
EURO-DAC ’96 with EURO-VHDL ’96
0-89791-848-7/96 $4.00  1996 IEEE

Decomposed Symbolic Forward Traversals

of Large Finite State Machines

Stefano Quer y Gianpiero Cabodi y Paolo Camurati z

y Politecnico di Torino

Dip. di Automatica e Informatica

Turin, ITALY

z Universit�a di Udine

Dip. di Matematica e Informatica

Udine, ITALY

Abstract

BDD{based symbolic traversals are the state-of-the-
art technique for reachability analysis of Finite State Ma-
chines. They are currently limited to medium{small cir-
cuits for two reasons: BDD peak size during image com-
putation and BDD explosion for state space represen-
tation. Starting from these limits, this paper presents a
technique that decomposes the search space decreasing the
BDD peak size and the number of page faults during im-
age computation. Results of intermediate computations
and large BDDs are e�ciently stored in the secondary
memory. A decomposed traversal that allows exact ex-
plorations of state spaces is obtained. Experimental re-
sults show that this approach is particularly e�ective on
the larger MCNC, ISCAS'89, and ISCAS'89{addendum
circuits.

1 Introduction

Finite State Machines (FSMs) are a popular model for
control{dominated ASICs. FSMs are identi�ed by their
input/output alphabets, initial state sets, and next state
and output functions. Exploring the state space of a
FSM allows us to prove many useful properties. Among
them, let us list equivalence, resetability, and synchro-
nization.

A forward traversal of a FSM identi�es its reachable
state space. Intuitively, a state is reachable if a sequence
of inputs causes the FSM to evolve from any initial state
to that state. The next state function determines the
evolution along time. The next states are the image,
for all inputs, of the current state set according to the
next state function. Next states are repeatedly added
to previously reached states. The process terminates as
soon as either a �xed-point is reached, i.e., no newly
reached states are found, or the property under scrutiny
doesn't hold.

Symbolic approaches compute images implicitly enu-
merating the inputs [1], [2] using the \transition rela-
tion" or the \transition function".

The de�nition of image is straightforward if a \transi-
tion relation" [1] describes sequential behaviour. The re-
lation is the set containing all the couples (current state
s { next state y) such that there is at least an input

value x that lets the FSM evolve from state s to state
y. Computing the image of a set of states comes down
to considering only those pairs whose current state be-
longs to the set, returning the corresponding next state.
The operations are conjunctions of BDDs and existential
quanti�cation of the current states.

Although quite successful, symbolic methods cannot
complete the reachability analysis of large FSMs, be-
cause they require too much memory and are computa-
tionally too expensive. Focussing on memory require-
ments, the two major problems are the BDD peak size
during image computation and the size of the BDD rep-
resenting reached states. Virtual memory should be con-
sidered a good solution to such a problem but, if the
working set size for a program is large and the memory
access are random, an enormous number of page faults
signi�cantly modify the performance of the program.

Our approach consists in decomposing sets of states
and in carrying out forward traversal in a decomposed
form. When monolithic BDDs become too large or when
image computation becomes too expensive, we decom-
pose sets in subsets. This allows us to deal with just one
subset at a time, decreasing both the number of BDD
nodes and the peak size. Fixed point computation and
other operations can be carried out on the decomposed
form.

Good decomposition of state sets is a key issue. A
simple and fast set decomposition technique, that has
almost no overhead in terms of nodes and of CPU time
is proposed.

Di�erent state sets have in general mutually overlap-
ping images and this entails a re-computation of the
states that belong to more than one image. Despite this
possibility, as the cost of image computation depends
more than linearly on the size of the current state set,
decomposition decreases the overall complexity, with re-
markable experimental bene�ts. This is especially true
for large circuits but it is also evident on smaller ones.

The decomposed approach has other advantages over
the standard one:
� it exploits mass memory to download large BDDs
and the results of intermediate computations

� it resorts to compression techniques to store BDDs

� it allows di�erent dynamic ordering strategies to be
applied to each decomposition.

Coudert and Madre [5] resort to a full domain or co-
domain partitioning for image computation. They ap-
plied these techniques to the transition function and re-
cursively decomposed the problem until a terminal case
was found.

Ravi et. al. [4] use a mixed breadth{�rst/depth{�rst
traversal focused on dense BDDs applied to the transi-
tion function method. The objective of the strategy is
to take large subsets of the state sets representable with
a small number of BDD nodes. This technique has been
quite e�ective in �nding large portions of the reachable
state space, but it overestimates the distance of a state
from the reset states and is unable to identify the se-
quential levels of the circuit.

Our approach is based on the transition relation and
partitions BDDs until their size is lower than a given
threshold, not until a terminal case is reached. The
method is exact, as it computes the set of reachable
states, not an over{ or under{estimation, and works
at its best when the reachable state set is represented
by a \uniform" BDD. Experimental results show that
it is particularly e�ective on the larger ISCAS'89 and
ISCAS'89{addendum circuits.

The remainder of the paper is organized as follows.
Section 2 summarizes some useful concepts. Section 3
describes enhanced symbolic traversal based on decom-
position and section 4 describes the decomposition pro-
cedure. Section 5 shows some experimental results. Sec-
tion 6 closes the paper with a brief summary and reports
on future work.

2 Preliminaries

2.1 The Model

A �nite state machine is an abstract model describing
the behavior of a sequential circuit. A completely spec-
i�ed FSM M is a 6-tuple M = (I;O; S; �; �; S

0
), where

B = f0; 1g, I = Bm is the input alphabet, O = Bo is
the output alphabet, S = Bn is the state space, � is the
next state function (� : S � I ! S), � is the output
function (� : S � I ! O), and S

0
is the initial state set.

Let x = (x
1
; x

2
; : : : ; xm), s = (s

1
; s

2
; : : : ; sn), and

y = (y
1
; y

2
; : : : ; yn) be vectors of Boolean variables de-

scribing the input variables I, the state variables S and
the output variables O, respectively.

2.2 Sets and Characteristic Functions

Let A be a subset of Bn. The characteristic function
of A is the function �A : Bn ! B de�ned by:

�A(a) =
n

1 if a 2 A
0 if a 62 A

Set operations are e�ciently implemented by Boolean
operators on BDDs. With abuse of notation, in the rest
of this paper we make no distinction between the BDD
representing a set of states, the characteristic function
of the set, and the set itself.

2.3 The Transition Relation

Let us describe the sequential behaviour of a FSM as a
relation [1], de�ning a characteristic function ��(x; s; y) :

Bm � Bn � Bn ! B that returns 1 i� the next state
y 2 S is the image of the current state s 2 S and of
the input x 2 I according to �. As we are concerned by
the existence of an input, rather than by its value, the
transition relation abstracts from the inputs. Let M be
a FSM. The transition relation TM associated to M is:

TM (s; y) = 9x

nY

i=1

(yi � �i(x; s)) = 9x

nY

i=1

ti(x; s; y)

2.4 Image of a Set

Let f : Bi ! Bj be a Boolean function and C � Bi a
subset of its domain. The image of C according to f is:

Img(f; C) = fy 2 Bj such that 9x 2 C ^ y = f(x)g

Subset C is often called \constraint". Whenever C = Bi,
the image is often called \range".

In particular the image of a set of states described by
its characteristic function C(s) according to � using the
transition relation is de�ned as:

Img(�; C(s)) = 9s (TM (s; y) �C(s))

2.5 Symbolic Traversal

A Symbolic Traversal (�g. 1) is a breadth{�rst search
that returns at each iteration the set of states T reached
from the current one F. This is accomplished by means of
a symbolic image computation Img(�, F). Set N contains
the T states that have not yet been visited. Reached
states are accumulated in R. The starting set F is ini-
tially set to S

0
and then is selected choosing a suitable

BDD that represents all newly reached states and possi-
bly some of the already visited ones, as in [2] (procedure
Best BDD).

The termination condition is to �nd a least �xed-
point. This condition is equivalent to testing the empti-
ness of N at each step.

Explicit enumeration has complexity equal to the to-
tal number of states in the FSM whereas the complexity
of the symbolic algorithm is lower. Large amount of
states, greater than 10120, have been visited e�ciently
with this method.

3 Decomposed Symbolic Traversal

Proceeding from one step to the next one in sym-
bolic traversal, all the sets, in particular F and R, be-
come larger and much more complex as new variables
are added to their supports.

Symbolic traversal experiences two bottlenecks:

� a monolithic BDD representing the set may be too
large

� it may be impossible to perform an image computa-
tion (function Img), because of the size of the BDDs
involved in intermediate computations.

Our approach consists in decomposing state sets
when, during traversal, they become too large to be rep-
resented as a monolithic BDD or when image computa-
tion becomes too expensive.

The basic idea is that, if we decompose the current
state set C(s) as C1(s) +C2(s), its image according to �
is equivalent to the union of the images of its decompo-
sitions C1(s) and C2(s). In fact working with the tran-
sition relation we can write:

Img(�; C(s)) = 9s(TM (s; y) �C(s))
= 9s9x(

Q
n

i=1
ti(x; s; y) �C(s))

= 9s9x(
Q

n

i=1
ti(x; s; y) � (C1(s) + C2(s)))

= 9s9x(
Q

n

i=1
ti(x; s; y) �C1(s))

+9s9x(
Q

n

i=1
ti(x; s; y) �C2(s))

= Img(�; C1(s)) + Img(�; C2(s))

After a decomposed image computation, we can recom-
pose the resulting set or we can carry on traversal in a
decomposed form.

Sets can be split not only at a traversal step but
also inside image computation, optimizing \atomic"
conjunction{abstraction operations.

Figure 2 shows the pseudo-code for the decomposed
traversal. Initially, Rdec and Fdec are set to S0. Parame-
ter n dec indicates the current number of decompositions
and is initially set to 1. At each step, if n dec equals 1,
i.e. the BDD is monolithic, control passes to procedure
Split (see section 4.1). This procedure evaluates the
size of Fdec and if it exceeds limit, it decomposes it into
subsets. limit is a parameter for the procedure and its
value essentially depends on the image computation pro-
cedure complexity and on the set representation limit.
Split decomposes the original set into n dec subsets re-
turning each decomposition in Fdec. If n dec is greater
than 1, a previous decomposition has already been done
and we move to the next step.

For each subset an image computation (function Img)
is called. Images of subsets are stored in Tdec. This
allows the image computation procedure to deal with
just one subset at a time decreasing BDD peak size.

After the image computation phase, a �xed point
computation and other operations (see �g. 1) must
be performed on the monolithic or the decomposed
form. Functions Compute New, Compute Reached,
Compute From, and Verify New are relatively sim-
ple and perform these operations on a conjunction{
comparison base. These procedures can manage and re-
turn monolithic BDDs or decomposed ones, depending
on the size of the BDD themselves. n dec is set accord-
ingly to the strategy used.

To deal with very large sets, we have implemented
a quite e�cient method to store and load BDDs from
the main memory to the secondary one. The method
requires a minimum of 4 bytes to store a single BDD
node whereas the average occupation is of about 6 bytes
per BDD node with BDDs with less than 500; 000 nodes.
Every procedure is built to work indi�erently with BDDs
in the main or in the secondary memory depending on
the general complexity and e�ciency.

4 Set decomposition

Good decomposition of state sets is a key issue. As
for each decomposition we have to compute Img(f; C1)+
Img(f; C2) instead of Img(f; C) a good decomposition
avoids re-computations.

Our decomposition technique is simple and fast and
has almost no overhead in terms of nodes and a little
cost in terms of CPU time. Given a BDD, the proce-
dure tries to split it in two BDDs that represent subsets
of the original set, and eventually recurs if the solution
is still not optimal. The split is based on Boole's expan-
sion theorem. By dynamically choosing the best splitting
variable, we try to maintain overlaps among di�erent de-
compositions low, avoiding repeated computations.

In the next subsections we describe the splitting rou-
tine (Split) and the way we choose the best split vari-
able (Select Var).

4.1 Procedure Split

Given a BDD f , representing a set of states, we de-
compose it in BDDs, which represent subsets of the orig-
inal set. We proceed trough a recursive splitting and
during each step we split f in two BDDs g1 and g2.

Our procedure is essentially based on Boole's expan-
sion, i.e. f(x1; x2; : : : ; xi; : : : ; xn) = xi � f jxi

+ xi � f jxi
=

g1 + g2. As the target is to decompose the BDD with
minimal node overhead (jg1j + jg2j � jf j 1) but as, in
general, we have to deal with large BDDs and also the
time required is important, we have to select in a fast
and e�cient way the variable xi to use. In other words
we cannot compute all the cofactors with respect to all
the variables, but we have to evaluate their size a priori.

The pseudo code of the main procedure is shown in
�g. 3.

First, procedure Select Var (see section 4.2) se-
lects the best splitting variable. Then the two cofac-
tors, pbdd left and pbdd right, are computed. Finally
the procedure tries to recur just in case the size of the
BDDs obtained is still too large.

4.2 Procedure Select Var

This procedure returns the best splitting variable de-
pending on the BDD structure. For each variable of the
BDD pbdd calls Count and Cost. The former (see
�g. 5) estimates, due to the node sharing, the nodes
of the positive or negative cofactor (depending on the
polarity) of pbdd with respect to the i variable without
computing the cofactors. It is quite fast, doesn't create
any new BDD node and return a really good overesti-
mation. The latter evaluates which variable is best for
the split procedure, depending on the size of the left and
the right cofactor.

We experimented with several cost functions. A split
should produce balanced BDDs and with the smallest
global increase in terms of BDD nodes. A good cost
function minimizes the value j(n n left � n n right)j +
j((n n left+n n right)�n n)j where n n is the number
of nodes of the original BDD.

5 Experimental Results

We implemented the procedures presented above in
an home{made tool written in C of about 15; 000 lines
of code. BDD ordering heuristics are static, i.e. we don't

1
If f is a BDD we denote with jf j its number of nodes.

apply reordering heuristics during traversal. The num-
ber of BDD nodes is limited to 4; 000; 000. We experi-
mented with di�erent traversal strategies [1], [3], [5], and
[6]. Experiments ran on a 130 MIPS DEC Alpha with
256Mbyte of mainmemory. An e�ective use of secondary
memory allows us to save relevant portions of BDDs and
work with only a minimumnumber of BDD nodes in the
main memory avoiding repeated page faults.

The columns of Tab. 1 give the name and the number
of primary inputs (# PI), primary outputs (# PO),
ip-

ops (# FF), and gates (# G) for the MCNC, ISCAS'89,
and ISCAS'89{addendum benchmarks.

In all the following tables Circuit indicates the name of
the circuit, Level indicates the number of the level (inter-
mediate or �nal) of the exact forward traversal, # Nodes
is the number of nodes and # States is the number of
reachable states. # Dec. indicates the number of de-
compositions, i.e. in how many images we decompose a
single image step.

Tab. 2 shows data for sbc (MCNC), s1269 (ISCAS'89{
addendum) and for s5378 (ISCAS'89).

In general, the overhead due to decomposing and re-
composing sets is negligible with respect to traversal
time. Thus we are able to decrease the peak node size,
to simplify single image computation steps, and to lower
the CPU time.

We reported data on sbc just to prove the feasibility of
the approach also on small circuits. For this circuit the
decomposition level is 2000 nodes, the maximum reached
size is a bit larger than 4000 nodes, and we use 2 or 3
decompositions from level 4 on.

On circuit s1269, the standard approach explodes af-
ter level 2. Using the decomposed approach we are able
to visit the circuit entirely. The decomposition proce-
dure works quite well in this case as the BDD is quite
\uniform". We are able to decompose the reached set
at level 2, consisting of 16017 nodes, in 6 subsets, each
having less that 3000 nodes. At level 3 a threshold of
7500 nodes is used, obtaining 12 partitions. Data show
that levels 3 and 4 are critical, because of the intermedi-
ate computations. At level 4 the number of nodes of the
BDD representation of the reachable state set decreases
by two orders of magnitude and all other levels are quite
simple to compute.

Circuit s5378 is even harder. The standard approach
reaches level 2. The BDD of the reachable state set in
this case is not particularly large, nevertheless it is quite
di�cult to decompose it in subsets, because of the large
number of state variables (179). With our current imple-
mentation of decomposed traversal, not yet optimized,
we reached level 3. We stopped because we estimated
100 hours were necessary to reach level 4. This amount
of time is quite large, but, for the �rst time there are no
virtual memory limits to the traversal procedure.

Tab. 3 collects data for the s1423 ISCAS'89 bench-
mark. Despite its relatively small size, s1423 is very
di�cult to handle during reachability analysis. Exten-
sive experiments have been performed on this circuit [7],
[4]. Though Ravi et al. [4] used the transition function,
which is thought to be more powerful than the transi-
tion relation, they couldn't succeed in going beyond the
11th level with a pure breadth{�rst traversal. To the
best of our knowledge, nobody has yet presented data

beyond that limit. Our standard approach, with a non-
optimized traversal based on the transition relation, is
able to deal with the circuit up to level 10. Afterwards,
we resort to the decomposed approach. For this bench-
mark we have to decompose BDDs above approximately
60000 nodes. The degree of overlapping between dif-
ferent partitions is quite low because our decomposition
techniques works quite well for this circuit, as, despite
the relatively small number of state variables (74), the
BDD sizes are enormous. We reached level 13; at that
level the reachable state set has more than 4; 000; 000
nodes and the monolithic representation is impossible to
obtain with our memory limit.

6 Conclusions and Future Work

Symbolic FSM state space exploration techniques rep-
resent one of the major recent results of formal veri�ca-
tion. Their limit resides in the inability to deal with
large circuits. In this paper we propose a decomposed
forward traversal that is exact and lowers BDD peak size
during image computation and representation limits of
the reachable state set. This technique has been proved
also useful to avoid severe thrashing in the virtual mem-
ory system. Experimental results show that it works
quite well with uniform and large sets.

We are currently working on a new traversal package
built on top of the CUDD package [8]. The overall tool
is 5� 10 times or more faster than the tool we currently
use. This is essentially due to three factors: the CUDD
package is faster then the BDD package we have used
so far, the reordering procedure built inside the CUDD
package allows us to work with smaller BDDs, and new
clustering and ordering techniques implemented in the
traversal procedure allow more e�cient traversals.

In particular the possibility to use di�erent orders
with di�erent decompositions is quite attractive. We
are also experimenting with new decomposition strate-
gies trying to optimize the split procedure also for \non-
uniform" BDDs.

References

[1] H. Touati, H. Savoj, B. Lin, R.K. Brayton, A.
Sangiovanni-Vincentelli, \Implicit enumeration of
�nite state machines using BDDs," in Proc. IEEE

ICCAD'90, November 1990, pp. 130{133

[2] H. Cho, G. Hachtel, S.W. Jeong, B. Plessier, E.
Schwarz, F. Somenzi, \ATPG Aspects of FSM Ver-
i�cation," in Proc. IEEE ICCAD'90, November
1990, pp. 134{137

[3] G. Cabodi, P. Camurati, \Exploiting cofactoring for
e�cient FSM symbolic traversal based on the Tran-
sition Relation," in Proc. IEEE ICCD'93, October
1993, pp. 299{303

[4] K. Ravi, F. Somenzi, \High{Density Reachability
Analysis," in Proc. IEEE ICCAD'95, November
1995, pp. 154{158

Traversal (�, S0)
f
R = F = N = S0;
while (N 6= ;)

f
T = Img (�, F);

N = T � R;
R = R + N;
F = Best BDD (N, R);
g

return (R);
g

Figure 1: Exact Symbolic Forward Traversal.

Decomposed Traversal (�, S0, limit)
f

n dec = 1;
Rdec = Fdec = Ndec = S0;
continue = true;
while (continue)

f

if (n dec == 1)
n dec = Split (Fdec, limit, n dec);

for (i = 0; i < n dec; i++)
Tdec [i] = Img (�, Fdec [i]);

Ndec = Compute New (Tdec, Rdec, limit, n dec);
Rdec = Compute Reached (Rdec, Ndec, limit, n dec);
Fdec = Compute From (Ndec, Rdec, limit, n dec);
continue = Verify New (Ndec, n dec);
g

return;
g

Figure 2: Exact Decomposed Forward Traversal.

[5] O. Coudert, J.C. Madre, \A Uni�ed Framework for
the Formal Veri�cation of Sequential Circuits" in
Proc. IEEE ICCAD'90, November 1990, pp. 126{
129

[6] R.K. Ranjan, A. Aziz, R.K. Brayton, B. Plessier, C.
Pixley, \E�cient BDD Algorithms for FSM Syn-
thesis and Veri�cation," IWLS'95: IEEE Interna-
tional Workshop on Logic Synthesis, Lake Tahoe,
CA, USA, May 1995

[7] H. Cho, G.D. Hatchel, E. Macii, M. Poncino, K.
Ravi, F. Somenzi, \Approximate Finite State Ma-
chine Traversal: Extensions and New Results,"
IWLS'95: IEEE International Workshop on Logic
Synthesis, Lake Tahoe, CA, USA, May 1995,
pp. 3.1{3.5

[8] F. Somenzi, \CUDD: CUDecision DiagramPackage
{ Release 1.0.4," Technical Report, Dept. of Electri-
cal and Computer Engineering, University of Cali-
fornia, Boulder, November 1995

Split (pbdd, limit, n dec)
f

if (jpbddj > limit)
f
var = Select Var (pbdd);
if (var > 0)

f
pbdd left = var � pbdd;
pbdd right = var � pbdd;
n dec++;
Split (pbdd left, limit, n dec);
Split (pbdd right, limit, n dec);
g

g

return (n dec);
g

Figure 3: Splitting a BDD.

Select Var (pbdd)
f

var = {1;
for (i = 0; i < Var Number (pbdd); i++)

f

n n left = Count (pbdd, Var (i), 1, 0);
n n right = Count (pbdd, Var (i), 0, 0);
if (Cost (jpbddj, n n left, n n right))

var = i;
g

return (var);
g

Figure 4: Selecting the best split variable.

Count (pbdd, var, polarity, n n)
f

if (Terminal Case (pbdd))
return (n n);

if (pbdd:count == 0)
f

if (pbdd:var == var)
if (polarity == 1)

n n = Count (pbdd:left, var, polarity, n n);
else

n n = Count (pbdd:right, var, polarity, n n);
else

f
n n = Count (pbdd:left, var, polarity, n n);
n n = Count (pbdd:right, var, polarity, n n);
g

n n++;
pbdd:count = n n;
g

return (n n);
g

Figure 5: Counting the Number of Nodes.

Circuit # PI # PO # FF # G

sbc 40 56 28 1011

s1423 17 5 74 657

s5378 35 49 179 2779

s1269 18 10 37 560

Table 1: Example statistics for some MCNC, ISCAS'89, and ISCAS'89{addendum benchmarks.

Circuit Level Reached Monolithic Approach Decomposed Approach

Nodes # States CPU Time # Dec. CPU Time

sbc 10 4277 1.54592�10
5

86.1 3 82.3

s1269 1 481 4.340�10
3

0.2 = 0.2

2 16017 1.308�10
7

6.7 = 6.7

3 103522 8.034�10
8

ovf 6 1145

4 805 8.842�10
8

- 12 4971

5 804 9.309�10
8

- = 4975

6 805 9.776�10
8

- = 4978

7 803 1.024�10
9

- = 4980

8 813 1.066�10
9

- = 4982

9 803 1.131�10
9

- = 4983

10 803 1.131�10
9

- = 4983

s5378 1 539 1.049�10
6

1.4 = 1.4

2 10395 1.274�10
9

50.5 = 50.5

3 31349 1.729�10
12

- 20 17
h

Table 2: Comparison between Standard and Decomposed Traversal on large circuits. = means that no decomposition
was necessary; ovf indicates over
ow on BDD nodes; - means no data available.

Level # Dec. Peak size BDD # Reached Nodes # Reached States CPU Time

1 1 149 205 5.450�10
2

0.7

2 1 272 372 3.345�10
3

1.5

3 1 836 785 5.557�10
4

2.0

4 1 2269 1625 3.922�10
5

3.9

5 1 7523 3228 2.080�10
6

7.5

6 1 15691 6300 8.493�10
6

12.8

7 1 35695 13350 3.370�10
7

25.9

8 1 106089 29465 1.111�10
8

80.3

9 1 268527 72562 4.896�10
9

295.5

10 1 721179 194036 1.683�10
9

998.4

11 4 874074 604998 7.990�10
9

4997.5

12 15 1348074 1870790 2.303�10
10

5
h

13 53 1257884 5968310
�

7.952�10
10

57
h

Table 3: Decomposed Traversal on s1423 circuit. � means that in this case the monolithic representation doesn't
exist and then the number is overestimated on the decomposed representation.

	CDROM Home Page
	1996 Home Page
	EURO-DAC96 Home Page
	Front Matter
	Table of Contents
	Session Index
	Author Index

