa
tion about the branching and iterative constructs of the C
and VHDL systemto the estimators. Since the engineer will
be dedling with C and VHDL source, the profile informa-
tion should relate back to that source. The ided profiler for
COMET isonethat would just record the number of timesa
basic block of C or VHDL was executed. It would also re-
port its findingsin a way that fits into the rules file format.
We have examined public domain profilers and determined
that what our tool needs is not available. So, we have de-
veloped our own C/VHDL profiler. This profiler adds the
necessary code to VHDL and C such that when the system
isre-simulated the number of iterationsof each profiledline
of VHDL and C isextracted. By knowing how many times
alineof C or VHDL isexecuted, we can compute the aver-
age probability for branches and the number of iterationsfor
loops.

3.2.2. The software estimator

The method of software estimation we are proposing is
ahybrid of both the established processor specific estimator
and the generic processor estimator. [4] Figure 5illustrates
our method of software estimation.

We propose the use of processor-specific compilerswith

GCC

Compiler with
processor specif
flag set

8086 68000 MIPS
instructions instructions instructions

8086 68000 MIPS
Processor specil mj;;‘l‘l:“t;rr“dse Processor specil m[?r::lncuoazse Processor specil |n;$:‘urj:uoar:ée
TBI generator 9 TBI generator 9 TBI generator 9
size size size
information information information

TBI file for
processor specif
instructions

o Rules file for
software

<«—] thesystem

estimator, specification

Figure 5. COMET software estimation.

a generic estimator. It turns out that the GCC compiler is
re-targetable and supports a host of target processors. GCC
also provides facilities of attaching debugging information
to the assembly that the compiler produces. This debug-
ginginformationrelatesthesinglelineof C codeto the num-
ber of instructions required to accomplish that code. We
use this debugging option to create processor-specific as-
sembly with relationships to the C code from which it was
generated. Thus, we have created an automated tool to ab-
stract the assembly instructions. This tool will convert the
processor-specific instructionsinto Time, Bytesand Instruc-
tion information for each lineof C. Thus, wecall it the TBI
generator. This effectively removes the specificity of the
processor, alowing for the use of a generic software estim-
ator.

Instead of using the assembly instructionsfor estimation,
we usethe C source code and the output of the TBI generator
to do the same thing. The benefit of using C over assembly
isthat we do not lose any information about the C constructs
that are lost when compiled. When profiling is used to en-
hance the estimators, the informati on about thelooping con-
structsismorevisiblein C versis the assembly counterpart.
Sincetheengineer isfamiliar with C and VHDL loopingand
branching constructs, thereisan understanding benifit to es-
timation in this fashion.

3.2.3. The hardware estimator

COMET uses an estimator based on a data flow graph
(DFG) approach of hardwaremodeling. Thisisanal ogousto
high-level or register-transfer-level (RTL) synthesis except
COMET stops short of the synthesis process. Our approach
to hardware estimation isto convert the VHDL into a DFG
representation while considering the profiled looping and
branching constructs. Afterwards, the DFG representation
is scheduled and functional units are allocated to compute
an estimate.

The VHDL-to-DFG program convertsVHDL processes,
functions, and procedures into a DFG format similar to

that used in SYNTEST. [7] Our DFG format differs from
SYNTEST’s in that ours requires the computation of the
complete execution time for comparison to its software
counterpart.

Scheduling isdonein the same manner as SYNTEST. [7]
After scheduling and all ocation, thedata path isexamined to
determine the average execution time of the original VHDL
partition. We are planning to use the layout estimation tech-
niques found in [6] to produce area estimates for codesign
partitions.

4. Codesign Methodology of COMET

With the basics of the rules file and estimations already
explained, we can define the method by which COMET will
perform hardware/software codesign. Thefollowingarethe
main stepsthat COMET will follow to achieve the codesign
process.

a) Unclustering C/VHDL partitions

b) Interfacing codesign partitions

¢) Estimating hardware and software partitions

d) Automatically evaluating hardware/software partitions

The codesign process starts with unclustering the C
and VHDL system. Section 4.1 will discuss the method
COMET usesto uncluster C and VHDL into codesign par-
titions. After unclustering, the interfaces for each function
are gathered or generated. Interfaces are discussed in Sec-
tion 4.2. COMET will then estimate each partition in both
hardware and software. The generated results are gathered
for evaluation by COMET and the engineer. COMET sends
the gathered data to the codesign partition evaluator which
then suggests a hardware/software codesign partition. The
codesign partition evaluator isdiscussed in Section4.3. The
codesign process can be iterative by going through steps a)
through d) again with either new rulesinformationor amore
robust system definition.

4.1. COMET Pre-Partitioning

The COMET methodology uses a function-level pre-
partitioning model for unclustering codesign partitions. In
essence, the pre-partitioner will uncluster the functions
within the C and VHDL descriptions into unique C and
VHDL partitionfiles. Each resulting pre-partition file con-
tainsonly C or VHDL code. If no rulesinformation exists,
each pre-partitioned function is then passed to the estimat-
ors. For VHDL, the hardware estimator will only estimate
sequentia statements like functions, procedures, and pro-
cesses. For C, the entire language can be estimated.

Due to function-level pre-partitioning, there is aways
an initia partition: the initial description of the system.
This provides a basis point for measuring the quality of the

codesigning system. This also alows for the rules file to
easily substituteor remove partitionsfrom the codesign pro-
Cess.

4.2. COMET Partition Interfacing

Dealing with the interfaces between hardware and soft-
ware partitionsis an important issue in hardware/software
codesign. There are two basic types of interfaces:

o Theinterface between ahardware partitionthat is con-
trolling a software partition.

o Theinterface between a software partition that is con-
trolling a hardware partition.

The reason we do not consider hardware/hardware and
software/software interfaces isthat they are inherent within
Cand VHDL dready. For VHDL, communication between
signals, variables, and functions are based on their con-
nectivity. If two signals are connected, they can commu-
nicate as long as the target signal can accept values while
the source signa can supply a value. For C, the soft-
ware/software interface uses the processor’s stack to push
variables before calling a function and to pop the variables
after the called function compl etes. Therefore, we need only
to consider the hardware/software and software/hardware
interfaces.

HARDWARE

" vooHHG) HSG) L
' ' '
Interrupt . ISR Code
Generation ' Segment
and Data Se T Interface
Interface '
= — . Radar
x-ais. [l Positioning ' Tracking
Controller Processing
f >
-'am—ﬁ— Memory ' Memory Map| Unit
v Mapped ' Software
Hardware [N 7 Results i
.- '
2ais Il Interface : Interface '

[
SOFTWARE
[

Figure 6. Hardware controlled interfacing.

In Figure 6 we introduce notation for the representation
of theinterface between two partitions. We start by labeling
the current partition for interface consideration as ”1.” The
partition that "1” is interfacing to is partition ”J.” The in-
terfaces between partitions”1” and "J’ consist of software
and hardwareinterfaces. For ahardware partition”1” which
is controlling a software partition "J’ (Figure 6), the in-
terfaces are HH(i,j) which stands for Hardware controlled
Hardware Interface from partition ”1” to partition ”J’; and
HS(i,j) which stands for Hardware controlled Software In-
terfacefrompartition”1” to partition”J.” For asoftware par-
tition”1” which is controlling a hardware partition”J’, the
interfaces are SH(i,j) which stands for Software controlled
Hardware Interface from partition ”1” to partition "J’, and

SS(i,j) which stands for Software controlled Software Inter-
face from partition”1” to partition”J.”

Any type of interface is alowed wheither synchronous
or asynchronous. All that COMET requiresis either a cost
estimates passed within the rulesfile or aC or VHDL rep-
resenting the interface desired. At present, if no interface
information is passed in the rules file, COMET will supply
memory-mapped interfaces between the hardware and soft-
ware partitions.

4.3. Hardware-Software Partition Evaluator

Once the estimators compute the time and area metrics
for the partitions and the interfaces, we can begin to decide
which partitionsare better implemented in software or hard-
ware. The evaluator tries to maximize the flexibility of a
design by placing only the necessary partitionsin hardware.
The method we are investigating now is a neural network
solution. The neural network uses McCulloch-Pitts binary
neuron model [8] for the placement of each codesign parti-
tion: O for hardware, 1 for software.

Due to the functional partitioning of the system we can
represent the connections of a system in what we are defin-
ing as acall graph. A call graph node represents a codesign
partition.(Figure 7) The directed arcs show a function call
from one codesign partitionto another. The number of times
afunctioncalls apartitionisthe weighted value for that dir-
ected arc. Each node has an associated average execution
time excluding the time from its called function.

abstand
[800ns]
10 \6“1
sqrti
[500ns]

Figure 7. Decorated COMET call graph.

To compute the average execution of a given cal graph
we can use the following equations.

my_lab3
[400ns]

P
ABoppa = Y TNE; (1)
i=0
P
TNE;, = Z (Ite?“ji~(NEZ’—|—
j=0;51=i

X, X; (THHj; +THS;i - clk) +

J
X; - X; - (TSHj; + TSS;; - clk))) (2)

K3

NE; = X; - (clk - S;) + X; - H; €)
At present, the partition evaluator will try to meet the
goal of a specific execution time and the number of memory
bytesrequired by the system. Our reasoning is based on the
micron size of transistors. As the transistor size decreases
to below .4 microns, the custom ASIC becomes pad limit-
ing leaving ampl e space for custom hardware, an embedded
processor and memory. Now theissue comes down to how
much memory can be placed in the ASIC versus the cus-
tom hardware. Therefore, knowing the size of the embed-
ded program become a major issue. To compute the aver-
age bytes for a functiona node, we can extract the number
of bytesfor a given partition from the execution time equa-
tions. This produces the following equations.

P
ABiora = Y TN B;)
p =0
TNB; = > (Calleej; - (X;-X;- BHS;; +
J=03jt=i
X; - X; - BSS;i)) (5)
NB; = X; - B; (6)

With these equations (1-6), we can implement a neural
network hardware/software partitioner to meet the timing
and memory byte goals. The neura network operatesin an
iterativefashion. Each iteration computes anew energy dif-
ference for that neuron and adds that to the current binary
neuron input. Based on the updated input the output is set
accordingly. Consecutive iterations occur in the same fash-
ion until the system stabilizesa solution.

5. Resultsand Status
5.1. Chroma-key Algorithm

The Chroma-key algorithmisused by [2] to benchmark
their Cosyma codesign system. The agorithm is used in
high-definition television studio equipment. The first of
the four implementation columnsistheinitial partitionim-
plementation that is completely implemented in software.
This implementation resulted in a 93.51505 second execu-
tion with 51753 bytes. The second column of implementa-
tionshasagoal of 1 second for execution and agoal of eight
kilobytesof memory. Theresult was 11.214297 secondsand
10083 bytes. The third column of implementations has a
goal of 20 seconds for execution and a goal of sixteen kilo-
bytes of memory. The result was 27.155764 seconds and
15994 bytes. The forth column of implementations has a
goa of 70 seconds for execution and a goal of thirty-two
kilobytesof memory. Theresult was 78.253448 secondsand
31968 bytes. Theresultswere generated assuming a 20Mhz
68HC11 processor. The interfaces were assumed memory
mapped for software-controlled hardware and | SR memory
mapped for hardware-controlled software.

5.2. Status

The main goal of the chroma-key experiment was to
show that the methodology of COMET is operationd. This
goal was achieved with approxi mately 95% automation. All
the components of COMET, including the neura network
partition eval uator, have been implemented in apreliminary
form. Given a profiled system, COMET can pre-partition
the system, generate hardware/software interfaces, estimate
the hardware and software costs, gather the estimated res-
ultsin an integrated form and suggest a hardware/software
partition. The COMET tools are implemented in both a
command-lineform and acommon graphical user interface.

Also, work isunderway to verify the quality of the estim-
ators as well as adding area estimation as a codesign para-
meter. We al so expect compl ete automation of the COMET
codesign methodol ogy soon. Also, intheworkings,isanin-
dustrial system design to verify thefunctionality and useful -
ness of the COMET methodology in a market-driven indus-
trial atmosphere.

References

[1] M. Chiodo, P. Giusto, A. Jurecska, H. C. Hsieh, A. S. Vin-
centelli, and L. Lavagno. Hardware-software codesign of
embedded systems. |EEE Micro, pages26—36, August 1994.

[2] R. Erngt, J. Henkel, and T. Benner. Hardware-software co-
synthesisfor microcontrollers. IEEE Design & Test of Com-
puters, pages 64—75, December 1993.

[3] D.D. Gajski and F. Vahid. Specification and design of em-
bedded hardware-software systems. |EEE Design and Test
of Computers, pages 53-67, Spring 1995.

[4] J. Gong, D. Gajski, and S. Narayan. Software estimation
using a generic-processor model. European Design & Test
Conference, pages 498-502, March 1995.

[5] T.B.lIsmail and A. A. Jerraya. Synthesis steps and design
modelsfor codesign. IEEE Computer, pages 44-52, Febru-
ary 1995.

[6] M. Nourani and C. Papachristou. A layout estimation al-
gorithm for rtl datapaths. Design Automation Conf. (DAC
93), pages 285-291, June 1993.

[7] C. Papachristou, H. Harmanani, S. Chiu, and M. Nourani.
Syntest: An environment for system-level design for test.
First European Design Automation Conf. (EURO-DAC 92),
pages 402—-407, September 1992.

[8] Y. Takefuji. NEURAL NETWORK PARALLEL COMPUT-
ING. Kluwer Academic Publishers, 1993.

[9] D. E. Thomas, J. K. Adams, and H. Schmit. A model and
methodology for hardware-software codesign. |EEE Design
and Test of Computers, pages 6-15, September 1993.

[10] F. VahidandD. D. Gajski. Specification partitioning for sys-
tem design. 29th ACM/IEEE Design Automation Confer-
ence, pages 219-224, June 1992.

[11] C. A. Vaderrama, A. Changuel, P. V. Raghavan, M. Abid,
T. B. Ismail, and A. A. Jerraya. A unified model for
co-simulation and co-synthesis of mixed hardware/software
systems. European Design & Test Conference, pages 180—
184, March 1995.

	CDROM Home Page
	1996 Home Page
	EURO-DAC96 home Page
	Front Matter
	Table of Contents
	Session Index
	Author Index

